首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-resolution angle-resolved photoemission spectroscopy of the electron-doped high-temperature superconductor Nd(2-x)Ce(x)CuO4 (x = 0.15, transition temperature T(c) = 22 K) has found the quasiparticle signature as well as the anisotropic d(x2-y2)-like superconducting gap. The spectral line shape at the superconducting state shows a strong anisotropic nature of the many-body interaction. The result suggests that the electron-hole symmetry is present in the high-temperature superconductors.  相似文献   

2.
Tunneling spectroscopy has been used to characterize the magnitude and temperature dependence of the superconducting energy gap (triangle up) for K(3)C(60) and Rb(3)C(60). At low temperature the reduced energy gap, 2triangle upkappaT(c) (where T(c) is the transition temperature) has a value of 5.3 +/- 0.2 and 5.2 +/- 0.3 for K(3)C(60) and Rb(3)C(60), respectively. The magnitude of the reduced gap for these materials is significantly larger than the value of 3.53 predicted by Bardeen-Cooper-Schrieffer theory. Hence, these results show that the pair-coupling interaction is strong in the M(3)C(60) superconductors. In addition, measurements of triangle up(T) for both K(3)C(60) and Rb(3)C(60) exhibit a similar mean-field temperature dependence. The characterization of triangle up and triangle up(T) for K(3)C(60) and Rb(3)C(60) provides essential constraints for theories evolving to describe superconductivity in the M(3)C(60) materials.  相似文献   

3.
The appearance of superconductivity at relatively high temperatures in alkali metal-doped C(60) fullerene provides the challenge to both understand the nature and origin of the superconductivity and to determine the upper limit of the superconducting transition temperature (T(c)). Towards the latter goal, it is shown that doping with potassium-thallium and rubidium-thallium alloys in the 400 to 430 degrees C temperature range increases the T(c) of C(60)/C(70) mixtures to 25.6 K and above 45 K, respectively. Similar increases in T(c) were also observed upon analogous doping of pure C(60). Partial substitution of potassium with thallium in interstitial sites between C(60) molecules is suggested by larger observed unit cell parameters than for the K(3)C(60) and K(4)C(60) phases. Contrary to previous results for C(60) doped with different alkali metals, such expansion does not alone account for the changes in critical temperature.  相似文献   

4.
The concept that superconductivity competes with other orders in cuprate superconductors has become increasingly apparent, but obtaining direct evidence with bulk-sensitive probes is challenging. We have used resonant soft x-ray scattering to identify two-dimensional charge fluctuations with an incommensurate periodicity of ~3.2 lattice units in the copper-oxide planes of the superconductors (Y,Nd)Ba(2)Cu(3)O(6+)(x), with hole concentrations of 0.09 to 0.13 per planar Cu ion. The intensity and correlation length of the fluctuation signal increase strongly upon cooling down to the superconducting transition temperature (T(c)); further cooling below T(c) abruptly reverses the divergence of the charge correlations. In combination with earlier observations of a large gap in the spin excitation spectrum, these data indicate an incipient charge density wave instability that competes with superconductivity.  相似文献   

5.
The effect of isotopic substitution on the superconducting transition temperature, T(c), in alkali-doped C(60) has been examined. Paradoxically, it is found that a substantial decrease in T(c) with the increasing isotopic mass is possible even when the attractive interaction is not mediated by phonons but is instead of purely electronic origin. In particular, it is shown that the experimentally measured isotopic shifts are consistent with a recently proposed electronic mechanism. Further predictions are presented that can be tested by experiment.  相似文献   

6.
The superconducting compound K(3)C(60) (with transition temperature T(c) = 19.3 kelvin at ambient pressure), formed as a single phase by reaction of alkali vapor with solids of the icosahedral C(60) molecule (buckminsterfullerene), shows a very large decrease of T(c) with increasing pressure. Susceptibility measurements on sintered pellets showing bulk superconductivity are reported up to 21 kilobars of pressure, where T(c) is already less than 8 kelvin. The results are consistent with a piling up of the density of states at the Fermi level.  相似文献   

