首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Field Crops Research》1995,41(2):65-77
Loss of nitrogen from the leaves and a reduction in specific leaf nitrogen (SLN, g N m−2) is associated with grain filling in sunflower (Helianthus annuus L.). To explore the relationship between crop radiation-use efficiency (RUE, g MJ−1) and SLN, crop biomass accumulation and radiation interception were measured between the bud-visible and physiological-maturity stages in crops growing under combinations of two levels of applied nitrogen (0 and 5 g N m−2) and two population densities (2.4 and 4.8 plants m−2). Both nitrogen fertilization and density had significant (P = 0.05) effects on crop biomass yield, nitrogen uptake, leaf area index and SLN, but the nitrogen effects were more pronounced for these and other crop variables. Linear regressions of accumulated biomass (OCdwt, corrected for the energy costs of oil synthesis in the grain) on accumulated intercepted short-wave radiation between bud visible and early grain filling provided appropriate and significantly (P = 0.05) different estimates of RUE for the pooled 0 g N m−2 (1.01 g OCdwt MJ−1) and 5 g N m−2 (1.18 g OCdwt MJ−1) treatments. When calculated for each inter-harvest interval, crop RUE varied in a curvilinear fashion during the season, with a broad optimum from 40 to 70 days after emergence of the crops, and with lower values earlier and later in the season. The reduction in RUE toward physiological maturity was particularly marked. A plot of RUE against SLN revealed a reduction in RUE at small SLN values, but the relationship may be confounded by ontogenetic changes in other factors. A published model (Sinclair and Horie (1989), Crop Sci., 29: 90–98) was used to explore the RUE/SLN relationship. The model was unable to reproduce the decline in RUE during the second half of the grain-filling period. It is suggested that an important cause of this failure may be the partition, in the model, of a fixed, rather than a variable, fraction of crop gross photosynthesis to respiration.  相似文献   

2.
Crop growth is related to radiation‐use efficiency (RUE), which is influenced by the nitrogen (N) status of the crop, expressed at canopy level as specific leaf N (SLN) or at plant level as N nutrition index (NNI). To determine the mechanisms through which N affects dry‐matter (DM) production of forage kale, results from two experiments (N treatment range 0–500 kg ha?1) were analysed for fractional radiation interception (RI), accumulated radiation (Racc), RUE, N uptake, critical N concentration (Nc), NNI and SLN. The measured variables (DM, RI and SLN) and the calculated variables (NNI, Racc and RUE) increased with N supply. RUE increased from 0·74 and 0·89 g MJ?1 IPAR for the control treatments to 1·50 and 1·95 g MJ?1 IPAR under adequate N and water in both experiments. This represented an increase in RUE of 52–146% for the range of N treatments used in both experiments, whilst Racc increased by 9–17%, compared with the control treatments. Subsequently, the total DM yield of kale increased from 6·7 and 8 t DM ha?1 for the control treatments to ≥ 19 t DM ha?1 when ≥150 kg N ha?1 was applied. The DM yields for the 500 kg N ha?1 treatments were 25·5 and 27·6 t DM ha?1 for the two experiments. RUE increased linearly with SLN, at an average rate of 0·38 g DM MJ?1 IPAR per each additional 1 g N m?2 leaf until a maximum RUE of 1·90 g MJ?1 IPAR was reached in both experiments. There were no changes in RUE with SLN of > 2·6 g m?2 and NNI >1, implying luxury N uptake. RUE was the most dominant driver of forage kale DM yield increases in response to SLN and NNI.  相似文献   

