首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Hybrid molecular orbital/density functional theory (MO/DFT) calculations on molecular clusters were used to model infrared (IR) vibrational frequencies and interatomic distances obtained via extended X‐ray absorption fine structure (EXAFS) spectroscopy. Molecular clusters were found to provide good agreement with experimental observations for the oxyanions carbonate, phosphate, sulphate, arsenate and arsenite. The results show a consistent tendency to form bidentate bridging surface complexes at low pH, but the protonation and hydration states play a significant role in the results obtained from calculation as various protonation states of monodentate surface complexes are also predicted to be stable as pH increases (i.e. the number of H+ ions in the model are decreased). A method for estimating the Gibbs free energy of adsorption (ΔGads) is discussed to complement the comparisons of experimental and theoretical spectroscopic parameters. Calculated ΔGads values were consistent with the interpretations based on modelling observed spectra.  相似文献   

2.
DFT calculations are a powerful tool to support NMR studies of xenobiotics such as decomposition studies in soil. They can help interpret spectra of bound residues, for example, by predicting shifts for possible model bonds. The described bound‐residue models supported the hypothesis of a free amino side chain already suspected by comparison with the experimental data of the standards. No match was found between the calculated shifts of amide bondings of the amino side chains (free or substituted) and the experimental NMR shifts of a previous study. In the present paper, first‐principles quantum chemical calculations were used to support and check the interpretation of the 15N cross polarization‐magic angle spinning nuclear magnetic resonance (15N‐CPMAS NMR) spectra of simazine and its metabolites. Density functional theory (DFT) calculations were performed using Gaussian 03 and the nuclear magnetic shielding tensors were calculated using the Gauge‐Independent Atomic Orbital (GIAO) method and B3LYP/6–311+G(2d,p) model chemistry. Good agreement was reached between the calculated and measured chemical shifts of the core nitrogens and the lactam and lactim forms of the hydroxylated metabolites could be clearly distinguished. The calculated spectra showed that these metabolites exist preferentially in the lactam form, an important fact when considering the possible interactions of such hydroxylated metabolites with the soil matrix. Although the calculated bound‐residue models in the present study only partly matched the experimental data, they were nevertheless useful in helping to interpret the experimental NMR results of a previous study. To get a better match between the calculated and the measured shifts of the side‐chain nitrogens the calculations need to be further developed, taking into account the influence of neighbouring molecules in the solid state. Altogether, quantum chemical calculations are very helpful in the interpretation of NMR spectra. In the future, they can also be very useful for the prediction of NMR shifts, in particular when it is not possible to measure the metabolites due to a lack of material or in cases where practical experiments cannot be conducted.  相似文献   

3.
Abstract

The mechanism of specific phosphate adsorption by hydroxy‐lated mineral surfaces comprises two aspects: the phosphate‐hydroxyl surface reaction and the configuration of the adsorbed phosphate ion. Evidence pointing to ligand exchange as the mechanism of the phosphate‐surface hydroxyl reaction include kinetics of adsorption and desorption; hydroxyl ion release; infrared spectroscopy, and stereochemical calculations. Data pertaining to the coordination of adsorbed phosphate on hydroxy‐lated mineral surfaces have not been conclusive overall. Isotopic exchange experiments and studies of desorption kinetics do not provide definitive information on surface coordination. Measurements of hydroxyl ion release and crystallographic calculations provide support for the existence of both monodentate and bidentate surface complexes of phosphate ions. Infrared spectroscopic investigations suggest a binuclear complex on dried, phosphated goethite. However, these studies cannot be extrapolated automatically to soil minerals, since the addition of water favors formation of a monodentate surface complex. Further research is needed to establish the configuration of adsorbed phosphate ions.  相似文献   

