首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The purpose of this study was to investigate how forests on subtropical mountains, which resembled tropical and temperate forests, were assembled, and to examine the compression and overlap of vegetations. We established 344 sample plots (400 m2) located at different altitudinal gradients ranging from 16 to 3,500 m above sea level (ASL) in Hsueshan Range northern Taiwan. Vegetation types were classified by TWINSPAN and the results of DCA were used to analyze the changes in vegetation types along elevation. Vegetation I was composed of the species of Euphorbiaceae, Moraceae, and Rubiaceae, which were taxa of tropical floristic elements, and the extent of this vegetation was limited below 1,500 m ASL. Vegetation II was defined into two subtypes, which were distributed from 1,000 to 2,500 m ASL, and were composed predominantly of Chamaecyparis and Tsuga, respectively. Our data also revealed that vegetation II contained co-dominants of species from families Lauraceae and Fagaceae. Moreover, evergreen broadleaved trees similar to tropical mountain forests were found to have narrower altitudinal ranges on subtropical mountains, whereas coniferous forests resembled temperate areas and were characterized by endemic conifer species. Vegetation III, from 2,500 to 3,500 m ASL, was characterized by endemic conifer species, Abies and Tsuga. Interestingly, deciduous forest was almost absent in this area and Fagus was the only tree type on a small mountain ridge. Data obtained from this study will help in raising conservation awareness for subtropical mountains since unique patterns of compression and overlap characteristics of tropical and temperate resembling forests were evident.  相似文献   

4.
Fruiting phenology, assessed by seed fall, in five warm-and cool-temperate forests on Yakushima Island, southern Japan, was studied for two years in one 50 m × 50 m plot and for four years in four 100 m × 50 m plots. The elevation of the plots ranged between 170 and 1200 m a.s.l. Seed fall phenology showed annual periodicity in all five plots. This was clear when assessed by the number of species but became less clear when assessed by the biomass of seed litter. Community-level annual periodicity was based on the prevalence of population-level annual periodicity and interspecific synchronization of the fruiting peak from autumn to winter. Fleshy fruits had peaks of seed fall in a wider range of months than non-fleshy fruits, since it is sometimes beneficial to bear fruit outside the community-level fruiting peaks in order to avoid interspecific competition for animal seed dispersers. No consistent effect of climatic factors on seed fall phenology was detected.  相似文献   

5.
Nitrification is the biological conversion of organic or inorganic nitrogen compounds from a reduced to a more oxidized state. Denitrification is generally referred to as the microbial reduction of nitrate to nitrite and further gaseous forms of nitric oxide, nitrous oxide and molecular nitrogen. They are functionally interconnected processes in the soil nitrogen cycle that are involved in the control of long-term nitrogen losses in ecosystems through nitrate leaching and gaseous N losses. In order to better understand how nitrification and denitrification change during the process of ecosystem restoration and how they are affected by various controlling factors, gross nitrification rates and denitrification rates were determined using the barometric process separation (BaPS) technique in subalpine coniferous forests of different restoration stages. The results showed that forest restoration stage had no significant effects on gross nitrification rates or denitrification rates (One-way ANOVA (analysis of variance), p < 0.05). There was no significant difference in the temperature coefficient (Q 10) for gross nitrification rate among all the forest sites (One-way ANOVA, p < 0.05). Gross nitrification rates were positively correlated with water content (p < 0.05), but not with soil pH, organic matter, total nitrogen, or C/N ratios. Denitrification rates in all the forest soils were low and not closely correlated with water content, soil pH, organic matter, or total nitrogen. Nevertheless, we found that C/N ratios obviously affected denitrification rates (p < 0.05). Results from this research suggest that gross nitrification is more responsible for the nitrogen loss from soils compared with denitrification. Translated from Journal of Plant Ecology, 2006, 30(1): 90–96 [译自: 植物生态学报]  相似文献   