3.
《Field Crops Research》2006,95(2-3):234-249
The use of Al-tolerant and P-efficient maize cultivars is an important component of a successful production system on tropical acid soils with limited lime and P inputs. Grain yield and secondary plant traits, including root and aboveground biomass, nutrient content and leaf development, were evaluated from 1996 to 2002 in field experiments on an Oxisol in order to identify maize characteristics useful in genetic improvement. Here we present the results of the 2002 trial and compare them with previous results. The aim of this experiment was to assess the effect of assimilate and nutrient partitioning on the growth and grain yield of two tropical cultivars having different Al tolerance (CMS36, tolerant, Spectral, moderately tolerant). The soil had an Al saturation of 36% in topsoil (pH 4.5) and >45% below 0.3 m depth (pH 4.2). Measurements made from emergence to grain filling included: root, stem and leaf biomass, P and N content, leaf area index (LAI), radiation use efficiency (RUE), soil available N and root profiles at anthesis. The experiments consisted of two P treatments, zero applied or 45 kg P ha−1 (−P and +P). All the treatments received N and K fertilizers. In −P, root biomass and LAI at anthesis were twice as great in CMS36 as in Spectral. In +P the differences between cultivars were negligible. Roots were deeper in CMS36 due to its higher Al tolerance. Total biomass and grain yield were not strongly related to root biomass and LAI. Other factors such as the leaf biomass and the amount of nutrients per unit leaf area were highly correlated with RUE and biomass. In −P, Spectral had the same total biomass but a higher grain yield than CMS36 (2.1 Mg ha−1 versus 1.5 Mg ha−1). This was due to a higher leaf P content (+40%), a greater RUE (+74%), and a lower number of sterile plants. In +P, CMS36 had higher total biomass and grain yield (4.1 Mg ha−1 versus 3.1 Mg ha−1). This was due to its higher leaf P (+25%) and leaf N (+43%) contents, and an increased RUE (+130%) that were associated with higher P and N uptake. Our results indicated that although root tolerance to Al toxicity is necessary for good crop performance on acid soils, assimilate and nutrient partitioning in the aboveground organs play a major role in plant adaptation and may partially compensate for a lower root tolerance.  相似文献   

4.
Source or sink limitation of grain filling in cereals is often inferred from experiments in which the source:sink ratio is manipulated by shading, defoliation or grain removal. However, interpretation of this type of experiment is usually qualitative rather than quantitative in nature and the extent of any imbalance between the source and sink is not known. The objectives of the current work were: (1) to provide a detailed analysis of radiation interception, radiation-use efficiency (RUE) and carbohydrate storage reserves in winter barley in order to quantify the potential supply of photosynthates for grain filling; (2) to estimate the variation in source–sink balance between environments. Field experiments were conducted on cv Pearl at six sites in the UK and over 3 years. Crops were grown under a comparable husbandry regime at each site and received a full fertilizer and crop protection programme. When the cumulative interception of post-anthesis photosynthetically active radiation (PAR) was plotted against the increase in biomass to determine RUE, the pattern of response differed between sites and years; for some site/years the response was linear, for others it was non-linear where RUE decreased during the latter stages of grain filling. The extent and statistical significance of non-linearity was determined from the quadratic term of fitted 2nd order polynomials. There was no significant association between climatic variables, such as temperature, radiation or rainfall, and the value of the quadratic term of RUE. Neither could non-linearity of RUE be explained in terms of the shedding of leaf tissue during canopy senescence. There were weak associations (r2 < 0.3) between the extent of non-linearity and green area index (GAI), above-ground biomass, and specific leaf N, at ear emergence (Zadoks GS 59). A much stronger relationship (r2 = 0.63) was found between the source:sink ratio (green area per grain) at GS 59 and non-linearity of RUE. These results suggest that a major factor leading to the reduction in RUE during the second half of grain filling at some sites was feedback inhibition from a limited sink capacity. This conclusion is supported by a fairly strong positive association between RUE non-linearity and the apparent contribution of stem carbohydrate reserves to grain yield (r2 = 0.47). The potential assimilate supply for grain filling was estimated as (maximum post-anthesis RUE × PAR intercepted) + stem soluble carbohydrate reserves at GS 59. The potential supply exceeded the measured yield at all sites except one implying that crops were predominantly sink limited. The size of the excess, which is a measure of the relative source–sink balance during grain filling, differed widely between site/years.  相似文献   

