首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Small Khingan Mountains in northeastern China provide most of the timber and wood products in the country. Evaluating the long-term effects of harvesting and planting strategies is important especially as the climate changes. In this study, we evaluated the effects of the projected climate warming on potential changes in species’ coverage (percent cover), area harvested (percentage of the study area) and species harvested, using the LANDIS model. Our evaluation was based on the harvest and planting plans specified in Natural Forest Protection Project (NFPP). Our simulated results show that the coverage of southern species such as Korean pine (Pinus koraiensis) and ribbed birch (Betula costata) increases, whereas the coverage of northern species like larch (Larix gmelinii), Kingan fir (Abies nephrolepis), spruces (Picea koraiensis and P. jezoensis) and Dahur birch (Betula davurica) decreases under the warming climate in the region. The species harvested primarily consist of the southern species, especially deciduous species under the warming climate. The warming climate leads to 11.2% increase in area harvested compared to that under the current climate, when planting is not simulated. When planting is simulated, tradeoffs between planting and area harvested are complex. The area harvested only increases in places where moderate planting is implemented, and decreases in places with both low (≤5% area planted) and high (≥30%) planting percentage. This is because when the planting percentage is low, the rate of increase of harvestable species due to planting is lower than the rate of decrease of warming-declining species. When the planting percentage is high, the rate of increase of planted species is higher than the rate of colonization of warming-adapted deciduous species, and the planted species delay the establishment of the warming-adaptable species that have short harvest rotations (due to lower harvestable ages). Our results suggest that the management strategy with planting area of 20% is the best among all the scenarios simulated. Under this warming climate, moderate planting area (e.g. 20%) increases the area harvested to about 43%, which is still less than that (58%) designated in the NFPP. These results have important implications for forest managers designing sustainable forest harvest and reforestation strategies for the landscape under the warming climate.  相似文献   

2.
The distribution of plant species has always been altered by changing climatic conditions. Nonetheless, the potential for species’ range shift responses has recently become severely limited, as exceptionally fast temperature changes coincide with a high degree of anthropogenic habitat fragmentation. This study provides rare insights into the effects current temperature increases have on pristine temperate forest ecosystems, using the forests of Changbai Mountain, NE China, as a case study. On the northern slopes of the mountain at elevations between 750 and 2100 m, the composition of trees, shrubs and herbaceous species was recorded on 60 plots in 1963 and 2006/07. Multiple linear regression (MLR) and canonical correspondence analysis (CCA) were used to establish the response of plant diversity and plant distribution patterns to environmental conditions. Climatic factors proved important in explaining the spatio-temporal trends within the vegetation. The composition of dominant trees remained mostly unchanged over the last 43 years, reflecting a very slow response of the forest canopy to environmental change. The composition of young trees, shrubs and herb species showed varied changes in the different forest types. A homogeneous species composition in the cohort of regenerating trees indicates an increased future uniformity in the mixed broadleaved and coniferous forest. The understory vegetation of high elevation birch forests was invaded by floristic elements of the lower-elevation coniferous forests. Both these trends pose potential threats to forests plant diversity. Future research investigating climate change responses in forest canopy composition needs to be based on even longer timescales, while investigations in the near future need to pay particular attention to the changes in the distribution of rare and threatened herbaceous species.  相似文献   