4.
Sulphate sorption on to the surface of short‐range ordered minerals and precipitation of Al‐hydroxy sulphate contribute to the acid neutralizing capacity of soils. The correct measurement of total inorganic sulphate is thus essential in soils that are accumulating SO42– anions. We extracted SO42– by various solutions, namely 0.005 m Ca(NO3)2, 0.016 m KH2PO4, 0.5 m NH4F and 0.2 m acidic NH4‐oxalate (pH 3), from Vitric and Eutric Andosols exposed to prolonged deposition of acid and SO2 from an active volcano (Masaya, Nicaragua). We attributed sulphate extractable by KH2PO4 (20–3030 mg kg?1) to anion‐exchangeable SO42–, which was much smaller than NH4F‐ and oxalate‐extractable SO42– (400–9680 and 410–10 480 mg kg?1, respectively). Our results suggest the occurrence of a sparingly soluble Al‐hydroxy‐mineral phase extractable by both NH4F and oxalate. The formation of Al‐hydroxy minerals would result from the combination of enhanced weathering caused by strong acid loading and simultaneous occurrence of large SO42– concentrations in soil solution. Oxalate extracted slightly more inorganic SO42– than did NH4F, this additional amount of SO42– correlating strongly with oxalate‐extractable Si and Fe contents. Preferential occlusion of SO42– by short‐range ordered minerals, especially ferrihydrite, explains this behaviour. If we exclude the contribution of occluded sulphate then oxalate and NH4F mobilize similar amounts of SO42– and are believed to mobilize all of the inorganic SO42– pool.  相似文献   

5.
Abstract

A long‐term (1968–1987) field study using corn‐soybean in rotation was conducted to compare the effect of rock phosphate (RP) and superphosphate (SP) at two lime levels on crop yield, soil available phosphorus (P) as Bray P‐1 (0.025M HCl + 0.03M NH4F) and Bray P‐2 (0.1M HCl + 0.03M NH4F) tests, and on the relationship between crop yield and available P tests. Treatments included a control, application of RP and SP ranging from 12 to 96 kg P2O5 ha‐1 yr‐1, and combinations of RP with SP or sulphur at various rates. The RP was applied once in 1968 at 8 times the annual rate while SP was applied annually until 1985. Corn and soybean yields increased with P application, more with SP than with RP. Bray P‐l and Bray P‐2 increased linearly with the amount of P applied as SP or RP. A significant correlation (r > 0.64) was found between corn yield and Bray P‐2 at low lime level with both P sources. In contrast, a poor correlation (r < 0.50) was found between soybean yield and soil P tests. Both RP and SP were effective sources of P fertilizers for corn on soils treated with a small amount of lime compared with a large amount of lime. Under low lime the Bray P‐2 accounted for 41% and 66% variability in com yield with applied RP and SP, respectively. On the other hand, Bray P‐1 was only of value when SP was the source of P.  相似文献   

6.
Differences in soil P among silvopasture, grassland, and arable lands have been well established. Nevertheless, most of the reports compare soil properties under long‐term sites. Thus, there exists little information on the effect of the conversion of silvopasture to arable or grassland use on soil P pools. The objective of the study was to determine the impact of converting silvopasture system (SP) into arable cropping and grassland system on the distribution of P pools and potential P bioavailability. We compared the following systems: SP system, SP converted to arable cropland (SP‐AL), SP converted to grassland (SP‐GL), and for comparative purposes, a long‐term arable cropland (AL). The P fractionation was performed by a sequential extraction scheme, using acid and alkaline extractants on samples collected from the 0–10 and 10–20 cm soil layers. It was assumed that the large variations in soil‐P fractionations are caused by the different management practices associated with land conversion. The results of P fractionation showed a dominance of calcium‐bound P, HCl‐extractable Pi constituted up to 36% of the soil total P (TP). However, the type of land use did not affect this P fraction. On the other hand, the reduction in labile‐Pi and NaOH‐Pi fractions observed at the SP‐AL site may have led to the decline in readily available P. The soil total organic P (TPo) content was 8% and 17% lower at SP‐AL compared to SP and SP‐GL site, respectively. Labile organic‐P (labile‐Po) content was markedly higher at SP site compared to arable soils, and was ≈ 10% of TPo. The NaOH‐Po constituted the highest fraction of the organic‐P pool (55%–79% of TPo) across all the study systems, and was positively correlated with TPo (p < 0.01). The study indicates that conversion of SP system in temperate regions to arable cropping with conventional tillage seems to result in the reduction of P availability compared to SP, indicating SP as an important land‐use practice.  相似文献   