5.
Variability of light interception and its derivatives are poorly understood at the field-scale in maize (Zea mays L.) and soybean [Glyine max (L.) Merr.]. Quantifying variability can provide reliable estimates of field-scale processes and reliable methodology. A field study was conducted during the 2005 growing season in a 31 ha maize and 23 ha soybean field rotated annually near Ames, IA to measure variability of cumulatively intercepted photosynthetically active radiation (CI-PAR) and radiation use efficiency (RUE) by deploying eight line quantum sensors in each field. Cumulative mean PAR interception for soybean was 575 MJ m−2 ending on day of the year (DOY) 249 compared with 687 MJ m−2 in maize ending on DOY 244. Soybean standard error (sX) for a single sensor was 4.48% and with six sensors was 1.83% of the final CI-PAR. Maize sX for a single sensor was 5.29% and with eight sensors was 1.87% of the final CI-PAR. Crop biomass was quantified weekly by collecting four 1 m2 samples. Soybean RUE using all sensors was 1.44 ± 0.06 g MJ PAR−1. The highest CI-PAR from a single sensor had RUE of 1.32 and the lowest was 1.55 g MJ PAR−1. Maize RUE using all sensors was 3.35 ± 0.09. The highest CI-PAR from a single sensor had RUE of 2.87 and the lowest was 3.70 g MJ PAR−1. Reliable transmitted PAR and RUE estimates are obtainable at the field-scale in maize and soybean with four and three sensors, respectively, assuming that crop biomass is accurately measured.  相似文献   

6.
The objective of this study was to develop a mechanistic model for simulating the genotypic and environmental variation in rice growth and yield based on measured plant N accumulation. The model calibrations and evaluations were conducted for rice growth and yield data obtained from a cross-locational experiment on 9 genotypes at 7 climatically different locations in Asia. The rough dry grain yield measured in the experiment ranged from 71 to 1044 g m−2 over the genotypes and locations. An entire process model was developed by integrating sub-models for simulating the processes of leaf area index development, partitioning of nitrogen within plant organs, vegetative biomass growth, spikelet number determination, and yield. The entire process model considered down-regulation of photosynthesis caused by limited capacity for end-product utilization in growing sink organs by representing canopy photosynthetic rate as a function of sugar content per unit leaf nitrogen content. The model well explained the observed genotypic and environmental variation in the dynamics of above-ground biomass growth (for validation dataset, R2 = 95), leaf area index development (R2 = 0.82) and leaf N content (R2 = 0.85), and spikelet number per unit area (R2 = 0.67) and rough grain yield (R2 = 0.66), simultaneously. The model calibrations for each sub-model and the entire process model against observed data identified 10 genotype-specific model parameters as important traits for determining genotypic differences in the growth attributes. Out of the 10 parameters, 5 were related to the processes of phenological development and spikelet sterility, considered to be major determinants of genotypic adaptability to climate. The other 5 parameters of stomatal conductance, radiation extinction coefficient, nitrogen use efficiency in spikelet differentiation, critical leaf N causing senescence, and potential single grain mass had significant influence on the yield potential of genotypes under given climate conditions.  相似文献   

7.
《Field Crops Research》2005,93(1):64-73
Leaf area growth and nitrogen concentration per unit leaf area, Na (g m−2 N) are two options plants can use to adapt to nitrogen limitation. Previous work indicated that potato (Solanum tuberosum L.) adapts the size of leaves to maintain Na and photosynthetic capacity per unit leaf area. This paper reports on the effect of N limitation on leaf area production and photosynthetic capacity in maize, a C4 cereal. Maize was grown in two experiments in pots in glasshouses with three (0.84–6.0 g N pot−1) and five rates (0.5–6.0 g pot−1) of N. Leaf tip and ligule appearance were monitored and final individual leaf area was determined. Changes with leaf age in leaf area, leaf N content and light-saturated photosynthetic capacity, Pmax, were measured on two leaves per plant in each experiment. The final area of the largest leaf and total plant leaf area differed by 16 and 29% from the lowest to highest N supply, but leaf appearance rate and the duration of leaf expansion were unaffected. The N concentration of expanding leaves (Na or %N in dry matter) differed by at least a factor 2 from the lowest to highest N supply. A hyperbolic function described the relation between Pmax and Na. The results confirm the ‘maize strategy’: leaf N content, photosynthetic capacity, and ultimately radiation use efficiency is more sensitive to nitrogen limitation than are leaf area expansion and light interception. The generality of the findings is discussed and it is suggested that at canopy level species showing the ‘potato strategy’ can be recognized from little effect of nitrogen supply on radiation use efficiency, while the reverse is true for species showing the ‘maize strategy’ for adaptation to N limitation.  相似文献   