3.
The threat of climate change is now recognized as an imminent issue at the forefront of the forest sector. Incorporating adaptation to climate change into forest management will be vital in the continual and sustainable provision of forest ecosystem services. The objective of this study is to investigate climate change adaptation in forest management using the landscape disturbance model LANDIS-II. The study area was comprised of 14,000 ha of forested watersheds in central Nova Scotia, Canada, managed by Halifax Water, the municipal water utility. Simulated climate change adaptation was directed towards three components of timber harvesting: the canopy-opening size of harvests, the age of harvested trees within a stand, and the species composition of harvested trees within a stand. These three adaptation treatments were simulated singly and in combination with each other in the modeling experiment. The timber supply was found to benefit from climate change in the absence of any adaptation treatment, though there was a loss of target tree species and old growth forest. In the age treatment, all trees in a harvested stand at or below the age of sexual maturity were exempt from harvesting. This was done to promote more-rapid succession to climax forest communities typical of the study area. It was the most effective in maintaining the timber supply, but least effective in promoting resistance to climate change at the prescribed harvest intensity. In the composition treatment, individual tree species were selected for harvest based on their response to climate change in previous research and on management values at Halifax Water to progressively facilitate forest transition under the altered climate. This proved the most effective treatment for maximizing forest age and old-growth area and for promoting stands composed of climatically suited target species. The size treatment was aimed towards building stand complexity and resilience to climate change, and was the most influential treatment on the response of timber supply, forest age, and forest composition to timber harvest when it was combined with other treatments. The combination of all three adaptation treatments yielded an adequate representation of target species and old forest without overly diminishing the timber supply, and was therefore the most effective in minimizing the trade-offs between management values and objectives. These findings support a diverse and multi-faceted approach to climate change adaptation.  相似文献   

4.
As global climate changes over the next century, forest productivity is expected to change as well. Using PRISM climate and productivity data measured on a grid of 3356 plots, we developed a simultaneous autoregressive (SAR) model to estimate the impacts of climate change on potential productivity of Pacific Northwest (PNW) forests of the United States. Productivity, measured by projected potential mean annual increment (PMAI) at culmination, is explained by the interaction of annual temperature, precipitation, and precipitation in excess of evapotranspiration through the growing season. By utilizing information regarding spatial error in the SAR model, the resulting spatial bias is reduced thereby improving the accuracy of the resulting maps. The model, coupled with climate change output from four generalized circulation models, was used to predict the productivity impacts of four different scenarios derived from the fourth IPCC special report on emissions, representing different future economic and environmental states of the world, viz., scenario A1B, A2, B1 (low growth, high economic development and low energy usage), and COMMIT. In these scenarios, regional average temperature is expected to increase from 0.5 to 4.5 °C, while precipitation shows no clear trend over time. For the west and east side of the Cascade Mountains, respectively, PMAI increases: 7% and 20% under A1B scenario; 8% and 23% under scenario A2; 5% and 15% under scenario B1, and 2% and 5% under the COMMIT scenario. These projections should be viewed as potential changes in productivity, since they do not reflect the mitigating effects of any shifts in management or public policy. For managers and policy makers, the results suggest the relative magnitude of effects and the potential variability of impacts across a range of climate scenarios.  相似文献   

5.
The larch (Larix) genus is the most important species group in the forest ecosystems in Northeastern China, occupying about 25% of the forest areas. The high tolerance to coldness and relatively fast growth rate make this genus the main species group for forestation. According to the predictions of the global circulation model CGCM3, temperature could rise by 2–4 °C over the next 100 years. Few studies have been conducted on the response of larch species to climate warming in Northeastern China. Such studies are becoming increasingly needed due to the economic and ecological significance of this genus. This paper studies the potential distribution ranges of three larch species under the current and the warming climate conditions. A new classification and regression tree technique, Random Forest, was used to investigate the potential distributions of three larch species, based on 18 environmental variables which reflect the climate, topography and soil conditions of Northeastern China. The results showed that the biological coldness index (BCI) is the most important factor for Dahurian larch, annual precipitation (AP) is the most important factor for Korean larch and elevation (DEM) is the most important factor for Prince Rupprecht larch.  相似文献   

