首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sugarcane bagasse was pretreated with both the white-rot fungus, Ceriporiopsis subvermispora, and xylanase enzyme for 2 weeks before soda chemithermomechanical (CTMP) and soda chemical (CP) cooking. For fungi-CTMP (BCTMP) and enzyme-fungi-CTMP (EBCTMP), the bagasse, after bio-pretreatment, was cooked with 5% sodium hydroxide, at 130 degrees C for 20 min. For the chemical pulping (CP), after fungi pretreatment (BCP) or after xylanase and fungal pretreatment (EBCP), the bagasse was cooked with 14.5% sodium hydroxide. With the BCTMP, the Klason lignin was reduced, all of the pulp strength properties were increased, and a 28% savings in refining energy consumption was obtained, but the brightness was reduced 5 points compared to the control. With the EBCTMP, the brightness losses were overcome but with a mild reduction in the pulp strength properties compared to the BCTMP. The energy savings were 5% greater than from BCTMP and 33% over the control. The BCP treatment increases somewhat the pulp strength properties, reduces the energy consumption 23%, and reduces the brightness by 9 points compared to the control; however, the kappa no. was 5.5 points higher than the control. EBCP treatment reduces brightness losses and increases the pulp yield 2% compared to the control, but with some reduction in the strength properties compared to BCP.  相似文献   

2.
Pulping of blue agave waste, from the production of tequila, was evaluated by both chemical and biomechanical pulping processes. Two conventional and two organosolv systems were used to pulp the agave waste under a standard set of conditions. The soda-ethanol process was superior in terms of delignification and pulp properties in comparison to the soda and ethanol organosolv processes for pulping of agave waste; however, the kraft process gave the best strength properties. In general, the strength of the agave waste pulps was rather poor in comparison to wood and other agro-based pulps; however, the tear strength was relatively high. This result is typical of poorly bonded sheets and may be due to the coarseness of the agave fibers and/or loss of hemicelluloses in the steaming process for the tequila production. Fungal treatment of the agave waste with Ceriporiopsis subvermispora reduced the energy consumption for mechanical refining but gave biomechanical pulps with inferior strength properties. The blue agave chemical pulps should be suitable for blending with softwood kraft pulps for publication grade paper.  相似文献   

3.
We propose a new process using a vapor phase bioreactor (VPB) to simultaneously (i) delignify sugar-cane bagasse, a residue of sugar production that can be recycled in paper industry, and (ii) produce laccase, an enzyme usable to bleach paper pulp. Ethanol vapor, used as laccase inducer, was blown up through a VPB packed with bagasse and inoculated with Pycnoporus cinnabarinusss3, a laccase-hyperproducing fungal strain. After 28 days, the laccase activity in the ethanol-treated bagasse was 80-fold higher (80 U g(ds)(-)(1)) and the bagasse delignification percentage was 12-fold (12%) higher than in the reference samples produced in the absence of ethanol, corresponding to a high overall pulp yield of 96.1%. In the presence of ethanol, the total soluble phenols amount was 2.5-fold (3 mg FA g(ds)(-)(1)) higher than that without ethanol. Six monomeric phenols were detected: p-coumaric (4-hydroxyphenyl-2-propenoic), ferulic (4-hydroxy-3-methoxyphenyl-2-propenoic), syringic (4-hydroxy-3,5-dimethoxybenzoic), vanillic (4-hydroxy-3-methoxybenzoic) and 4-hydroxybenzoic acids, and 2-methoxyhydroquinone. Higher concentrations of phenolic compounds were observed when ethanol vapor was added, confirming a more efficient bagasse delignification. After 28 days, the fungal-treated bagasse (with ethanol addition) was pulped and refined. For a freeness of 81 mL CSF, this processing required 50% less energy than with untreated bagasse (without inoculation and ethanol addition), which indicated a significant potential economy for the pulp and paper industry. Handsheets were made from pulp obtained after fungal-treated and untreated bagasse. Comparison of bagasse-pulp characteristics for freeness of 35 and 181 mL CSF showed an average increment by 35% for tensile index and breaking strength and length. VPB allowed a simultaneous production of laccase (90 U g(ds)(-)(1), after pressing of the bagasse) that improved the overall profitability of the process.  相似文献   