8.
Crop physiological traits of Liangyoupeijiu, a “super” hybrid rice variety recently bred in China, were compared with those of Takanari and Nipponbare in 2003 and 2004 in Kyoto, Japan. Liangyoupeijiu showed a significantly higher grain yield than Nipponbare in both years, and achieved a grain yield of 11.8 t ha−1 in 2004, which is the highest yield observed under environmental conditions in Kyoto. Liangyoupeijiu had longer growth duration and larger leaf area duration (LAD) before heading, causing larger biomass accumulation before heading than the other two varieties. Liangyoupeijiu had a large number of grains and translocated a large amount of carbohydrates from the vegetative organ to the panicle during the grain filling period. The three yield components measured were panicle weight at heading (P0), the amount of carbohydrates translocated from the leaf and stem to the panicle during the grain filling period (ΔT), and the newly assimilated carbohydrates during grain filling (ΔW). It was found that the sum of P0 and ΔT were strongly correlated with grain yield when all the data (n = 8) were combined (r = 0.876**). However, there was no significant difference in the radiation use efficiency (RUE) of the whole growth period between Liangyoupeijiu and Nipponbare for both years. Even though the growth duration was shorter, Takanari, an indica/japonica cross-bred variety, showed a similar yield to Liangyoupeijiu in both years. The mean RUE of the whole growth period was significantly higher in Takanari, 1.60 and 1.64 g MJ−1 in 2003 and 2004, respectively, than in Liangyoupeijiu, which had a RUE of 1.46 and 1.52 g MJ−1 in 2003 and 2004, respectively. The high grain yield of Takanari was mainly due to its high RUE compared with Liangyoupeijiu and its large P0 and ΔT. Our result showed that the high grain yield of Liangyoupeijiu was due to its large biomass accumulation before heading, which resulted from its large LAD rather than its RUE.  相似文献   

9.
Effects of three irrigation treatments (rainfed, and irrigation at 7-day and 14-day frequencies beginning in spring) and two rates of nitrogen (0 and 150 kg N ha−1) on growth, light absorption, and conversion efficiency in wheat were studied. Growth was considered in four phases extending from 95 days after sowing ( 95) to the beginning of rapid stem growth ( 120), the stem growth-phase lasting to the onset of rapid grain-filling ( 148), the grain-filling phase between 148 and 170, and the final period to harvest. The first irrigation treatments were applied at 120.Radiation interception was the major determinant of growth. Rainfed treatments captured ca. 1100 MJ m−2 between 95 and 148, by which time they had achieved maximum above-ground biomass. Irrigated treatments continued to grow until 170. They captured ca. 1300 MJ m−2 to 170 where no nitrogen was applied, and ca. 1500 MJ m−2 where N was applied.In addition to effects on leaf-area duration and radiation absorption, treatments also affected conversion efficiency, ε. In the first phase, ε increased from 0.85 g MJ−1 to 1.15 g MJ−1 where N was applied. After 120, irrigation increased ε from a mean of 0.8 g MJ−1 in rainfed treatments to 1.2 g MJ−1. In the periods of rapid stem-growth and grain-filling, ε was a maximum of 1.45 g MJ−1 in the frequently irrigated treatment which received N, resulting in a maximum above-ground biomass of 2100 g m−2. Mean maximum biomass was 1670 g m−2 in the other irrigated treatments, as compared with a mean of 1100 g m−2 in rainfed treatments.Growth rates were compared with predicted potential rates. After accounting for differences in light absorption between treatments, rates of growth ranged between 0.4 and 0.65 of potential rates in treatments other than IwN150, in which the growth rate between 120 and 170 was almost 0.8 of the potential rate. These proportions were strongly correlated with estimates of ε, although the relationship varied between phases as a result of differences in global radiation. Collectively, the data suggest that physiological constraints, associated with both N and water, contributed to differences in rates of growth in addition to those imposed by leaf-area duration and radiation absorption.The yield potential of the frequently irrigated treatment which received N was, however, not realised in the field. Lodging after 162 was estimated to decrease yield from a potential of ca. 900 g m−2 to 650 g m−2.  相似文献   