6.
In this work, we studied the impacts of climate change on timber production and regional risks of wind-induced damage to forests in Finland. The work employed: (i) national level forest inventory data, (ii) current baseline climate (1961–1990) and changing climate scenario (FINADAPT A2, 2001–2099), (iii) a forest ecosystem model (SIMA), (iv) a mechanistic wind damage model (HWIND), and (v) currently applied forest management recommendations as a baseline. The results showed that the timber production will increase significantly towards the end of this century under the changing climate, and in a relative sense the most in Northern Finland. At the same time, the share of Norway spruce (Picea abies L. Karst.) is expected to decrease, especially in southernmost Finland, mainly favoring the presence of birch (Betula spp.), but also Scots pine (Pinus sylvestris L.), when no species preference is given in management. As a result, the proportion of forest area in the two lowest critical wind speed classes (i.e. winds of 11–14 and 14–17 m s−1) will decrease in the autumn (birch without leaves) throughout Finland. However, in summertime (birch is in leaf) the proportion of forest area with such critical wind speeds will even increase in southernmost Finland. Even though, in summertime the risk of damage should be on average relatively low throughout Finland due to a lower occurrence of such wind speeds compared to the windiest time of the year (i.e. from autumn to early spring). The return period of critical wind speeds of 11–17 m s−1 is today about every two years in southernmost Finland. In Northern Finland, the critical wind speeds needed for wind damage are, on average, higher due to the larger share of Scots pine and on average lower height to breast height diameter ratios of trees compared to the south. To conclude, the climate change will affect clearly the forest growth and dynamics and, thus increase the need to manage forests more often and/or heavily (e.g. thinning, final felling), which in addition to species preference, will affect the risks of damages. The consideration of the risk of wind damage is crucial especially in Southern Finland when adapting forest management to the changing climate. This is because the unfrozen soil period is expected to increase significantly in Finland, which decreases tree anchorage during the windiest time of year.  相似文献   

7.
Forest fires occurrence is influenced by many factors, such as inter-annual weather variations and regional fuel distributions. Fires occurrence in different forest region has distinct spatial and temporal characteristics. The paper studied the natural forest fire environment in Northeastern China, as well as forest fires occurrence, burned area and fire seasons in Northeastern Forest Region. The result shows that more than 50% of annual burned area occurred in Northeast China Forest Region. Main fire seasons in the region are spring and autumn. Fires occurrence in spring is larger than that in autumn. There are few fires in summer. The authors' suggestions for fire management department are to emphasize the fuel management, improve the roads conditions, and enhance the fires control ability.  相似文献   

8.
在全球气候总体变暖的大背景下,我国北方地区冬春季气候异常波动现象频繁发生,常常导致园林树木生长异常,主要表现为边缘树种树木春季发芽推迟、枯黄及死亡。由于东北地区的乡土树种在本地区经历了长期的演化过程,与边缘树种相比,对气候的异常变化适应性较强。东北地区城市绿化应大力推广应用椴树、蒙古栎、色木槭、朝鲜槐等乡土树种。    相似文献   

9.
An ecological risk assessment is described for determining the adaptation potential of the approximately 11 000 Swiss Forest Inventory points (FIP) to a hypothetically changing climate. The core of the study is a spatially explicit forest community model that generates estimates of the potential natural vegetation for the entire potential forest area of Switzerland under today's as well as under altered climate regimes. The model is based on the Bayes formula. The probabilities of the communities occurring along ecological gradients are derived from empirical data featuring the relationships between quasi-natural vegetation types and measured site variables. Bioclimatological input variables are the quotient between July temperature and annual precipitation (model version A) or mean annual temperature (model version B). Other site variables include aspect, acidity of top soil and, to account for continentality, geographical region. Climate change scenarios are defined as follows: ‘Moderate climate change’ implies an increase of the mean annual temperature of 4°C to 1.4°C depending on the region (model version B) or an increase of the July temperature of 1.5°C (model version A). ‘Strong climate change’ implies an increase of the mean annual temperature of 2°C to 2.8°C (model version B) or an increase of the July temperature of 3.0°C (model version A).

The simulation experiment showed that the geographical distribution of 15 potential natural forest types (distinguished on the basis of floristic affinities) varies considerably with changing temperature. Under moderate warming 30–55% of the FIP change their potential natural vegetation type, whereas under strong climate change the values increase to 55–89% depending on the model version used. In the ecological risk assessment the existing tree species composition on any FIP was compared with the expected tree species composition under today's as well as under altered climate regimes. A major finding indicated that, under the current climate conditions, approximately 25–30% (depending on the model version used) of all FIP must be considered as poorly adapted, i.e. less than 20% of the actual basal area consists of tree species that are expected as dominating taxa. This definition applies for trees with a diameter at breast height (DBH) ≥ 12 cm. Moderate warming increases the percentage of poorly adapted FIP by 5–10% (relative to all FIP considered), strong warming leads to a 10–30% increase of poorly adapted FIP (relative to all FIP considered). If trees with a DBH < 12cm are considered, the percentage of FIP that have to be classified as poorly adapted is reduced significantly. There are strong regional differences as exhibited in risk maps of 10 km × 10 km resolution.  相似文献   