4.
Pulp and paper industries face serious environmental challenges, especially with regard to the conservation of water resources. Chemical thermal mechanical pulping (CTMP) is a process of pulping that combines chemical and mechanical pulping. This reduces the volume of water used in the process. But on the other hand, CTMP generates an effluent with high concentration of organic matter and is difficult to treat. This study evaluated the efficiency in the combination of physicochemical pretreatment by coagulation-flocculation-sedimentation (CFS) process and advanced oxidation process (AOP) by Fenton in sequence to treat CTMP effluent of a Brazilian industry. At first, the best treatment conditions for this type of effluent were determined. To evaluate the efficiency, pH, chemical oxygen demand, biochemical oxygen demand, total organic carbon, lignin contents, color, total phenolic contents, turbidity, and solids were measured before and after treatment. The acute toxicity on Daphnia magna was also determined. The treatment with CFS showed better results in the removal of solids and Fenton in the removal of recalcitrant compounds, such as lignin, demonstrating the need to use them in sequence. Combining CFS and Fenton to treat CTMP effluent allowed to achieve a removal efficiency of 95% for TOC, 61% for COD, and 76% for lignin contents.  相似文献   

5.
瘤胃真菌与酿酒酵母仿生共培养提升秸秆发酵产乙醇量   总被引:1,自引:1,他引:0  
玉米秸秆中具有较高的纤维素、半纤维素含量,是一种具有稳定产率、可集中处理、可代替木材作制浆原料的生物质材料。为了研究厌氧微生物与酵母共培养预处理玉米秸秆的产物,该研究模拟反刍动物消化玉米秸秆的过程,从羊瘤胃液中分离出厌氧真菌(Pecoramyces sp.)。以玉米秸秆茎皮碎为底物,与厌氧真菌、酿酒酵母菌S1145在39℃进行共培养72 h,分析发酵对秸秆茎皮降解及其代谢产物的影响。结果表明,在瘤胃真菌作用下,添加不同量的酿酒酵母可对代谢产物中乙醇含量产生影响,其中添加5 mL酿酒酵母时产生的乙醇含量最高,占总代谢产物比例为32.09%,相对于未添加酿酒酵母的对照组,乙醇含量提高了23.04百分点。研究表明,在厌氧真菌与酿酒酵母共培养预处理玉米秸秆茎皮的过程中,添加酿酒酵母可提高乙醇产量,为玉米秸秆高效资源化处理和生物质燃料生产提供了一种可靠的方法。  相似文献   

6.
Decolorization of six synthetic dyes and two raw textile effluents (A and B) by eight basidiomycetous fungi was investigated. Among eight basidiomycetous fungi, fungal isolate RCK-1 decolorized textile effluent A maximally (42%), while fungal isolate RCK-3 was found to decolorize more of Congo Red (69%), Xylidine Ponceau 2R (100%), Poly R-478 (96%), Indigo Carmine (99%), Lissamine Green B (90%), Toluidine Blue (57%) and textile effluent B (54%), than the rest of fungi. Percentage decolorization of all synthetic dyes and textile effluents by the new fungal isolates RCK-1 and RCK-3 was higher compared to the most widely studied simultaneous lignin degrader, Phanerochaete chrysosporium and selective lignin degrader, Pycnoporus cinnabarinus, when tested in liquid cultures. A statistically significant positive correlation between laccase production and decolorization of dyes and effluents was obtained as compared to other ligninolytic enzymes (lignin peroxidase and manganese peroxidase) production. This showed the importance of the differential contribution of the different ligninolytic enzymes towards the decolorization of the synthetic dyes and textile effluents. The substantially higher ligninolytic enzyme production by the fungal isolates RCK-1 and RCK-3 also suggested their potential use for textile effluent treatment and other possible biotechnological applications.  相似文献   

7.
Plant–parasitic nematodes are injurious crop pests that have been managed mainly by chemical nematicides. However, safe and alternative methods such as those based on organic materials need to be developed. Our study has evaluated (i) the effects of four organic amendments with different biochemical compositions that are abundantly produced in the study area (Guadeloupe, French West Indies) on soil nematode communities and (ii) some of the suppression mechanisms of banana parasitic nematodes, especially those involving the soil food web. This study is based on a microcosm experiment comparing sugarcane bagasse, sugarcane sludge, plant residues and sewage sludge. All amendments except sewage sludge decreased the root abundances of plant–parasitic nematodes, by 96% in the case of sugarcane bagasse. For this treatment, soil densities of carnivorous nematodes were six times higher than the treatments without organic amendment. Plant residues and bagasse were mainly composed of materials that are difficult to decompose, namely cellulose and lignins. These organic materials favored a fungal decomposition pathway and permitted development of carnivorous nematode populations and increased the Channel Index (CI). Pratylenchus coffeae control after sugarcane refinery sludge application remains unexplained. Lastly, sewage sludge, composed mainly of easily degradable compounds, did not permit nematode control, and only bacterivorous nematode populations were enhanced by this treatment.  相似文献   