10.
The concept of aerobic culture is to save water resource while maintaining high productivity in irrigated rice ecosystem. This study compared nitrogen (N) accumulation and radiation use efficiency (RUE) in the biomass production of rice crops in aerobic and flooded cultures. The total water input was 800–1300 mm and 1500–3500 mm in aerobic culture and flooded culture, respectively, and four high-yielding rice cultivars were grown with a high rate of N application (180 kg N ha−1) at two sites (Tokyo and Osaka) in Japan in 2007 and 2008. The aboveground biomass and N accumulation at maturity were significantly higher in aerobic culture (17.2–18.5 t ha−1 and 194–233  kg N ha−1, respectively) than in flooded culture (14.7–15.8 t ha−1 and 142–173 kg N ha−1) except in Tokyo in 2007, where the surface soil moisture content frequently declined. The crop maintained higher N uptake in aerobic culture than in flooded culture, because in aerobic culture there was a higher N accumulation rate in the reproductive stage. RUE in aerobic culture was comparable to, or higher than, that in flooded culture (1.27–1.50 g MJ−1 vs. 1.20–1.37 g MJ−1), except in Tokyo in 2007 (1.30 g MJ−1 vs. 1.37 g MJ−1). These results suggest that higher biomass production in aerobic culture was attributable to greater N accumulation, leading to higher N concentration (N%) than in flooded culture. Cultivar differences in response to water regimes were thought to reflect differences in mainly (1) early vigor and RUE under temporary declines in soil moisture in aerobic culture and (2) the ability to maintain high N% in flooded culture.  相似文献   

11.
Maize (Zea mays L.) breeding based primarily on final grain yield has been successful in improving this trait since the introduction of hybrids. Contrarily, understanding of the variation in ecophysiological processes responsible of this improvement is limited, especially between parental inbred lines and their hybrids. This limitation may hinder future progress in genetic gain, especially in environments where heritability estimation is reduced because grain yield is severely affected by abiotic stresses. The objective of this study was to analyze the genotypic variation between inbred lines and derived hybrids in the physiological determinants of maize grain yield at the crop level, and how differences among hybrids and parental inbreds may effect contrasting responses to N stress. Special emphasis was given to biomass production and partitioning during the critical period for kernel number determination. Phenotyping included the evaluation of 26 morpho-physiological attributes for 6 maize inbred lines and 12 derived hybrids, cropped in the field at contrasting N supply levels (N0: no N added; N400: 400 kg N ha−1 applied as urea) during three growing seasons. Tested genotypes differed in the response to reduce N supply for most measured traits. Grain yield was always larger for hybrids than for inbreds, but N deficiency affected the former more than the latter (average reduction in grain yield of 40% for hybrids and of 24% for inbreds). We also found (i) a common pattern across genotypes and N levels for the response of kernel number per plant to plant growth rate during the critical period, (ii) a reduced apical ear reproductive capacity (i.e., kernel set per unit of ear growth rate) of inbreds as compared to hybrids, (iii) similar RUE during the critical period and N absorption at maturity at low N levels for both groups of genotypes, but enhanced RUE and N absorption of hybrids at high N supply levels, and (iv) an improved N utilization efficiency of hybrids across all levels of N supply. Results are indicative of a more efficient use of absorbed N by hybrids than by parental inbreds. Larger grain yield of hybrids than of inbreds at N0 was associated to (i) enhanced dry matter accumulation due to improved light interception during the life cycle and (ii) enhanced biomass partitioning to the grain.  相似文献   