10.
Greenhouse gas emissions have significantly altered global climate, and will continue to do so in the future. Increases in the frequency, duration, and/or severity of drought and heat stress associated with climate change could fundamentally alter the composition, structure, and biogeography of forests in many regions. Of particular concern are potential increases in tree mortality associated with climate-induced physiological stress and interactions with other climate-mediated processes such as insect outbreaks and wildfire. Despite this risk, existing projections of tree mortality are based on models that lack functionally realistic mortality mechanisms, and there has been no attempt to track observations of climate-driven tree mortality globally. Here we present the first global assessment of recent tree mortality attributed to drought and heat stress. Although episodic mortality occurs in the absence of climate change, studies compiled here suggest that at least some of the world's forested ecosystems already may be responding to climate change and raise concern that forests may become increasingly vulnerable to higher background tree mortality rates and die-off in response to future warming and drought, even in environments that are not normally considered water-limited. This further suggests risks to ecosystem services, including the loss of sequestered forest carbon and associated atmospheric feedbacks. Our review also identifies key information gaps and scientific uncertainties that currently hinder our ability to predict tree mortality in response to climate change and emphasizes the need for a globally coordinated observation system. Overall, our review reveals the potential for amplified tree mortality due to drought and heat in forests worldwide.  相似文献   

11.
我国开展森林认证的目的,主要是改善森林经营状况和促进林产品的国际市场准入。作为我国木材产品主要供应基地之一的东北国有林区应该在这样一个有利的契机下,抓住机遇,改变现有国有林区普遍出现的森林资源危机、经济危困和生态环境遭受严重破坏的局面。新形势下,东北国有林区如何开展多种经营,并通过森林认证这一市场机制来实现森林可持续经营值得我们进一步研究。  相似文献   

12.
We modeled and mapped, using the predictive data mining tool Random Forests, 134 tree species from the eastern United States for potential response to several scenarios of climate change. Each species was modeled individually to show current and potential future habitats according to two emission scenarios (high emissions on current trajectory and reasonable conservation of energy implemented) and three climate models: the Parallel Climate Model, the Hadley CM3 model, and the Geophysical Fluid Dynamics Laboratory model. Since we model potential suitable habitats of species, our results should not be interpreted as actual changes in ranges of the species. We also evaluated both emission scenarios under an “average” future climate from all three models. Climate change could have large impacts on suitable habitat for tree species in the eastern United States, especially under a high emissions trajectory. Of the 134 species, approximately 66 species would gain and 54 species would lose at least 10% of their suitable habitat under climate change. A lower emission pathway would result in lower numbers of both losers and gainers. When the mean centers, i.e. center of gravity, of current and potential future habitat are evaluated, most of the species habitat moves generally northeast, up to 800 km in the hottest scenario and highest emissions trajectory. The models suggest a retreat of the spruce-fir zone and an advance of the southern oaks and pines. In any case, our results show that species will have a lot less pressure to move their suitable habitats if we follow the path of lower emissions of greenhouse gases. The information contained in this paper, and much more, is detailed on our website: http://www.nrs.fs.fed.us/atlas.  相似文献   