7.
Abstract

Plants grown in acidic soil usually require relatively high amounts of available phosphorus (P) to optimize growth and productivity, and sources of available P are often added to meet these requirements. Phosphorus may also be made available at relatively high rates in native soil when roots are colonized with arbuscular mycorrhizal fungi (AMF). Addition of P to soil usually reduces root‐AMF colonization and decreases beneficial effects ofAMF to plants. In glasshouse experiments, soil treatments of P [0 P (Control), 50 mg soluble‐P kg?1 as KH2PO4 (SP), and 200 mg P kg?1 as phosphate rock (PR)], organic matter (OM) at 12.5 g kg?1, AMF (Glomus darum), and various combinations of these (OM+SP, OM+PR, AMF+SP, AMF+PR, AMF+OM, AMF+OM+SP, and AMF+OM+PR) were added to steam treated acidic Lily soil (Typic Hapludult, pHw=5.8) to determine treatment effects on growth and mineral acquisition by chickpea (Cicer areitinum L.). The various treatment applications increased shoot dry matter (DM) above the Control, but not root DM. Percentage AMF‐root colonization increased 2‐fold or more when mycorrhizal plants were grown with AMF, OM+SP, and OM+PR. Regardless of P source, plant acquisition of P, sulfur (S), magnesium (Mg), calcium (Ca), and potassium (K) was enhanced compared to the Control, and mineral enhancement was greater in PR compared to SP plants. Mycorrhizal plants also had enhanced acquisition of macronutrients. OM+SP and OM+PR enhanced acquisition of P, K, and Mg, but not Ca. Concentrations of Fe, Mn, Cu, and Al were generally lower than Controls in SP, RP, AMF+PR, AMF+SP, and OM plants, and mycorrhizal plants especially had enhanced micronutrients. Relative agronomic effectiveness values for shoot DM and shoot P, Ca, and Mg contents were considerably higher for PR, including OM+PR, AMF+PR, and AMF+OM+PR, than for SP. PR and OM applications to AMF plants are low‐cost attractive and ecologically sound alternatives to intensive use of P fertilizers for crops grown in acidic soils.  相似文献   

8.
To investigate the potential of synchrotron‐based X‐ray Absorption Near‐Edge Structure spectroscopy (XANES) at the sulphur (S) K‐edge for a discrimination of adsorbed and precipitated sulphate in soils and soil particles, XANES spectra of ionic sulphate compounds and Al/Fe hydroxy sulphate minerals were compared with spectra of SO42? adsorbed to ferrihydrite, goethite, haematite, gibbsite or allophane. Ionic sulphate and hydroxy sulphate precipitates had broader white‐lines (WL) at 2482.5 eV (full width at half maximum (FWHM) of edge‐normalized spectra, 2.4–4.2 eV; Al hydroxy sulphates, 3.0 eV) than SO42? adsorbed to Al/Fe oxyhydroxides or allophane (FWHM, 1.8–2.4 eV). The ratio of the white‐line (WL) height to the height of the post‐edge feature at 2499 eV (WL/PEF) was larger for SO42? adsorbed to Al/Fe oxyhydroxides or allophane (8.1–11.9) than for Al/Fe hydroxy sulphates and ionic sulphates (3.9–5.7). The WL/PEF ratio of edge‐normalized S K‐edge XANES spectra can be used to distinguish adsorbed from precipitated SO42? in soils and also at microsites of soil particles. The contribution of adsorbed and precipitated SO42? to the total SO42? pool can be roughly quantified. Adsorbed ester sulphate may result in overestimation of precipitated SO42?. The spectra of most soils could be fitted by linear combination fitting (LCF), yielding a similar partitioning between adsorbed and precipitated SO42? as an evaluation of the WL/PEF ratio. The SO42? pool of German forest soils on silicate parent material in most cases was strongly dominated by adsorbed SO42?; however, in three German forest soils subject to elevated atmospheric S deposition, a considerable portion of the SO42? pool was precipitated SO42?, most likely Al hydroxy sulphate. The same is true for Nicaraguan Eutric and Vitric Andosols subject to high volcanogenic S input. In the subsoil of the Vitric Andosol, adsorbed SO42? and Al hydroxy sulphate coexist on a micron scale.  相似文献   