12.
Long-term (over 15 years) winter wheat (Triticum aestivum L.)–maize (Zea mays L.) crop rotation experiments were conducted to investigate the accumulation of phosphorus (P) at five sites differing geographically and climatically in China. The results showed that, in soils without P added, the concentration of soil P extracted by 0.5 mol L−1 NaHCO3 at pH 8.5 (Olsen-P) decreased with cultivation time until about 3 mg kg−1, afterwards it remained constant. The trend of decrease in Olsen-P in soils without P added could be described by an exponential function of time. The concentration of Olsen-P in soils with P fertilizers increased with cultivation time and the model of accumulation of Olsen-P in soils could be described using P application rate, crop yield and soil pH. The accumulation rate of Olsen-P in the long-term wheat–maize crop rotation experiments was 1.21 mg kg−1 year−1 on average. If the target yield of wheat and maize is 10 ton ha−1 in the soil with pH 8, the increasing rates of Olsen-P in soils as estimated by the model will be 0.06, 0.36, 0.66, 0.95, 1.25 and 1.55 mg kg−1 year−1 when P application rates are 30, 40, 50, 60, 70 and 80 kg P ha−1 year−1, respectively. The models of accumulation of Olsen-P in soils were validated independently and could be used for the accurate prediction of accumulation rate of Olsen-P in soils with wheat–maize rotation systems. Also the application of the model was discussed for best management of soil P in agricultural production and environment protection.  相似文献   

13.
Light-based analysis is a fundamental approach to quantify the effects of factors determining crop growth in a given environment. The objectives of this study are to confirm the applicability of a digital imagery technique to extract green leaf areas for estimating light interception (LI) of maize canopy and to understand the effect of fertilizer application on the LI and radiation use efficiency (RUE) of maize under various agro-environments in Northern Mozambique. A locally recommended variety, Matuba, was grown in a single season with three different N application rates (0, 30, and 80 kgN ha?1) at one hot/dry low-elevation site, two hot/humid mid-elevation sites, and one cool/humid high-elevation site. Repeated measurements with quantum sensors revealed that the digital imagery is applicable to estimate the LI of maize except for leaf-senescing period close to maturity. The N application demonstrated profitable yield increases with agronomic nitrogen use efficiencies (kg grain yield per kg N input) of 20.6–35.3 kg kg?1 except for the low-elevation site with severe drought stress. In the mid-elevation sites, the yield increases were mostly explained by the improvement of RUE while the effect on LI was small because the vegetative growth was naturally vigorous under high temperatures irrespective of N inputs. At the high-elevation site, the N application improved its stagnant initial canopy development and increased both RUE and LI. The simple and inexpensive imagery technique should be useful to identify physiological basis of maize responses to fertilizer application and its interaction with regional environment even under poorly equipped regions in the tropics.  相似文献   

14.
Past breeding achievements in grain yield were mainly related to increases in harvest index (HI) without major changes in biomass production. As modern cultivars have already high HI, future breeding to improve grain yield will necessarily focus on increased biomass. Improved biomass would depend on our capacity to improve the amount of photosynthetically active radiation intercepted by the crop (IPAR%) or the efficiency with which the canopy converts that radiation into new biomass (radiation use efficiency, RUE). Four field experiments with a set of wheat cultivars selected, bred and introduced in the Mediterranean area of Spain and that represent important steps in wheat breeding in Spain were conducted in order to identify whether and how wheat breeding in this area affected the amount of IPAR% and RUE both before and after anthesis. Although there was genotypic variability, cultivars did not show any consistent trend with the year of release of the cultivars for their biomass, pre and post-anthesis IPAR%, Crop growth rate (CGR) or RUE but, the post-anthesis CGR and RUE of the two oldest genotypes were lower than that of the other cultivars. As the oldest genotypes have lower number of grains per m2 than their modern counterparts, it is suggested that post-anthesis RUE in these cultivars was reduced by lack of sinks and therefore further increases in grains per unit area in modern cultivars could permit to improve biomass via increases in post-anthesis RUE.  相似文献   