13.
Climate change is a threat to the stability and productivity of forest ecosystems throughout the Asia-Pacific region. The loss of forests due to climate-induced stress will have extensive adverse impacts on biodiversity and an array of ecosystem services that are essential for the maintenance of local economies and public health. Despite their importance, there is a lack of decision-support tools required to evaluate the potential effects of climate change on Asia-Pacific ecosystems and economies and to aid in the development of regionally appropriate adaptation and mitigation strategies. The project Adaptation of Asia-Pacific Forests to Climate Change, summarized herein, aims to address this lack of knowledge and tools and to provide support for regional managers to develop effective policy to increase the adaptive capacity of Asia-Pacific forest ecosystems. This objective has been achieved through the following activities: (1) development of a high-resolution climate downscaling model, ClimateAP, applicable to any location in the region; (2) development of climate niche models to evaluate how climate change might affect the distribution of suitable climatic conditions for regionally important tree species; (3) development and application of forest models to assess alternative management strategies in the context of management objectives and the projected impacts of climate change; (4) evaluation of models to assess forest fire risk and the relationship between forest fire and climate change; (5) development of a technique to assess ecosystem carbon storage using LiDAR; and (6) evaluation of how vegetation dynamics respond to climate change using remote sensing technology. All project outputs were developed with a focus on communication and extension to facilitate the dissemination of results to regional forest resource managers to support the development of effective mitigation and adaptation policy.  相似文献   

14.
Mapping forest dynamics under climate change: A matrix model   总被引:1,自引:0,他引:1  
Global climate change may be affecting forests around the world. However, the impact of climate change on forest population dynamics, especially at the landscape or regional level, has hardly been addressed before. A new methodology was proposed to enable matrix transition models to account for climate impact on forest population dynamics. The first climate-sensitive matrix (CSMatrix) model was developed for the Alaska boreal forest based on observations from over 15 years of forest inventory. The spatially explicit model was used to map climate-induced forest population dynamics across the region. The model predicted that the basal area increment in the region under natural succession would be hindered by global warming, more so for dry upland areas than for moist wetlands. It was suggested that temperature-induced drought stress could more than offset a predicted increase of future precipitation in the region to lower overall forest productivity. At the same time, stand diversity would increase across the region through transient species redistribution. Accounting for climate conditions made the CSMatrix model more accurate than conventional matrix models.  相似文献   

15.
Forests are important ecosystems for economic and social development. However, the response of tree radial growth to climate has produced ‘divergent problems’ at high latitudes under global warming. In this study, the response stability and trend of Picea schrenkiana radial growth to variability in climate factors were analyzed in the mid-latitudes of the western Tien Shan Mountains. Radial growth of P.schrenkiana was mainly limited by minimum and mean temperatures. The divergent responses of ra...  相似文献   

16.
Climate warming has a rapid and far-reaching impact on forest fire management in the boreal forests of China. Regional climate model outputs and the Canadian Forest Fire Weather Index (FWI) Sys- tem were used to analyze changes to fire danger and the fire season for future periods under IPCC Special Report on Emission Scenarios (SRES) A2 and B2, and the data will guide future fire management planning. We used regional climate in China (1961 1990) as our validation data, and the period (1991-2100) was modeled under SRES A2 and B2 through the weather simulated by the regional climate model system (PRECIS). Meteorological data and fire danger were interpolated to 1 km 2 by using ANUSPLIN software. The average FWI value for future spring fire sea- sons under Scenarios A2 and B2 shows an increase over most of the region. Compared with the baseline, FWI averages of spring fire season will increase by 0.40, 0.26 and 1.32 under Scenario A2, and increase by 0.60, 1.54 and 2.56 under Scenario B2 in 2020s, 2050s and 2080s, respectively. FWI averages of autumn fire season also show an increase over most of the region. FWI values increase more for Scenario B2 than for Scenario A2 in the same periods, particularly during the 2050s and 2080s. Average future FWI values will increase under both scenarios for autumn fire season. The potential burned areas are expected to increase by 10% and 18% in spring for 2080s under Scenario A2 and B2, respectively. Fire season will be prolonged by 21 and 26 days under ScenariosA2 and B2 in 2080s respectively.  相似文献   

17.
By using the forest gap model-FAREAST, we simulated the effects of future climate change on forest composition and forest biomass of typical forests in northeastern China. We selected three different climate change scenarios, developed from GCMs results, of the ECHAM5-OM and HadCM3 models: the current climate, a warmer climate and a state of changing precipitation with higher temperatures. The results are as follows: if the climate does not change, the composition and forest biomass of the northeastern forests will retain their dynamic balance. A warmer climate is detrimental to the major forest types in the northeast. The percentage of major conifers is expected to decrease, along with a proportional increase of some broad-leafed species. The southern treeline of the mixed broad-leafed tree species/Korean pine forest in the temperate zone will tend to move northward. The warmer the climate, the more distinct the transition. If, furthermore, we were to take account of rainfall, the treeline in the northeast will tend to move northward. Rainfall seems to have little effect on the mixed broad-leafed tree species/Korean pine forests in the temperate zone.  相似文献   