7.
The effect of oxygen isotope substitution on the superconducting transition temperature, T(c), has been measured for BaBi(0.25)Pb(0.75)O(3) (T(c), approximately 11 K) and Lal(1.85) Ca(0.15)CuO(4) (T(c) approximately 20 K), and is compared to the shifts observed for La(1.85)Sr(0.15)CuO(4) (T(c) approximately 37 K) and YBa(2)Cu(3)O(7) (T(c) approximately 92 K). For all four materials, the transition temperature is shifted to lower temperature upon substitution of oxygen-18 for oxygen-16. The observed shifts demonstrate that phonons are involved in the electron-pairing mechanism in these oxide superconductors.  相似文献   

8.
X-ray diffraction and diamond anvil techniques were used to measure the isothermal compressibility of K(3)C(60) and Rb(3)C(60), the superconducting, binary alkali-metal intercalation compounds of solid buckminsterfullerene. These results, combined with the pressure dependence of the superconducting onset temperature T(c) measured by other groups, establish a universal first-order relation between T(c) and the lattice parameter a over a broad range, between 13.9 and 14.5 angstroms. A small secondorder intercalate-specific effect was observed that appears to rule out the participation of intercalate-fullerene optic modes in the pairing interaction.  相似文献   

9.
The observed increase of superconducting transition temperature (T(c)) with the number of copper oxide planes continues in the four-[CuO(2)](-2) layer (single TI layer) oxide superconductor, which has been prepared with > 80% purity and was magnetically aligned for crystallographic identification. A master scaling curve is proposed, which ties together the T(c)'s of virtually all known Bi and Tl oxide superconductors, and shows that the Tl(Bi) layers play an essential role in the superconductivity. publication 350 of the Barnett Institute.  相似文献   

10.
Recent advances in the design and synthesis of organic synthetic metals have yielded materials that have the highest superconducting transition temperatures (T(c) approximately 13 kelvin) reported for these systems. These materials have crystal structures consisting of alternating layers of organic donor molecules and inorganic anions. Organic superconductors have various electronic and magnetic properties and crystal structures that are similar to those of the inorganic copper oxide superconductors (which have high T(c) values); these similarities include highly anisotropic conductivities, critical fields, and short coherence lengths. The largest number of organic superconductors, including those with the highest T(c) values, are charge-transfer salts derived from the electron donor molecule BEDT-TTF or ET [bis(ethylenedithio)-tetrathiafulvalene]. The synthesis and crystal structures of these salts are discussed; their electrical, magnetic, and band electronic structure properties and their many similarities to the copper oxide superconductors are treated as well.  相似文献   

11.
Evidence suggests that superconducting, orthorhombic YBa(2)Cu(3)O(6+x)+ (x greater, similar 0.5) is always produced by oxidation of the oxygen-deficient, tetragonal form (x less, similar 0.5) of this phase (commonly referred to as 123). A synthetic route whereby solution-derived, carbon-free precursors are decomposed at 650 degrees to 700 degrees C in inert atmosphere to yield tetragonal 123 is now available. Appropriate precursors include hydrated oxides derived from the hydrolysis of organometallic solutions and aqueous solution-derived hyponitrites. Subsequent oxidation of the tetragonal phase at 400 degrees C results in submicrometer particles of orthorhombic 123. Superconductivity (T(c) onset approximately 87 K) has been confirmed in these materials by both Meissner effect and specific-heat measurements.  相似文献   

12.
Powder x-ray diffraction at 300 K on equilibrated samples of several nominal compositions chi in Rb(chi)C(60) is reported. In addition to the face-centered cubic (fcc) (chi = 3, superconducting), body-centered tetragonal (chi = 4), and body-centered cubic (bcc) (chi = 6) stoichiometric phases, direct evidence for a dilute fcc doped phase, 0 x c 相似文献   

13.
Over the last several years there have been great improvements in the energy resolution and detection efficiency of angle-resolved photoemission spectroscopy. These improvements have made it possible to discover a number of fascinating features in the electronic structure of the high transition temperature (T(c)) superconductors: apparently bandlike Fermi surfaces, flat-band saddle points, and nested Fermi surface sections. Recent work suggests that these features, previously thought explainable only by one-electron band theory, may be better understood with a many-body approach. Furthermore, other properties of the high-T(c) superconductors, which are difficult to understand with band theory, are well described using a many-body picture. Angle-resolved photoemission spectroscopy has also been used to investigate the nature of the superconducting pairing state, revealing an anisotropic gap consistent with a d-wave order parameter and fueling the current debate over s-wave versus d-wave superconductivity.  相似文献   