9.
The pH buffering and aluminium solubility characteristics of acid soil are important in determining the soil's response to changes in precipitation acidity. The chemistry of soil organic matter (humic substances) plays a key role in both processes, yet is complex and still poorly understood. Nevertheless, models of humic substance chemistry have been developed, one of which is WHAM–S, which contains a model (Model V) of proton and metal binding at discrete sites on humic substances and considers electrostatic effects on the binding strength. Here we have tested the ability of WHAM–S to model solution pH and Al using batch titration studies on organic and mineral soil horizons from forested sites in Norway, Germany and Spain, with ambient pH values from 3.73 to 5.73. We optimized the model predictions by adjusting the amounts of soil aluminium and humic substances within defined limits, taking the contents of copper chloride‐extractable Al and the base‐extractable organic matter as starting values. The model simulated both pH and dissolved Al well with optimized amounts of aluminium and humic substances within the defined limits (root mean squared error for pH from 0.01 to 0.22, for p[Al]aq (total dissolved Al) from 0.03 to 0.49, five data points). Control of dissolved Al by dissolved organic matter was important particularly at above‐ambient pH. In two mineral horizons we improved the fits by assuming that Al could precipitate as Al(OH)3. The optimized model also gave reasonable predictions of pH and dissolved Al in supernatants obtained by repeated leaching of the soil horizons. The results show that humic substances dominate the control of pH and dissolved Al in most of the horizons studied. Control by Al(OH)3 occurs but is the exception.  相似文献   

10.
The molar ratio of base nutrient cations to total dissolved aluminum (BC : Altot) in the soil solution was measured at six forest sites in Switzerland in acid mineral soils to determine whether the ratio measured in the field was lower than the critical value of 1, as predicted by the mapping of exceedances of critical loads of acidity. The soil chemistry was then related to the soil solution composition to characterize the typical effective base saturation (BS) and BC : Al ratio in soil leading to critical BC : Altot in the soil solution. The median BC : Altot ratio in the soil solution never reached the critical value in the root zone at any sites for the whole observation period (1999–2002), suggesting that the BC : Altot ratios measured in the field might be higher than those modeled for the determination of critical loads of acidity. The gibbsite model usually applied for the calculation of critical loads was a poor predictor of the Al3+ activity at the study sites. A curvilinear pH‐pAl3+ relationship was found over the whole range of pH (3.8–6.5). Above a pH of 5.5, the slope of the pH‐pAl3+ relation was close to 3, suggesting equilibrium with Al(OH)3. It decreased to values smaller than 1.3 below a pH of 5.5, indicating complexation reactions with soil organic matter. The BS and the BC : Al ratios in the soils were significantly correlated to the BC : Altot ratios in the soil solution. The soil solutions with the lowest BC : Altot ratios (≤ 2) were typically found in mineral soils with a BS below 10 % and a BC : Al ratio in the soil lower than 0.2. In acid pseudogleyed horizons overlying a calcareous substrate, the soil solution chemistry was strongly influenced by the composition of the underlying soil layers. The soil solutions at 80 cm had pH values and BC : Altot ratios much higher than expected. This situation should be taken into account for the calculations of critical loads of acidity.  相似文献   

11.
In hydroponic plant nutritional research, nutrient solutions can be considered as aqueous solutions of inorganic ions. In this aqueous solution, the ions are submitted to the laws of aquatic inorganic chemistry. This means that the ions are involved in the dynamic equilibria between complexation, dissociation, and precipitation reactions. These chemical reactions seriously impact elemental speciation and bioavailability. As a result, plant roots experience a different nutritional composition. Ions withdrawn from the‐nutrient solution due to precipitation reactions, change the nutritional composition and are not available for uptake by plant roots. Like complexes, precipitates can buffer a nutrient solution, exchanging nutrients as these decrease by plant uptake. This research looks into the precipitation reactions that occur in hydroponic nutrient solutions. In the concentration range of nutrient solutions, no precipitates are formed involving potassium (K+), nitrate (NO3 ), ammonium (NH4 +), or sulphate (SO4 2‐), while calcium (Ca2+) and magnesium (Mg2+) form mainly at a higher pH precipitates with hydrogen phosphate (HPO4 2‐). Preparing nutrient solutions with tap water, calcium carbonate (CaCO3) is likely to precipitate. A good knowledge of the chemical reactions occurring in nutrient solutions is the first prerequisite in hydroponic plant nutritional research.  相似文献   

