首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D1 and D2 dopamine receptors exert synergistic effects on the firing rates of basal ganglia neurons and on the expression of stereotyped behavior in rats. Moreover, the ability of D2 agonists to induce changes in basal ganglia single unit activity and spontaneous motor activity is dependent upon the presence of endogenous dopamine to stimulate D1 receptors; in rats treated with alpha-methyl-rho-tyrosine to reduce endogenous dopamine levels, the neurophysiological and behavioral effects of the D2 agonist quinpirole are significantly attenuated, while the effects of nonselective agonists like apomorphine, which stimulate both D1 and D2 receptors, or combinations of a D2 agonist and a D1 agonist are not attenuated. Thus, the previously held view that D2 receptors alone are responsible for evoking the changes in behavior and basal ganglia output induced by nonselective dopamine agonists and endogenous dopamine is not supported by these results, which indicate that these phenomena require concurrent stimulation of both dopamine receptor subtypes.  相似文献   

2.
In postmortem studies of patients with schizophrenia, D2 dopamine receptors in the basal ganglia have been observed to be more numerous than in patients with no history of neurological or psychiatric disease. Because most patients with schizophrenia are treated with neuroleptic drugs that block D2 dopamine receptors in the caudate nucleus, it has been suggested that this increase in the number of receptors is a result of adaptation to these drugs rather than a biochemical abnormality intrinsic to schizophrenia. With positron emission tomography (PET), the D2 dopamine receptor density in the caudate nucleus of living human beings was measured in normal volunteers and in two groups of patients with schizophrenia--one group that had never been treated with neuroleptics and another group that had been treated with these drugs. D2 dopamine receptor densities in the caudate nucleus were higher in both groups of patients than in the normal volunteers. Thus, schizophrenia itself is associated with an increase in brain D2 dopamine receptor density.  相似文献   

3.
A syndrome of spontaneous orofacial dyskinesia was identified in groups of rats treated for 6 months with a wide range of neuroleptic drugs. Phenothiazines, thioxanthenes, and substituted benzamides were particularly likely to induce the syndrome. It was observed in the presence of a functional blockade of dopamine receptors and endured for at least 2.5 months after drug withdrawal. There was no relation between the syndrome and changes in striatal dopamine receptors, as indexed by the binding of tritiated spiperone and tritiated cis(Z)-flupenthixol. The syndrome parallels several of the features of clinical tardive dyskinesia, whose pathophysiology thus may not involve changes in the characteristics of striatal dopamine receptors.  相似文献   

4.
Somatostatin and dopamine are two major neurotransmitter systems that share a number of structural and functional characteristics. Somatostatin receptors and dopamine receptors are colocalized in neuronal subgroups, and somatostatin is involved in modulating dopamine-mediated control of motor activity. However, the molecular basis for such interaction between the two systems is unclear. Here, we show that dopamine receptor D2R and somatostatin receptor SSTR5 interact physically through hetero-oligomerization to create a novel receptor with enhanced functional activity. Our results provide evidence that receptors from different G protein (heterotrimeric guanine nucleotide binding protein)-coupled receptor families interact through oligomerization. Such direct intramembrane association defines a new level of molecular crosstalk between related G protein-coupled receptor subfamilies.  相似文献   

5.
The new benzamide derivative [125I]iodosulpride is a highly sensitive and selective ligand for D-2 dopamine receptors and displays a very low nonspecific binding to membrane or autoradiographic sections. On autoradiographic images, D-2 receptors are present not only in well-established dopaminergic areas but also, in a discrete manner, in a number of catecholaminergic regions in which the dopaminergic innervation is still unknown, imprecise, or controversial, as in the sensorimotor cerebral cortex or cerebellum. This widespread distribution suggests larger physiological and pathophysiological roles for cerebral dopamine receptors than was previously thought.  相似文献   

6.
Either L-dopa, in combination with 1-alpha-methyldopa hydrazine (MK-486), or 1-(2'-pyrimidyl)-4-piperonylpiperazine, an agent that stimulates dopamine receptors, relieves surgically induced tremor in monkeys and concomitantly evokes involuntary movements. These results indicate that tremor and involuntary movements are associated with a common mechanism and that the activity of the dopamine receptors is involved in the regulation of these dysfunctions.  相似文献   

7.
The subthalamic nucleus, a clinically important component of the extrapyramidal motor system, and a lateral area extending into the peduncle contain catecholamine terminals and dopamine receptors coupled to adenylate cyclase. In addition, dopamine agonists administered in vivo enhance glucose utilization in the region. Thus, neuronal function in this region is directly affected by dopamine and dopaminergic drugs.  相似文献   