14.
In a superconductor, the ratio of the carrier density, n, to its effective mass, m*, is a fundamental property directly reflecting the length scale of the superfluid flow, the London penetration depth, λ(L). In two-dimensional systems, this ratio n/m* (~1/λ(L)(2)) determines the effective Fermi temperature, T(F). We report a sharp peak in the x-dependence of λ(L) at zero temperature in clean samples of BaFe(2)(As(1)(-x)P(x))(2) at the optimum composition x = 0.30, where the superconducting transition temperature T(c) reaches a maximum of 30 kelvin. This structure may arise from quantum fluctuations associated with a quantum critical point. The ratio of T(c)/T(F) at x = 0.30 is enhanced, implying a possible crossover toward the Bose-Einstein condensate limit driven by quantum criticality.  相似文献   

15.
A bond valence sum (BVS) analysis was performed for the p-type cuprate superconductors. The superconducting critical temperature T(c) versus in-plane Cu-O BVS correlation for copper is grouped into classes and subclasses. Only within a class or subclass for which the nonelectronic effect is constant does the variation of the in-plane Cu-O BVS reflect the corresponding change in the hole density n(H) of the CuO(2) layers. This study strongly suggests that the T(c) for every class or subclass of the superconductors is an inverted parabolic function of n(H), and so is the coupling constant lambda for Cooper pair formation.  相似文献   

16.
Sizable single crystals of C(6O) have been synthesized and doped with potassium. Above the superconducting transition temperature T(c), the electrical resistivity p(T) displays a classic metal-like temperature dependence. The transition to the superconducting state at T(c) = 19.8 K is extremely sharp, with a transition width DeltaT < 200 mK. In contrast to transport behavior of doped polycrystalline and granular thin films, no anomalous fluctuations are observed near T(c) in single crystal specimens.  相似文献   

17.
DC and RF Superconducting QUantum Interference Devices (SQUIDs) fabricated from low transition temperature (T(c)) superconductors and operated at liquid (4)He temperatures are routinely used as ultrasensitive detectors in many applications, for example, as magnetometers, magnetic gradiometers, voltmeters, and motion detectors. SQUIDs fabricated from high T(c) superconductors such as YBa(2)Cu(3)O(7) and operated in liquid nitrogen at 77 K offer a greater convenience in operation at the expense of a poorer noise performance, particularly at low frequencies. The resolution of SQUID-based magnetometers is compared with that of other types of magnetometers operatng at ambient temperatures.  相似文献   

18.
An unresolved issue concerning cuprate superconductors is whether the distribution of carriers in the CuO2 plane is uniform or inhomogeneous. Because the carriers comprise a small fraction of the total charge density and may be rapidly fluctuating, modulations are difficult to detect directly. We demonstrate that in anomalous x-ray scattering at the oxygen K edge of the cuprates, the contribution of carriers to the scattering amplitude is selectively magnified 82 times. This enhances diffraction from the doped holes by more than 10(3), permitting direct structural analysis of the superconducting ground state. Scattering from thin films of La2CuO4+delta (superconducting transition temperature = 39 K) at temperature = 50 +/- 5 kelvin on the reciprocal space intervals (0,0,0.21) --> (0,0,1.21) and (0,0,0.6) --> (0.3,0,0.6) shows a rounding of the carrier density near the substrate suggestive of a depletion zone or similar effect. The structure factor for off-specular scattering was less than 3 x 10(-7) electrons, suggesting an absence of in-plane hole ordering in this material.  相似文献   

19.
Nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) results for copper-63, oxygen-17, and yttrium-89 nuclei in the superconducting composition range of YBa(2)Cu(3)O(6+x) (0.4 相似文献   

20.
The nature of the pseudogap phase of cuprate high-temperature superconductors is a major unsolved problem in condensed matter physics. We studied the commencement of the pseudogap state at temperature T* using three different techniques (angle-resolved photoemission spectroscopy, polar Kerr effect, and time-resolved reflectivity) on the same optimally doped Bi2201 crystals. We observed the coincident, abrupt onset at T* of a particle-hole asymmetric antinodal gap in the electronic spectrum, a Kerr rotation in the reflected light polarization, and a change in the ultrafast relaxational dynamics, consistent with a phase transition. Upon further cooling, spectroscopic signatures of superconductivity begin to grow close to the superconducting transition temperature (T(c)), entangled in an energy-momentum-dependent manner with the preexisting pseudogap features, ushering in a ground state with coexisting orders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号