6.
Liana habitat and host preferences in northern temperate forests   总被引:1,自引:0,他引:1  
Lianas and other climbers are important ecological and structural components of forest communities. Like other plants, their abundance in a given habitat depends on a variety of factors, such as light, soil moisture and nutrients. However, since lianas require external support, host tree characteristics also influence their distribution. Lianas are conspicuous life forms in tropical regions, but in temperate areas, where they are less prominent, little is known about factors that control their distributions in these forests. We surveyed the climbing plant species in 20 mature (100 years and greater) forested habitats in the Midwest USA at a variety of levels from simple presence/absence, to ground layer abundances, to those species that had ascended trees. We also examined attributes of the tree species with climbers attached to them. Using cluster analysis, we distinguished five different tree communities in our survey locations. We determined that 25% of the trees we surveyed had one or more lianas attached to it, with Parthenocissus quinquefolia (Virginia creeper) the most common climbing species encountered. Canopy cover and soil attributes both influenced climber species presence/absence and ground layer climber abundance. The proportion of liana species of a given climbing type (roots, stem twiner, tendril climber) was significantly related to the DBH of the host tree, with more root climbers and fewer stem and tendril climbers on large trees. In general, the DBH of climbing lianas had a significant positive relationship to the DBH of the host tree; however this varied by the identity of the liana and the tree species. The greater the DBH of the host tree, the higher the probability that it was colonized by one or more lianas, with tree species such as Pinus banksiana (jack pine) and Quercus alba (white oak) being more susceptible to liana colonization than others. Finally, some liana species such as Celastrus scandens (American bittersweet) showed a preference for certain tree species (i.e., P. banksiana) as hosts. The information obtained about the relationship between the tree and climber community in this study provides insight into some of the factors that influence liana distributions in understudied temperate forest habitats and how lianas contribute to the structure of these mature forests. In addition, these data can provide a point of comparison to other liana communities in both temperate and tropical regions.  相似文献   

7.
Forestry practices such as fuel-reduction burning and maintenance of road networks can negatively impact avian assemblages, both directly by changing habitat structure and indirectly by creating conditions favorable for predators or competitors. The Brigalow Belt forests include some of the largest contiguous areas of native forest in the temperate and sub-humid zones of eastern Australia. Over 1 million ha of these forests are proposed to be converted from forestry to conservation tenure, yet the impacts on the avifauna of current and potential future forest management practices are not known. We investigated the influence of road edges and habitat type and structure on the avifauna of a 356 000 ha forest. Survey sites were either <50 m or >300 m from a road, and in either cypress pine Callitris glaucophylla forest, spotted gum Corymbia citriodora forest with a regenerating cypress pine/buloke Allocasuarina luehmannii understorey or spotted gum forest with an open understorey due to fuel-reduction burning. The avifauna differed significantly among vegetation types but not with proximity to a road, with the greatest differences between cypress pine and both types of spotted gum forest. The noisy miner Manorina melanocephala, an aggressive avian competitor, appears to be the factor mediating these assemblage-level differences. Noisy miners were rare in cypress pine forest but were three times more numerous than any other species in spotted gum forest. Spotted gum forest with a regenerating understorey had fewer noisy miners. Although total bird abundance was highest in open spotted gum forest, the species richness and abundance of passerines smaller than noisy miners was significantly lower in this forest type. Abundance of small passerines was eight times higher in sites where <3 noisy miners were recorded. Only one species, the eastern yellow robin, was influenced by proximity to a road edge. Cypress pine forest is potentially an important refuge for smaller birds. The results suggest that burning regimes that reduce regeneration of the cypress pine and buloke subcanopy in spotted gum forest potentially are exacerbating the problem of noisy miner domination of the avifauna.  相似文献   