8.
The goal of this study was to develop a fungal process for ethanol production from corn fiber. Laboratory-scale solid-substrate fermentation was performed using the white-rot fungus Phanerochaete chrysosporium in 1 L polypropylene bottles as reactors via incubation at 37 degrees C for up to 3 days. Extracellular enzymes produced in situ by P. chrysosporium degraded lignin and enhanced saccharification of polysaccharides in corn fiber. The percentage biomass weight loss and Klason lignin reduction were 34 and 41%, respectively. Anaerobic incubation at 37 degrees C following 2 day incubation reduced the fungal sugar consumption and enhanced the in situ cellulolytic enzyme activities. Two days of aerobic solid-substrate fermentation of corn fiber with P. chrysosporium, followed by anaerobic static submerged-culture fermentation resulted in 1.7 g of ethanol/100 g of corn fiber in 6 days, whereas yeast ( Saccharomyces cerevisiae) cocultured with P. chrysosporium demonstrated enhanced ethanol production of 3 g of ethanol/100 g of corn fiber. Specific enzyme activity assays suggested starch and hemi/cellulose contribution of fermentable sugar.  相似文献   

9.
This research aims at developing a biorefinery platform to convert lignocellulosic corn fiber into fermentable sugars at a moderate temperature (37 °C) with minimal use of chemicals. White-rot (Phanerochaete chrysosporium), brown-rot (Gloeophyllum trabeum), and soft-rot (Trichoderma reesei) fungi were used for in situ enzyme production to hydrolyze cellulosic and hemicellulosic components of corn fiber into fermentable sugars. Solid-substrate fermentation of corn fiber by either white- or brown-rot fungi followed by simultaneous saccharification and fermentation (SSF) with coculture of Saccharomyces cerevisiae has shown a possibility of enhancing wood rot saccharification of corn fiber for ethanol fermentation. The laboratory-scale fungal saccharification and fermentation process incorporated in situ cellulolytic enzyme induction, which enhanced overall enzymatic hydrolysis of hemi/cellulose components of corn fiber into simple sugars (mono-, di-, and trisaccharides). The yeast fermentation of the hydrolyzate yielded 7.8, 8.6, and 4.9 g ethanol per 100 g corn fiber when saccharified with the white-, brown-, and soft-rot fungi, respectively. The highest ethanol yield (8.6 g ethanol per 100 g initial corn fiber) is equivalent to 35% of the theoretical ethanol yield from starch and cellulose in corn fiber. This research has significant commercial potential to increase net ethanol production per bushel of corn through the utilization of corn fiber. There is also a great research opportunity to evaluate the remaining biomass residue (enriched with fungal protein) as animal feed.  相似文献   

10.
不同种植模式对甘蔗根际土壤生物学特性的影响   总被引:1,自引:0,他引:1  
甘蔗多年单一化的宿根栽培导致甘蔗产量下降,而套种豆科作物能较明显地提高宿根蔗产量。本研究以赣蔗18 的新植栽培、 宿根栽培和宿根/大豆套种栽培的甘蔗根际土壤为对象,结合土壤微生物区系、 土壤酶活性,甘蔗基本农艺性状及其产量、 质量指标,揭示宿根蔗套种大豆的增产机制及生物学意义。结果表明,不同种植模式下甘蔗蔗糖含量基本一致,但宿根蔗套种大豆由于茎径粗大而较宿根连作表现出明显的产量优势。不同栽培模式下甘蔗根际土壤酶活性有显著差异,套种明显提高了宿根蔗根际土壤酶活性,尤其是与碳、 氮、 磷循环相关的蔗糖酶、 脲酶、 酸性磷酸单酯酶。不同栽培模式下甘蔗根际土壤微生物总量有显著性差异,单一宿根连作甘蔗根际土壤微生物总量和细菌/真菌比例降低,而宿根蔗套种大豆根际土壤微生物总量和细菌/真菌比例提高,使甘蔗根际土壤微生物从真菌型向细菌型转变。总之,单一的宿根连作可导致根际土壤总微生物量及酶活性下降,引起土壤微生物介导的营养循环受阻,从而使甘蔗产量下降,而宿根蔗套种大豆模式对根际土壤微生物区系具有明显的改善作用,宿根蔗具有明显的产量优势。  相似文献   