15.
Crops respond to N deficiency through a reduction in resource capture and/or resource use efficiency. The objective of this paper is to examine whether differences in this response pattern are associated with either metabolic group (C3 vs. C4) or botanical classification (mono- vs. dicotyledons). Hereto, we analysed the effect of N deficiency on the relationships between N uptake, LAI, and biomass accumulation, for maize, sorghum, wheat, canola, tall fescue, and sunflower, grown in experiments in either France or Australia. Maize and tall fescue maintained LAI per unit biomass (measure of resource capture) at the expense of N uptake per unit LAI (measure of resource use efficiency). Wheat and canola had the opposite response, whereas sunflower and sorghum were intermediate. In general, C4 species reduced N uptake per unit LAI more than C3 species. Species differences in the effect of N deficiency on resource use efficiency were associated with differences in the SLN or in the N storage capacity of the stems. For wheat, canola, and tall fescue, SLN declined with increasing LAI under high N conditions, and the minimum crop SLN under N deficiency was only marginally lower than under high N conditions. For sorghum, sunflower, and maize, crop SLN under high N changed little with increasing LAI, but the minimum crop SLN under N deficiency was considerably lower than under high N. Sorghum and maize were the only species that substantially decreased stem N uptake per unit LAI under N deficiency. Overall, our data suggest that C3 species are better able to maintain resource use efficiency under N stress than C4 species, and a survey of literature suggests this may be because in C4 species, the critical SLN for radiation use efficiency is higher than the critical SLN for leaf expansion, whereas the opposite is the case for C3 species. We hypothesise that species differences in response to N deficiency could be associated with these differences in critical SLN, which in turn could be a consequence of the lower photosynthetic nitrogen use efficiency of C3 crops.  相似文献   

16.
The holoparasitic weed Orobanche cumana (sunflower broomrape) constrains sunflower (Helianthus annuus) production in many countries. The development of efficient control strategies requires an understanding of the processes underlying the complex environment–host–parasite interrelations. Growth and development of O. cumana and sunflower were quantified under field conditions in southeastern Romania. Sunflower hybrid Florom 350 was sown at two dates, in plots infested with 0, 50, 200 and 1600 viable O. cumana seeds kg−1 dry soil, under low-input (rainfed, low nitrogen supply) and high-input (irrigated, high nitrogen supply) conditions. Sunflower shoot biomass reached peak values of 760–1287 g m−2 between the end of anthesis and physiological maturity. Seed yield varied from 221 to 446 g m−2. Sunflower biomass and yield were affected by all experimental factors. Seed yield responded positively to delaying sowing from early April to late May as well as to irrigation and fertilisation, and negatively to O. cumana infestation. Yield reductions, which were a product of reduced seed number and size, amounted to 13%, 25% and 37% at parasite seed densities of 50, 200 and 1600 viable seeds kg−1 soil, respectively. Maximum O. cumana attachment numbers, recorded in late-sown high-input crops in 2004, ranged from 11 m−2 in plots with 50 parasite seeds kg−1 soil to 188 m−2 with 1600 seeds kg−1 soil. Parasite attachment number was a function of crop sowing date, water and nutrient supply, seedbank density, and sunflower biomass and root length density, via mechanisms of parasite seed stimulation, host carrying capacity and intraspecific competition. Delayed sowing and improved water and nitrogen supply were associated with increases in parasite number that neutralised yield-boosting effects of irrigation and fertilisation at the highest infestation level. Sunflower shoot biomass was significantly reduced by O. cumana infection, with reductions affecting organs in the order head > stem > leaves. Most of the discrepancy between infected and non-infected plants was accounted for by O. cumana biomass. Parasites mainly acted as an extra sink for assimilates during sunflower generative growth and impaired host photosynthesis to a much lesser degree. Results suggest that similar mechanisms govern infection level and host–parasite biomass partitioning across different Orobanche–host systems.  相似文献   