8.
Harvest impacts on soil carbon storage in temperate forests   总被引:1,自引:0,他引:1  
Forest soil carbon (C) storage is a significant component of the global C cycle, and is important for sustaining forest productivity. Although forest management may have substantial impacts on soil C storage, experimental data from forest harvesting studies have not been synthesized recently. To quantify the effects of harvesting on soil C, and to identify sources of variation in soil C responses to harvest, we used meta-analysis to test a database of 432 soil C response ratios drawn from temperate forest harvest studies around the world. Harvesting reduced soil C by an average of 8 ± 3% (95% CI), although numerous sources of variation mediated this significant, overall effect. In particular, we found that C concentrations and C pool sizes responded differently to harvesting, and forest floors were more likely to lose C than mineral soils. Harvesting caused forest floor C storage to decline by a remarkably consistent 30 ± 6%, but losses were significantly smaller in coniferous/mixed stands (−20%) than hardwoods (−36%). Mineral soils showed no significant, overall change in C storage due to harvest, and variation among mineral soils was best explained by soil taxonomy. Alfisols and Spodosols exhibited no significant changes, and Inceptisols and Ultisols lost mineral soil C (−13% and −7%, respectively). However, these C losses were neither permanent nor unavoidable. Controls on variation within orders were not consistent, but included species composition, time, and sampling depth. Temporal patterns and soil C budgets suggest that forest floor C losses probably have a lesser impact on total soil C storage on Alfisols, Inceptisols, and Ultisols than on Spodosols, which store proportionately large amounts of C in forest floors with long C recovery times (50–70 years). Mineral soil C losses on Inceptisols and Ultisols indicate that these orders are vulnerable to significant harvest-induced changes in total soil C storage, but alternative residue management and site preparation techniques, and the passage of time, may mitigate or negate these losses. Key findings of this analysis, including the dependence of forest floor and mineral soil C storage changes on species composition and soil taxonomic order, suggest that further primary research may make it possible to create predictive maps of forest harvesting effects on soil C storage.  相似文献   

9.

Key message

Natural regeneration patterns of conifer species were studied. Seedling regeneration follows patterns responding to stand structure and site condition factors along shade and drought tolerance gradients. Our findings can assist in adaptive forest management for maintaining sustainable regeneration and plant biodiversity.

Context

Seedling regeneration can vary with stand factors of overstory trees and understory non-tree vegetation and site conditions.

Aims

Natural seedling regeneration patterns of coniferous species were investigated using Forest Inventory and Analysis (FIA) data of 10 common species across the Inland Northwest, USA.

Methods

Zero-inflated negative binomial models were developed to understand the responses of natural regeneration to stand factors and site conditions.

Results

Seedling occurrence varies along shade and drought tolerance gradients responding to stand structure and site conditions. Two moderate shade-tolerant species of different drought tolerance contributed as a transition. Strong response patterns were revealed for seedling density, in which seedling density was improved with the presence of conspecific trees while limited by competition, especially from the understory vegetation layer.

Conclusion

Overstory structure and understory vegetation could improve or hinder natural regeneration of coniferous tree species given different shade tolerance and site conditions. Our findings can be effectively implemented in adaptive forest management for maintaining sustainable regeneration of specific conifers in broad temperate mixed forests.
  相似文献   

10.
  • ? Mixed coniferous, subalpine forest communities in the Rocky Mountains are historically dense and have experienced infrequent, high-severity fire. However, many of these high-elevation stands are thinned for a number of perceived benefits.
  • ? We explored the effects of forest stand density on ecosystem properties in subalpine forests in Colorado, USA, 17–18 y after forests were managed for timber.
  • ? Forest structure significantly altered the composition and chemical signature of plant communities. Previously managed stands contained lower density of overstory trees and higher ground cover compared to paired reference stands. Foliar phenolic concentration of several species was negatively related to basal area of overstory trees. Furthermore, reductions in stand density increased total foliar phenolic:nitrogen ratios in some species, suggesting that gap formation may drive long-term changes in litter quality. Despite significant changes in forest structure, reductions in stand density did not leave a strong legacy in surface soil properties, likely due to the integrity of soil organic matter reserves.
  • ? Changes in forest structure associated with past management has left a long-term impact on plant communities but has only subtly altered soil nutrient cycling, possibly due to trade offs between litter decomposability and microclimate associated with reductions in canopy cover.
  •   相似文献   