11.
为提高玉米秸秆的酶解产糖量,研究γ射线辐照与NaOH溶液协同处理对玉米秸秆中酶解还原糖得率的影响。采用红外光谱(IR)、X射线衍射分析和扫描电镜(SEM)分析协同处理对玉米秸秆微观结构的影响。结果表明,较低剂量辐照对玉米秸秆酶解还原糖得率作用不明显,但可大幅降低后续碱浸泡所需的用量和时间。电镜扫描结果表明,经200kGy剂量辐照与碱协同预处理的样品,表面积增加最多。经200kGy辐照和2%NaOH溶液协同预处理的玉米秸秆,其酶解还原糖含量达到了48.34%,这为应用酶解玉米秸秆生产工业乙醇提供了理论依据。  相似文献   

12.
白腐真菌所具有的降解木质素能力源于其所产生的酶系统,碳源和氮源是其降解木质素和产酶的一个极为重要的影响因素。通过室内小麦秸秆固态发酵试验,研究了不同的碳、氮源对两株侧耳属真菌Tf1(P.pulmonarius)和JG1(P.cornucopiae)产酶活力、木质素降解和粗蛋白含量的影响。结果表明,Lip和MnP是参与复合木质素降解菌Tf1+JG1降解小麦秸秆重要的木质素降解酶。以葡萄糖为碳源,酒石酸铵为氮源能显著提高复合木质素降解菌对木质素的降解能力,发酵9 d后小麦秸秆的失重率为14.87%,木质素含量为8.68%,木质素降解率为22.95%;粗蛋白含量为7.28%,比未发酵麦秸提高了36.84%(P〈0.05);Lip和MnP活力分别为629.11 U.g-1和622.22 U.g-1。  相似文献   

13.
Chicory root pectin was isolated by acid extraction followed by alcohol precipitation. Because the extraction conditions have important effects on the features of pectins, an experimental design was used to study the influence of 17 different extraction parameters on yield and composition of pectin: pH, temperature, time of extraction, solid/liquid ratio, and different pretreatments of the pulps before extraction. Twenty extractions were conducted and examined for their significance on yield and sugar content using the Plackett-Burman factorial design. The acid extraction of chicory roots resulted in an average yield of 11% containing 86% of sugars. It was found that extraction temperature, time, protease pretreatment, water purity, and water washing of pulps significantly affected yield and pectin composition with an increase of yield and purity of pectin in harsher extraction conditions.  相似文献   

14.
Linking community composition to ecosystem function is a challenge in complex microbial communities. We tested the hypothesis that key biological features of fungi - evolutionary history, functional guild, and abundance of functional genes – can predict the biogeochemical activity of fungal species during decay. We measured the activity of 10 different enzymes produced by 48 model fungal species on leaf litter in laboratory microcosms. Taxa included closely related species with different ecologies (i.e. species in different “functional guilds”) and species with publicly available genomes. Decomposition capabilities differed less among phylogenetic lineages of fungi than among different functional guilds. Activity of carbohydrases and acid phosphatase was significantly higher in litter colonized by saprotrophs compared to ectomycorrhizal species. By contrast, oxidoreductase activities per unit fungal biomass were statistically similar across functional guilds, with white rot fungi having highest polyphenol oxidase activity and ectomycorrhizal fungi having highest peroxidase activity. On the ecosystem level, polyphenol oxidase activity in soil correlated with the abundance of white rot fungi, while soil peroxidase activity correlated with the abundance of ectomycorrhizal fungi in soil. Copy numbers of genes coding for different enzymes explained the activity of some carbohydrases and polyphenol oxidase produced by fungi in culture, but were not significantly better predictors of activity than specific functional guild. Collectively, our data suggest that quantifying the specific functional guilds of fungi in soil, potentially through environmental sequencing approaches, allows us to predict activity of enzymes that drive soil biogeochemical cycles.  相似文献   