8.
The prevailing view is that the popular recreational drug (+/-)3,4-methylenedioxymethamphetamine (MDMA, or "ecstasy") is a selective serotonin neurotoxin in animals and possibly in humans. Nonhuman primates exposed to several sequential doses of MDMA, a regimen modeled after one used by humans, developed severe brain dopaminergic neurotoxicity, in addition to less pronounced serotonergic neurotoxicity. MDMA neurotoxicity was associated with increased vulnerability to motor dysfunction secondary to dopamine depletion. These results have implications for mechanisms of MDMA neurotoxicity and suggest that recreational MDMA users may unwittingly be putting themselves at risk, either as young adults or later in life, for developing neuropsychiatric disorders related to brain dopamine and/or serotonin deficiency.  相似文献   

9.
D2 dopamine receptors in the putamen of living human subjects were characterized by using the selective, high-affinity D2 dopamine receptor antagonist carbon-11-labeled raclopride and positron emission tomography. Experiments in four healthy men demonstrated saturability of [11C]raclopride binding to an apparently homogeneous population of sites with Hill coefficients close to unity. In the normal putamen, maximum binding ranged from 12 to 17 picomoles per cubic centimeter and dissociation constants from 3.4 to 4.7 nanomolar. Maximum binding for human putamen at autopsy was 15 picomoles per cubic centimeter. Studies of [11C]raclopride binding indicate that clinically effective doses of chemically distinct neuroleptic drugs result in 85 to 90 percent occupancy of D2 dopamine receptors in the putamen of schizophrenic patients.  相似文献   

10.
The dopamine hypothesis of schizophrenia was examined by measuring the density of dopamine receptors in the postmortem brains of 81 control subjects and 59 schizophrenics from four different countries. The densities of dopamine receptors in the tissues from the schizophrenic patients had a bimodal distribution in the caudate nucleus, putamen, and nucleus accumbens. One mode occurred 25 percent above the control density, and a second mode occurred at a density 2.3 times that of the control density for all three regions. Although almost all the patients had been medicated with neuroleptics, the two modes had the same dissociation constant for the labeled ligand used, suggesting that the neuroleptic doses were similar for the two populations of schizophrenics. The results thus provide direct evidence for two distinct categories of schizophrenia.  相似文献   

11.
1-Methyl-4-phenyl-1,2,5,6- tetrahydropyri dine ( MPTP ) is known to cause an irreversible destruction of the dopaminergic nigrostriatal pathway and symptoms of parkinsonism in humans and in monkeys. However, MPTP has been reported to act only minimally or not at all in several other animal species. When MPTP (30 milligrams per kilogram of body weight) was administered parenterally to mice, a decrease in concentrations of neostriatal dopamine and its metabolites, a decrease in the capacity of neostriatal synaptosomal preparations to accumulate [3H]dopamine, and a disappearance of nerve cells in the zona compacta of the substantia nigra were observed. In contrast, MPTP administration had no effect on neostriatal concentrations of serotonin and its metabolites. MPTP administration thus results in biochemical and histological changes in mice similar to those reported in humans and monkeys and similar to those seen in Parkinson's disease in humans. The mouse should prove to be a useful small animal with which to study the mode of action of MPTP .  相似文献   

12.
Explants of embryonic rat mesencephalon were grown in organotypic culture. Addition of 10 microM 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to the culture medium for 4 to 7 days resulted in loss of dopamine cell bodies and fiber outgrowths, as observed by fluorescence histochemistry. At the same time, the cultures showed decreased uptake of tritium-labeled dopamine. However, no signs of generalized toxicity were evident when the explant cultures were viewed by light and phase-contrast microscopy. These results show that MPTP exerts a relatively selective destructive action in dopamine neurons in vitro, similar to the action observed in humans and monkeys in vivo. Pargyline (10 microM), a monoamine oxidase inhibitor, protected the dopamine neurons in the explants. Organotypic cultures provide an experimental model for the study of the properties of MPTP in vitro.  相似文献   

13.
Chronic blockade of dopamine D2 receptors, a common mechanism of action for antipsychotic drugs, down-regulates D1 receptors in the prefrontal cortex and, as shown here, produces severe impairments in working memory. These deficits were reversed in monkeys by short-term coadministration of a D1 agonist, ABT 431, and this improvement was sustained for more than a year after cessation of D1 treatment. These findings indicate that pharmacological modulation of the D1 signaling pathway can produce long-lasting changes in functional circuits underlying working memory. Resetting this pathway by brief exposure to the agonist may provide a valuable strategy for therapeutic intervention in schizophrenia and other dopamine dysfunctional states.  相似文献   