12.
In this report we predict the rate of aluminum absorption into root cytoplasm as solutes that are common in acid soil solutions. Our predictions of passive influx rely upon permeability coefficients estimated from known values for similar compounds. We also consider aluminum absorption by endocytosis and absorption by competition with iron for iron‐specific transport mechanisms. Our calculations indicate that passive flux of Al3+ or of common charged Al‐complexes is unlikely to contribute measurably to total aluminum absorption , but endocytosis of Al3+ bound to the plasma membrane surface may dominate uptake under some conditions. Among neutral Al‐complexes, AlF3 o absorption should be detectable; by comparison, passive influx by Al‐citrateo should not be detectable.  相似文献   

13.
Abstract

Goethite, aluminum‐(Al)‐substituted goethite (GA2), and a system of kaolinite–goethite were examined for their ability to adsorb copper (Cu), zinc (Zn), and cadmium (Cd) as a function of pH, in two ionic strengths and two different metal concentrations. Specific surface area was determined by BET‐N2, whereas the charge development on the solid surface was studied in the pH range ~3.5 to ~10.0 by potentiometric titration under continuous flow of argon.

Constant capacitance (CCM) and the double‐layer model (DLM) were used to fit the titration and adsorption data with the help of the least‐square optimization program FITEQL32. In both models, surface site density was fixed at Ns=2.31 sites nm?2, whereas for CCM capacitance density was set at C=1.06. Alternatively, bibliographic suggestions for these two parameters were examined.

Aluminum‐substituted goethite exhibited higher specific surface area and adsorbed all three metals in lower pH values than the other solids. Moreover, GA2 exhibited point of zero salt effect (PZSE) higher than goethite, approaching that corresponding to Al2O3, possibly due to Al‐substitution, and the system exhibited PZSE values much higher than kaolinite, approaching that corresponding to goethite. The adsorption order for all three solids was Cu>Zn>Cd in any case, thus more Cu is adsorbed at a certain pH than Zn and even more than Cd, whereas the increase of metal concentration shifts the adsorption curve toward higher pH values.

Constant capacitance described the titration data satisfactorily, but by altering the Ns and C values, the fit became worse. Adsorption data are described by CCM, by emphasizing the formation of monodentate surface complex. Bidentate complex, in most of the cases, was of no importance in describing the data despite the evidence of its presence in recent spectroscopic studies for Cu and Cd on goethite. Alteration of Ns and C values worsened the fit in any case, and bidentate complex vanished. The DLM exhibited the worse fit in any case.  相似文献   

14.
Rates of organic carbon mineralization (to CO2 and CH4) vary widely in peat soil. We transplanted four peat soils with different chemical composition into six sites with different environmental conditions to help resolve the debate about control of organic carbon mineralization by resource availability (e.g. carbon and nutrient chemistry) versus environmental conditions (e.g. temperature, moisture, pH). The four peat soils were derived from Sphagnum (bog moss). Two transplant sites were in mid‐boreal Alberta, Canada, two were in low‐boreal Ontario, Canada, and two were in the temperate United States. After 3 years in the field, CH4 production varied significantly as a function of peat type, transplant site, and the type–site interaction. All four peat soils had very small rates of CH4 production (< 20 nmol g?1 day?1) after transplant into two sites, presumably caused by acid site conditions (pH < 4.0). One peat soil had small CH4 production rates regardless of transplant site. A canonical discriminant analysis revealed that large rates of CH4 production (4000 nmol g?1 day?1) correlated with large holocellulose content, a large concentration of p‐hydroxyl phenolic compounds in the Klason lignin, and small concentrations of N, Ca and Mn in peat. Significant variation in rates of CO2 production correlated positively with holocellulose content and negatively with N concentrations, regardless of transplant site. The temperature response for CO2 production varied as a function of climate, being greater for peat formed in a cold climate, but did not apply to transplanted peat. Although we succeeded in elucidating some aspects of peat chemistry controlling production of CH4 and CO2 in Sphagnum‐derived peat soils, we also revealed idiosyncratic combinations of peat chemistry and site conditions that will complicate forecasting rates of peat carbon mineralization into the future.  相似文献   