15.
Two agro-industrial coproducts, soybean cotyledon fiber and distiller's dried grains with solubles (DDGS), were used as substrates to evaluate the effect of coculturing three different fungi, Aspergillus oryzae , Trichoderma reesei , and Phanerochaete chrysosporium , on enzyme production by solid-state fermentation (SSF). When soybean fiber was used as the substrate, a maximum xylanase activity of 757.4 IU/g and a cellulase activity of 3.2 IU/g were achieved with the inoculation and incubation of T. reesei and P. chrysosporium for 36 h, followed by A. oryzae for an additional 108 h. This inoculation scheme also resulted in the highest xylanase activity of 399.2 IU/g compared to other fungi combinations in the SSF of DDGS. A large-scale SSF by this fungus combination produced fermented products that had xylanase and cellulase activities of 35.9-57.0 and 0.4-1.2 IU/g, respectively. These products also had 3.5-15.1% lower fiber and 1.3-4.2% higher protein contents, suggesting a potential feed quality improvement.  相似文献   

16.
Extracellular enzymes produced by heterotrophic microorganisms in the soil are responsible for the decomposition of organic compounds. Basidiomycete fungi are the primary decomposer agents in temperate wooded ecosystems and contribute extensively to extracellular enzyme activity and nutrient mineralisation within soils. Growth and development of basidiomycete mycelia is influenced by soil-dwelling invertebrate grazers with potential implications for fungal activity and ecosystem functioning. The impacts of four invertebrate taxa belonging to Isopoda, Myriapoda, Collembola and Nematoda on the production of eight hydrolytic enzymes by four saprotrophic basidiomycetes (Phanerochaete velutina, Resinicium bicolor and two strains of Hypholoma fasciculare) were compared in a factorial microcosm study. Grazing generally increased enzyme production but invertebrates had species-specific impacts on enzyme activity. The magnitude of grazing influenced enzyme activity; macrofauna (woodlice and millipedes) induced the greatest responses. Enzymatic responses varied markedly between fungi. Grazing enhanced enzyme activity in the exploitative mycelial networks of P. velutina and H. fasciculare, while the opposite effects were observed in the explorative R. bicolor networks. The impacts of soil fauna on nutrient mineralisation depend on fungal community composition. β-glucosidase, cellobiohydrolase, N-acetylglucosaminidase, acid phosphatase and phosphodiesterase activities were affected most frequently by grazing and invertebrate activity, and thus had direct consequences for carbon, nitrogen and phosphorous cycling. The results indicate that invertebrate diversity and community composition may influence the spatial distribution and activity of extracellular enzymes with direct implications for nutrient mineralisation and trunover in woodland soils.  相似文献   

17.
Green labeled pectins were extracted by an environmentally friendly way using proteases and cellulases being able to act on proteins and cellulose present in cell walls. Pectins were isolated from different plant byproducts, i.e., chicory roots, citrus peel, cauliflower florets and leaves, endive, and sugar beet pulps. Enzymatic extraction was performed at 50 degrees C for 4 h, in order to fulfill the conditions required for microbiological safety of extracted products. High methoxy (HM) pectins of high molar mass were extracted with three different enzyme mixtures. These pectins were subsequently demethylated with two pectin methyl esterases (PMEs), either the fungal PME from Aspergillus aculeatus or the orange PME. It was further demonstrated that high molar mass low methoxy (LM) pectins could also be extracted directly from cell walls by adding the fungal PME to the mixture of protease and cellulase. Moreover, health benefit pectic oligosaccharides, the so-called modified hairy regions, were obtained after enzymatic treatment of the residue recovered after pectin extraction. The enzymatic method demonstrates that it is possible to convert vegetable byproducts into high-added value compounds, such as pectins and pectic oligosaccharides, and thus considerably reduce the amount of these residues generated by food industries.  相似文献   