14.
The physiological role of striatal cholinergic interneurons was investigated with immunotoxin-mediated cell targeting (IMCT). Unilateral cholinergic cell ablation caused an acute abnormal turning behavior. These mice showed gradual recovery but displayed abnormal turning by both excess stimulation and inhibition of dopamine actions. In the acute phase, basal ganglia function was shifted to a hyperactive state by stimulation and suppression of striatonigral and striatopallidal neurons, respectively. D1 and D2 dopamine receptors were then down-regulated, relieving dopamine-predominant synaptic perturbation but leaving a defect in controlling dopamine responses. The acetylcholine-dopamine interaction is concertedly and adaptively regulated for basal ganglia synaptic integration.  相似文献   

15.
The dorsal striatum plays a role in consummatory food reward, and striatal dopamine receptors are reduced in obese individuals, relative to lean individuals, which suggests that the striatum and dopaminergic signaling in the striatum may contribute to the development of obesity. Thus, we tested whether striatal activation in response to food intake is related to current and future increases in body mass and whether these relations are moderated by the presence of the A1 allele of the TaqIA restriction fragment length polymorphism, which is associated with dopamine D2 receptor (DRD2) gene binding in the striatum and compromised striatal dopamine signaling. Cross-sectional and prospective data from two functional magnetic resonance imaging studies support these hypotheses, which implies that individuals may overeat to compensate for a hypofunctioning dorsal striatum, particularly those with genetic polymorphisms thought to attenuate dopamine signaling in this region.  相似文献   

16.
The role of dopamine in monitoring negative action outcomes and feedback-based learning was tested in a neuroimaging study in humans grouped according to the dopamine D2 receptor gene polymorphism DRD2-TAQ-IA. In a probabilistic learning task, A1-allele carriers with reduced dopamine D2 receptor densities learned to avoid actions with negative consequences less efficiently. Their posterior medial frontal cortex (pMFC), involved in feedback monitoring, responded less to negative feedback than others' did. Dynamically changing interactions between pMFC and hippocampus found to underlie feedback-based learning were reduced in A1-allele carriers. This demonstrates that learning from errors requires dopaminergic signaling. Dopamine D2 receptor reduction seems to decrease sensitivity to negative action consequences, which may explain an increased risk of developing addictive behaviors in A1-allele carriers.  相似文献   

17.
18.
Dopamine, apomorphine, isoproterenol, and norepinephrine each increased the concentration of adenosine 3',5'-monophosphate in slice of rat caudate nucleus. The concentrations of dopamine, apomorphine isoproterenol, and norepinephrine causing half-maximal increases were 60, 150, 0.03 and 30 micromoles per liter, respectively. The effect of dopamine was blocked by fluphenazine, a dopamine receptor antagonist, but not by propranolol, a beta-andrenergic receptor antagonist. Conversely, the effect of isoproterenol was blocked by propranolol but not by fluphenazine. The results suggest that in rat caudate nucleus there are two distinct catecholamine receptors capable of causing increased concentrations of adenosine 3',5'-monophosphate, one having the characteristic of dopamine receptor, and the other having the characteristics of beta-adrenergic receptor.  相似文献   

19.
Plasma-free homovanillic acid, a major metabolite of dopamine, was measured in chronically ill schizophrenic patients both before and during treatment with the antipsychotic phenothiazine, fluphenazine. Neuroleptic treatment was associated with a significant time-dependent decrease in plasma homovanillic acid from pretreatment values, which were significantly elevated when compared with those of age- and sex-matched healthy control subjects. Further, both the absolute concentrations as well as the neuroleptic-induced reductions in plasma homovanillic acid determined over 5 weeks of neuroleptic treatment were statistically significantly correlated with ratings of psychosis and improvement in psychosis, respectively. These findings suggest that the delayed effects of neuroleptic agents on presynaptic dopamine activity may more closely parallel their therapeutic actions than do their immediate effects in blocking postsynaptic dopamine receptors and that a decrease in dopamine "turnover" may be responsible for their antipsychotic effects.  相似文献   

20.
D1 dopamine receptors in prefrontal cortex: involvement in working memory   总被引:36,自引:0,他引:36  
The prefrontal cortex is involved in the cognitive process of working memory. Local injections of SCH23390 and SCH39166, selective antagonists of the D1 dopamine receptor, into the prefrontal cortex of rhesus monkeys induced errors and increased latency in performance on an oculomotor task that required memory-guided saccades. The deficit was dose-dependent and sensitive to the duration of the delay period. These D1 antagonists had no effect on performance in a control task requiring visually guided saccades, indicating that sensory and motor functions were unaltered. Thus, D1 dopamine receptors play a selective role in the mnemonic, predictive functions of the primate prefrontal cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号