    11.
    Leaching of major ions from acid precipitation in a subtropical forest was examined based on an experiment in four sample sites in Shaoshan City, Hunan Province, China, from January 2001 to June 2002. Results clearly show that when rain passed through the canopy, pH increased and the evidence of ion uptake was presented for SO4 2−, NO3 , Mg2+ and NH4 + ions, especially of NH4 + and NO3 . The percentages of dissolved SO4 2−, Ca2+ and Mg2+ show a decreasing trend with increasing rainfall. Percentages of leaching Ca2+, K+ and Cl ions show an increasing trend as a function of increased pH values. The forest canopy in Shaoshan City has a strong effect on the uptake of SO4 2− and NO3 ions under acid rain conditions. The decreasing order of ions leaching in the forest canopy is as follows: K+ > Ca2+ > Cl > Mg2+ > SO4 2− > NO3 > NH4 + > Na+. __________ Translated from Scientia Silvae Sinicae, 2007, 43(7): 1–4 [译自: 林业科学]  相似文献   

    12.
    Weng JH  Liao TS  Sun KH  Chung JC  Lin CP  Chu CH 《Tree physiology》2005,25(8):973-979
    From January 1999 to May 2001, we investigated seasonal variations in the photosynthetic capacity of Taiwan spruce (Picea morrisonicola Hay.) growing in the subalpine region of subtropical Taiwan (23 degrees 29' N, 120 degrees 53' E, 2600 m a.s.l.). Photosynthetic capacity (near light-saturated net photosynthetic rate, Pnsat, chlorophyll fluorescence (Fv/Fm) and soluble protein concentration of needles all increased from mid or late spring to early winter. Even when minimum air temperature of the measuring day dropped to near 0 degrees C, Pnsat remained at about 20% of the highest value observed in winter. There was a curvilinear relationship between Fv/Fm and the minimum or mean air temperature of the measuring day. The increase in Fv/Fm with temperature was slowed when the daily mean air temperature was above 7 degrees C, or the minimum air temperature was above 3 degrees C; however, when air temperatures dropped below these values, Fv/Fm varied sharply. Seasonal variations in Pnsat paralleled those in Fv/Fm and needle soluble protein concentration. In early or mid spring when air temperature and Fv/Fm increased, Pnsat and soluble protein concentration remained low. Multiple regression analysis showed that seasonal variations in Pnsat were affected by Fv/Fm, air temperature and needle soluble protein concentration, and the multiple regression equation could be used to estimate Pnsat in different seasons. We conclude that the decrease in photosynthetic capacity of Taiwan spruce in winter and its subsequent recovery in spring were mainly caused by photoinhibition and its reversal, and changes in needle soluble protein concentration. Another possible explanation for the delayed recovery of photosynthetic capacity in spring may be associated with the slow increase in needle soluble protein concentration.  相似文献   

    13.
    14.
    In order to explore the release of nutrients and the effects of global warming on the decomposition rate of forest litter, an experiment is designed to reciprocally decompose forest foliar litter in two sites across climatic zones: Mt. Jianfengling in Hainan Province in the tropics and Mt. Dinghushan in Guangdong Province in the subtropics. The two sites have similar altitudes, soil types, annual mean rainfall and seasonality of dry and wet. The main difference between these two sites is the annual mean temperature with the difference of 3.7°C. Foliar litters of 10 native dominant tree species have been collected respectively from the two sites and divided into single-species litter and mixed litter. They are decomposed reciprocally in the two sites. The results indicate that litter decomposes in the tropical site 1.36–3.06 times more rapidly than in the subtropical site. Apparent Q 10, calculated on the basis of the temperature difference between the two sites, ranges from 3.7 to 7.5. The return amount of N, P and C will increase by 32.42, 1.033 and 741.1 kg/hm2, respectively in Mt. Dinghushan in the first year’s litter decomposition under the prevailing temperature condition. Only in Mt. Dinghushan is the correlation between decomposition rate constant and initial litter quality high and significant in the ratio of lignin to N, lignin, the ratio of lignin to P, HLQ and C. This is not the case at Mt. Jianfengling. __________ Translated from Journal of Beijing Forestry University, 2005, 27(1): 24–32 [译自: 北京林业大学学报, 2005, 27(1): 24–32]  相似文献   