15.
This study investigated the potential for visible–near‐infrared (vis–NIR) spectroscopy to predict locally volumetric soil organic carbon (SOC) from spectra recorded from field‐moist soil cores. One hundred cores were collected from a 71‐ha arable field. The vis–NIR spectra were collected every centimetre along the side of the cores to a depth of 0.3 m. Cores were then divided into 0.1‐m increments for laboratory analysis. Reference SOC measurements were used to calibrate three partial least‐squares regression (PLSR) models for bulk density (ρb), gravimetric SOC (SOCg) and volumetric SOC (SOCv). Accurate predictions were obtained from averages of spectra from those 0.1‐m increments for SOCg (ratio of performance to inter‐quartile (RPIQ) = 5.15; root mean square error (RMSE) = 0.38%) and SOCv (RPIQ = 5.25; RMSE = 4.33 kg m?3). The PLSR model for ρb performed least well, but still produced accurate results (RPIQ = 3.76; RMSE = 0.11 Mg m?3). Predictions for ρb and SOCg were combined to compare indirect and direct predictions of SOCv. No statistical difference in accuracy between these approaches was detected, suggesting that the direct prediction of SOCv is possible. The PLSR models calibrated on the 10‐cm depth intervals were also applied to the spectra originally recorded on a 1‐cm depth increment. While a bigger bias was observed for 1‐cm than for 10‐cm predictions (1.13 and 0.19 kg m?3, respectively), the two populations of estimates were not distinguishable statistically. The study showed the potential for using vis–NIR spectroscopy on field‐moist soil cores to predict SOC at high depth resolutions (1 cm) with locally derived calibrations.  相似文献   

16.
《Soil Use and Management》2018,34(2):216-218
Relationships between the duration (in years) of practice and soil (0–30‐cm layer) chemical properties of 189 upland fields under organic farming in Japan were investigated. Electrical conductivity and available phosphorus (P), nitrate nitrogen (NO 3‐N), Cl and sulphate sulphur (SO 4‐S) decreased and became constant with increasing duration of practice. This was probably because of the absence of mineral fertilizers and the reduced use of animal‐based fertilizers as the duration of organic farming increased.  相似文献   

17.
There is limited understanding of the relationship between carbon (C) chemistry and microbial community structure during decomposition of shoot and root residues and how plant age affects this. In this study, residues of young wheat shoots and roots, mature wheat shoots and roots or a 1:1 mix of mature shoot + root (MSR) were added to sand inoculated with a diverse microbial community. Respiration was measured over 60 days. On days 0, 15, 30 and 60, total C and nitrogen were measured, residue C chemistry was determined by 13C‐NMR (nuclear magnetic resonance) spectroscopy and microbial community structure was assessed by phospholipid fatty acid (PLFA) analyses. Cumulative respiration was least in young roots and did not differ among the other residue types. In MSR, decomposition was similar to that of shoots and roots alone; shoot material appeared to be preferentially decomposed. The decomposition rate of all residues combined was not related to C chemistry. However, mineralized C (Cmin) was negatively correlated with the percentage of (aryl + O‐aryl)‐C in mature but not in young residues. Mineralized C of roots was positively correlated with the percentage of (di‐O‐alkyl + O‐alkyl)‐C, whereas this was not the case for shoots. Microbial community structure was influenced by time, plant organ and plant age. There was no general relationship between microbial community structure and C chemistry of the residues.  相似文献   