18.
Effective adaptation of forest management practices to climate change will require a good understanding of the ecological and climatic factors influencing tree sensitivities and responses to climate. Using tree-ring data collected from 33 stands of mature interior Douglas-fir (Pseudotsuga menziesii var. glauca) spanning a wide climatic range in British Columbia (BC), Canada, we present an approach combining high-resolution spatiotemporal climate data with traditional dendroecological analyses to quantify relationships between population climate-growth sensitivity and provenance (i.e., seed-source origin) climate. Key results showed that Douglas-fir climate-growth sensitivities were strongly linked to provenance climate and varied in coherent patterns across climatic gradients. Climate-growth sensitivities and responses were sometimes opposite between provenances from disparate climates. Perhaps most importantly, our results showed that Douglas-fir productivity across most of its range was sensitive to moisture limitations, and this sensitivity increased strongly with decreasing provenance mean annual precipitation and increasing heat-moisture index. Using geographic information systems, we visualize the link between provenance mean annual precipitation and climatic sensitivity of Douglas-fir across BC to identify “high risk” populations. By understanding the link between biological responses and climate, forest managers may be able to spatially identify sensitive populations using spatiotemporal climate data.  相似文献   

19.
This work aimed to compare radial growth–climate relationships among three coexisting coniferous tree species across a wide geographic and climate range from southern British Columbia (BC) to central Yukon, Canada. Tree-ring data were collected from 20 mature stands of white spruce (Picea glauca), lodgepole pine (Pinus contorta var. latifolia), and subalpine fir (Abies lasiocarpa). Linear relationships between annual growth variation and monthly and seasonal climate were quantified with correlation and regression analyses, and variation in climate–growth responses over a climatic gradient were quantified by regressing growth responses against local mean climatic conditions. Temperatures had more consistent and stronger correlations with growth for all three species than precipitation, but growth–climate responses varied among species and among sites. In particular, pine and fir populations showed different responses between BC and Yukon, whereas spruce showed a more consistent response across the study domain. Results indicate that (1) the response and sensitivity of trees to seasonal climate variables vary among species and sites and (2) winter temperatures prior to growth may have significant impacts on pine and fir growth at some sites. The capacity to adapt to climate change will likely vary among the study species and across climatic gradients, which will have implications for the future management of mixed-species forests in Yukon and BC.  相似文献   

20.
Successful management of forest fire risk in the Northeastern China boreal forest ecosystem often involves trade-offs between fire dynamics, fire hazard reduction, and fiscal input. We used the LANDIS model to study the effects of alternative fuel reduction strategies on fire dynamics and analyzed cost effectiveness for each fuel reduction strategy based on cost–benefit theory. Five levels of fuel treatment area (2, 4, 6, 8, and 10% for each decade) and two fuel treatment types (prescribed burning [PB] and mechanical treatments in combination with prescribed fire [PR]) under current fire suppression simulated by LANDIS were compared in a 5 × 2 factorial design over a 300-year period. The results showed that PR scenarios are more effective at reducing the occurrence and burn area of catastrophic fires than PB scenarios. In addition, area burned by high intensity fire can be tremendously reduced by increasing low intensity fires with a higher level of treatment area under the various PR scenarios. The cost effectiveness of alternative fuel reduction strategies is strongly dependent on treatment area. In general, PB scenarios will be more cost effective in larger treatment areas and PR scenarios in smaller. We recommend mechanical treatments in combination with prescribed fire, with 4% of landscape treated in each decade (PR04) to be the optimal fuel reduction strategy in the study area based on risk control and cost efficiency analysis. However, the most challenging work in China is to make local forest policy makers and land managers accept the ecological function of fire on forest ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号