    15.
    In most dendrochronological studies, climate-growth relationships are established on dominant trees to minimize non-climatic signals. However, response to environmental factors may be affected by tree-size, which begs the question of the representativeness of dominant trees on the stand level. To highlight the variations in climate-growth relationships among sizes and species, under a wide range of ecological conditions (climate and soil properties), 61 pure even-aged stands were sampled across France. At each stand, two tree-ring chronologies were established from 10 big- to 10 small-diameter trees. Our objectives were, (1) to assess variations in climate sensitivity between the two size-diameter classes, and (2) to investigate the role of species and ecological conditions on these variations. The climate-growth relationships were evaluated from 122 tree-ring chronologies (1 220 trees) through extreme growth years and correlation function analyses. Sensitivity to climate of shade-intolerant and moderately shade-tolerant species (Picea abies (L.) Karst., Pinus sylvestris L. and Quercus petraea (Matt.) Liebl.) remained constant between the size-diameter classes for both temperature and hydric balance, while the shade-tolerant species Abies alba Mill. and Fagus sylvatica L. displayed significant differences, with larger trees being more sensitive to summer drought than smaller trees. This difference increased with increasing climatic xericity. Our results suggest that, for shade-tolerant species, (1) big trees could be more sensitive to climatic change especially under xeric climate, and (2) future tree ring studies should include trees stratified by size to produce unbiased estimation of sensitivity to climate.  相似文献   

    16.

    Key message

    A negative productivity-diversity relationship was determined for biomass-dominant species at the community level. This study thus supports the hypothesis in which the effects of individual species on the productivity-diversity relationships at the community level are related to their biomass density, an important functional trait.

    Context

    The productivity-diversity relationships have been extensively studied in various forest ecosystems, but key mechanisms underlying the productivity-diversity relationships still remain controversial.

    Aims

    The objective of this study is to explore the productivity-diversity relationships at the community level, and to investigate the roles of individual species in shaping the community-level relationships between productivity and diversity under different forest types.

    Methods

    The study was conducted in two fully stem-mapped temperate mixed forest plots in Northeastern China: a natural secondary forest plot, and an old-growth forest plot. An individual-based study framework was used to estimate the productivity-diversity relationships at both species and community levels. A homogeneous Thomas point process was used to evaluate the significance of productivity-diversity relationship deviating from the neutral.

    Results

    At the species level, most of the studied species exhibit neutral productivity-diversity relationship in both forest plots. The percentage of species showing negative productivity-diversity relationship approaches linearly a peak value for very close neighborhoods (the secondary forest plot: r?=?3 m, 38%; the old-growth forest plot: r?=?4 m, 42%), and then decreases gradually with increasing spatial scale. Interestingly, only a few species displayed positive productivity-diversity relationship within their neighborhoods. Dominant species mainly exhibit negative productivity-diversity relationship while tree species with lower importance values exhibit neutral productivity-diversity relationship in both forests. At the community level, a consistent pattern of productivity-diversity relationship was observed in both forests, where tree productivity is significantly negatively associated with local species richness. Four biomass-dominant species (Juglans mandshurica Maxim., Acer mono Maxim.,Ulmus macrocarpa Hance and Acer mandshuricum Maxim.) determined a negative productivity-diversity relationship at the community level in the secondary forest plot, but only one species (Juglans mandshurica) in the old-growth forest plot.

    Conclusion

    The productivity-diversity relationship is closely related to the dominance of individual species at the species level. Moreover, this analysis is the first to report the roles of biomass-dominant species in shaping the productivity-diversity relationship at the community level.
      相似文献   