18.
Abstract

The apparent recovery of applied zinc (Zn) by plants is very low in calcareous soils of Iran because most of it is retained by the soil solids. Subsamples of 24 surface soil (clay 130–530 g kg‐1; pH 7.7–8.4; electrical conductivity 0.63–3.10 dS m‐1; organic matter 6.0–22.0 g kg‐1; cation exchange capacity 8–20 cmol kg‐1; calcium carbonate (CaCO3) equivalent 180–460 g kg‐1) representing 13 soil series in three taxonomic orders were equilibrated with zinc sulphate (ZnSO4) solutions and the amount of Zn disappeared from solution after a 24‐h shaking period was taken as that adsorbed (retained) by the soil solids. The adsorption data were fitted to Freundlich (X=ACB) and Langmuir [X=(K‐bC)/(1+K#lbC)] adsorption isotherms. Backward stepwiseprocedure was used to obtain regression equations with isotherms coefficients as dependent and soil properties as independent variables. Freundlich A and Langmuir K were found to be highly significantly related to pH and clay and increasing as these soil properties increased. But Langmuir b was related only to clay and Freundlich B showed no significant relationship with any of the properties studied. The distribution coefficient (also called maximum buffering capacity), calculated as the product of Langmuir K and b, was also found to be highly significantly related to pH and clay. It is concluded that pH and clay content of calcareous soils are the most influential soil properties in retention of Zn.  相似文献   

19.
Abstract

Research has shown that measured water‐soluble phosphorus (WSP) from poultry litter might have been less than that released in the field. The effects of acidified extractions on soluble P (SP) concentrations were studied, and a buffer was selected to measure SP at pH 6.0, which is a target value for soil management in Georgia.

Soluble P concentrations were extracted from poultry wastes at three pHs: 1) at natural pH, using deionized water (DIw); 2) after titrating DIw suspensions with 0.5N hydrochloric acid (HCl) to pH end‐points 3.0, 4.0, and 6.0; and 3) at pH 6.0 with buffers of sodium (Na) acetate, potassium hydrogen phthalate (KHP), 2‐(N‐morpholino) ethanesulphonic acid (MES), Na cacodylate, imidazole, N‐(2‐acetamido)‐2‐aminoethansulphonic acid (ACES), N‐(carbamoyl‐methyl) iminodiacetic acid (ADA), bis‐(2‐hydroxyethyl) imino]‐tris‐[(hydroxymethyl) methane (Bistris), and 1,4 piperazine‐bis‐(ethane sulphonic acid) (PIPES).

Total SP increased 60% to 140% in suspensions acidified with HCl to pH 6.0 compared to suspensions at pH≥8. Dissolved unreactive P responded more (2× to 30×) than molybdate reactive P (20–100%). Buffers extracted more soluble minerals than suspensions acidified with HCl, probably because of their complexation ability. The most effective buffer was MES, because its effects seemed mainly due to acidification.  相似文献   

20.
The inability of physical and chemical techniques to separate soil organic matter into fractions that have distinct turnover rates has hampered our understanding of carbon (C) and nutrient dynamics in soil. A series of soil organic matter fractionation techniques (chemical and physical) were evaluated for their ability to distinguish a potentially labile C pool, that is ‘recent’ root and root‐derived soil C. ‘Recent’ root and root‐derived C was operationally defined as root and soil C labelled by 14CO2 pulse labelling of rye grass–clover pasture growing on undisturbed cores of soil. Most (50–94%) of total soil + root 14C activity was recovered in roots. Sequential extraction of the soil + roots with resin, 0.1 m NaOH and 1 m NaOH allocated ‘recent’ soil + root 14C to all fractions including the alkali‐insoluble residual fraction. Approximately 50% was measured in the alkali‐insoluble residue but specific activity was greater in the resin and 1 m NaOH fractions. Hot 0.5 m H2SO4 hydrolysed 80% of the 14C in the alkali‐insoluble residue of soil + roots but this diminished specific activity by recovering much non‐14C organic matter. Pre‐alkali extraction treatment with 30% H2O2 and post‐alkali treatment extractions with hot 1 m HNO3 removed organic matter with a large 14C specific activity from the alkali‐insoluble residue. Density separation failed to isolate a significant pool of ‘recent’ root‐derived 14C. The density separation of 14C‐labelled roots, and roots remixed with non‐radioactive soil, showed that the adhesion of soil particles to young 14C‐labelled roots was the likely cause of the greater proportion of 14C in the heavy fraction. Simple chemical or density fractionations of C appear unsuitable for characterizing ‘recent’ root‐derived C into fractions that can be designated labile C (short turnover time).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号