18.
预处理过程可以破坏木质纤维素生物质的致密结构、降低生物抗性,是木质纤维素生物质经酶解制备糖基平台化学的重要步骤。该研究以蔗渣为原料,在预处理温度为160 ℃、预处理时间为10 min时,选取0.025 mol/L 的不同金属盐FeCl3、CrCl3、AlCl3、CuCl2、FeCl2、ZnCl2、MnCl2、MgCl2、CaCl2、NaCl、LiCl、Na2CO3对蔗渣进行乙醇/水预处理,并对预处理后样品进行酶解,探究不同金属盐强化乙醇/水预处理对蔗渣酶解效率的影响和规律,并进一步通过扫描电镜(scanning electron microscopy, SEM)、X射线衍射(X-ray diffraction, XRD)、傅里叶变换红外光谱(fourier transform infrared spectroscopy, FT-IR)和热重(thermogravimetric, TG)对蔗渣原料和预处理后的固体进行表征,探究金属盐强化乙醇/水预处理后蔗渣表面形貌与结构变化对酶解效率的影响,分析作用机理。结果表明:与原料甘蔗渣相比,不同金属盐强化乙醇/水预处理后样品中葡聚糖的质量分数从45.5%增加到77.2%,预处理后样品酶解48h后的葡萄糖得率也由51.14%增加到最高93.08%。其中,三价金属盐(FeCl3、CrCl3和AlCl3)对蔗渣酶解效率的提升最为显著,这可归因于三价金属盐强化乙醇/水预处理可以更加有效的去除蔗渣中的半纤维素和木质素,增加酶对纤维素的可及性。后续表征分析也表明经过三价金属盐(FeCl3、CrCl3和AlCl3)强化乙醇/水预处理后的样品比经过二价金属盐(CuCl2、FeCl2、ZnCl2、MnCl2、MgCl2和CaCl2)和一价金属盐(NaCl、LiCl和Na2CO3)强化乙醇/水预处理表面结构破坏更为彻底,结晶度相对增加最大,木素和半纤维素去除率最多,热稳定性也相对最高。该研究结果将为后续木质纤维素生物质的高效转化与利用提供参考。  相似文献   

19.
Ligninolytic fungi can be used for remediation of pollutants in water and soil. Extracellular peroxidases and laccases have been shown to oxidize recalcitrant compounds in vitro but the likely significance of individual enzyme levels in vivo remains unclear. This study documents the amounts and activities of Mn-dependent peroxidase (MnP), lignin peroxidase and laccase (LAC) in various species of ligninolytic fungi grown in liquid medium and soil and their effect on degradation of polycyclic aromatic hydrocarbons (anthracene and pyrene), a polychlorinated biphenyl mixture (Delor 106) and a number of synthetic dyes. Stationary cultures of a highly degradative strain Irpex lacteus exhibited 380-fold and 2-fold increase in production of MnP and LAC, respectively, compared to submerged cultures. Addition of Tween 80 to the submerged culture increased MnP levels 260-fold. High levels of MnP correlated with efficient decolorization of Reactive Orange 16 azo dye but not of Remazol Brilliant Blue R anthraquinone dye. Degradation of anthracene and pyrene in spiked soil by straw-grown explorative mycelium of Phanerochaete chrysosporium, Trametes versicolor and Pleurotus ostreatus showed the importance of MnP and LAC levels secreted into the soil. The importance of high fungal enzyme levels for efficient degradation of recalcitrant compounds was better demonstrated in liquid media compared to the same strains growing in soil.  相似文献   

20.
Chemical reagents used by the textile industry are very diverse in their composition, ranging from inorganic compounds to polymeric compounds. Strong color is the most notable characteristic of textile effluents, and a large number of processes have been employed for color removal. In recent years, attention has been directed toward various natural solid materials that are able to remove pollutants from contaminated water at low cost, such as sugarcane bagasse. Cell immobilization has emerged as an alternative that offers many advantages in the biodegradation process, including the reuse of immobilized cells and high mechanical strength, which enables metabolic processes to occur under adverse conditions of pH, sterility, and agitation. Support treatment also increases the number of charges on the surface, thereby facilitating cell immobilization processes through adsorption and ionic bonds. Polyethyleneimine (PEI) is a polycationic compound known to have a positive effect on enzyme activity and stability. The aim of the present study was to investigate a low-cost alternative for the biodegradation and bioremediation of textile dyes, analyzing Saccharomyces cerevisiae immobilization in activated bagasse for the promotion of Acid Black 48 dye biodegradation in an aqueous solution. A 1 % concentration of a S. cerevisiae suspension was evaluated to determine cell immobilization rates. Once immobilization was established, biodegradation assays with free and immobilized yeast in PEI-treated sugarcane bagasse were evaluated for 240 h using UV–vis spectrophotometry. The analysis revealed significant relative absorbance values, indicating the occurrence of biodegradation in both treatments. Therefore, S. cerevisiae immobilized in sugarcane bagasse is very attractive for use in biodegradation processes for the treatment of textile effluents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号