    17.
    In densely populated regions, forests can help protect communities and infrastructures from natural hazards such as avalanches and rockfall. To promote the protective function, substantial efforts are made to actively manage forest stands. In 2009 alone the Swiss government invested more than 60 million sfr for the maintenance of protection forests. However, to date there has been no comprehensive evaluation of how the structural development of actively managed stands differs from that of passively managed stands in the Alps. Over the past century the structure of Norway-spruce dominated subalpine forests of the Swiss Alps has been changing and it is not clear how these changes affect the potential protective function of these forests, as well as other forest functions such as wildlife habitat. Furthermore, it is not clear how stand dynamics and structural changes differ between stands that are actively managed and those that are passively managed, and thus to what degree active efforts of forest management are contributing to stands that actually have a greater protective function than passively managed forests.In this study, we analyzed the dynamics of subalpine forests using time series of forest inventory data and examined the influence of active vs. passive management, exposition, distance to treeline, elevation and slope steepness on stand structure and dynamics. We analyzed data from 395 plots in dense, subalpine, spruce-dominated forests in the Swiss Alps. Data were collected during three distinct periods (1983-1985, 1993-1995 and 2004-2006) as part of the Swiss National Forest Inventory (NFI). Using regression trees and multivariate statistics, we investigated which factors have the most important influence on tree growth and stand development.Overall, forest density increased significantly over the last 20 years and the predominance of dense forests increased at higher elevations. However, forest density has not increased in actively managed forests over the past 10 years. In passively managed stands, density was higher on south-facing slopes than on north-facing slopes. The volume and density of dead wood has increased over the last 20 years in both actively managed and passively managed forests. Active management over the last 20 years has maintained forest conditions that adequately maintain stands’ protection functions in the Swiss Alps. However, stand development, especially increasing density, in the passively managed stands of the Swiss Alps suggests that the majority of passively managed stands also provide adequate protective functions against rock and avalanche hazards without the high costs of active management.  相似文献   

    18.
    Lianas are often overlooked in temperate ecological studies even though they are important components of forest communities. While lianas have been shown to damage tropical canopy trees and reduce the growth of juvenile trees, the impact of lianas on canopy tree growth in temperate systems is largely unknown. Growth of trees ≥8 cm dbh was examined over a 9-year period within 50-year old post-agricultural secondary forests in the Piedmont region of New Jersey, USA. Five lianas, Celastrus orbiculatus, Lonicera japonica, Parthenocissus quinquefolia, Toxicodendron radicans, and Vitis species, occurred throughout the forest. Total liana basal area, number of stems, and percent cover within host trees were evaluated to assess liana burdens on 606 previously censused trees. These data were related to tree growth to assess liana impacts. Forest trees were separated based on their dominance in the canopy to determine whether lianas had the potential to influence forest composition. In general, lianas in the forests were fairly abundant, with 68% of the trees having at least one liana present. On average, each tree supported 9.7 cm2 of liana basal area and 23% of the canopy was covered by lianas. Most of the variation in tree growth was related to the dominance of trees within the canopy, with canopy dominant and co-dominant trees growing 2.5× more than suppressed trees. Liana basal area and number of lianas stems were not related to tree growth, but liana canopy cover decreased tree growth. However, not all trees were equally affected as canopy cover of lianas only reduced growth in dominant and co-dominant trees. Lianas were most influential on host tree growth in unsuppressed trees when occupying a majority of the canopy, only a minority of forest trees. This suppression was not related to differential liana colonization of canopy trees as all canopy classes supported equivalent liana burdens. Though lianas impacted only a minority of the trees in this system, some liana species, C. orbiculatus and Vitis spp., are still increasing and may pose future risks to forest growth and development.  相似文献   

    19.
    Fractal theory, used to study natural figures and images with self-similarity but without characteristic lengths, offers an effective tool to investigate quantitatively the complex systems such as soil. In this paper, we have discussed about our study of the fractal features of the subalpine coniferous forests, soil particles, and microaggregates under different intensities of anthropogenic disturbances in the Miyaluo area of west Sichuan and investigated the effects of the disturbances on the forest soils attributed to different fractal dimensions. The study introduces a new way to investigate the recovery and reestablishment of subalpine coniferous forests. __________ Translated from Chinese Journal of Ecology, 2005, 24(8): 878–882 [译自: 生态学杂志, 2005, 24(8): 878–882]  相似文献   

    20.
    New Forests - For millennia, natural disturbance regimes, including anthropogenic fire and hunting practices, have led to forest regeneration patterns that created a diversity of forest lands...  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号