17.
《Field Crops Research》2001,69(3):267-277
The potential rate of plant development and biomass accumulation under conditions free of environmental stress depends on the amount of radiation absorption and the efficiency of utilizing the absorbed solar energy to drive photosynthetic processes that produce biomass materials. Salinity, as a form of soil and water stress, generally has a detrimental effect on plant growth, and crops such as soybean are usually sensitive to salinity. Field and greenhouse experiments were conducted to determine soybean growth characteristics and the relative impact of salinity on radiation absorption and radiation-use efficiency (RUE) at a whole plant level. Cumulative absorption of photosynthetically active radiation (∑APAR) was estimated using hourly inputs of predicted canopy extinction coefficients and measured leaf area indices (LAI) and global solar radiation. On 110 days after planting, soybean plants grown under non-saline conditions in the field accumulated 583 MJ ∑APAR m−2. A 20% reduction in ∑APAR resulted from growing the plants in soil with a solution electrical conductivity (EC) of about 10 dS m−1. Soybeans grown under non-saline conditions in the field achieved a RUE of 1.89 g MJ−1 ∑APAR for above-ground biomass dry materials. The RUE reached only 1.08 g MJ−1 ∑APAR in the saline soil, about a 40% reduction from the non-saline control. Salinity also significantly reduced ∑APAR and RUE for soybeans in the greenhouse. The observed smaller plant and leaf sizes and darker green leaves under salinity stress were attributed to reductions in LAI and increases in unit leaf chlorophyll, respectively. Reductions in LAI exceeded small gains in leaf chlorophyll, which resulted in less total canopy chlorophyll per unit ground area. Analyzing salinity effect on plant growth and biomass production using the relative importance of ∑APAR and RUE is potentially useful because APAR and total canopy chlorophyll can be estimated with remote sensing techniques.  相似文献   

18.
This paper focuses on the interaction between genotype and environment, a critical aspect of plant breeding, from a physiological perspective. We present a theoretical framework largely based on Bradshaw's principles of phenotypic plasticity (Adv. Gen. 13: 115) updated to account for recent developments in physiology and genetics. Against this framework we discuss associations between plasticity of yield and plasticity of phenological development. Plasticity was quantified using linear models of phenotype vs environment for 169 wheat lines grown in 6 environments in Mexico, 32 sunflower hybrids grown in at least 15 environments in Argentina and 7 grapevine varieties grown in at least 14 environments in Australia.In wheat, yield ranged from 0.6 to 7.8 t ha−1 and the range of plasticity was 0.74–1.27 for yield and 0.85–1.17 for time to anthesis. The duration of the post-anthesis period as a fraction of the season was the trait with the largest range of plasticity, i.e. 0.47–1.80. High yield plasticity was an undesirable trait as it was associated with low yield in low-yielding environments. Low yield plasticity and high yield in low-yielding environments were associated with three phenological traits: early anthesis, long duration and low plasticity of post-anthesis development.In sunflower, yield ranged from 0.5 to 4.9 t ha−1 and the range of plasticity was 0.72–1.29 for yield and 0.72–1.22 for time to anthesis. High yield plasticity was a desirable trait as it was primarily associated with high yield in high-yielding environments. High yield plasticity and high yield in high-yielding environments were associated with two phenological traits: late anthesis and high plasticity of time to anthesis.In grapevine, yield ranged from 1.2 to 18.7 t ha−1 and the range of plasticity was 0.79–1.29 for yield, 0.86–1.30 for time of budburst, 0.84–1.18 for flowering, and 0.78–1.16 for veraison. High plasticity of yield was a desirable trait as it was primarily associated with high yield in high-yielding environments. High yield plasticity was associated with two phenological traits: plasticity of budburst and plasticity of anthesis.We report for the first time positive associations between plasticities of yield and phenology in crop species. It is concluded that in addition to phenology per se (i.e. mean time to a phenostage), plasticity of phenological development merits consideration as a distinct trait influencing crop adaptation and yield.  相似文献   

19.
A number of field trials on rice productivity have demonstrated very high yield, but reported limited information on environmental factors. The objective of this study was to reveal the environmental factors associated with high rice productivity in the subtropical environment of Yunnan, China. We conducted cross-locational field experiments using widely different rice varieties in Yunnan and in temperate environments of Kyoto, Japan in 2002 and 2003. The average daily radiation throughout the growing season was greater at Yunnan (17.1 MJ m−2 day−1 average over 2 years) relative to Kyoto (13.2 MJ m−2 day−1). The average daily temperature throughout the growing season was 24.7 °C at Yunnan, and 23.8 °C at Kyoto. The highest yield (16.5 tonnes ha−1) was achieved by the F1 variety Liangyoupeijiu at Yunnan in 2003, and average yield of all varieties was 33% and 39% higher at Yunnan relative to Kyoto in 2002 and 2003, respectively. There was a close correlation between grain yield and aboveground biomass at maturity, while there was little variation in the harvest index among environments. Large biomass accumulation was mainly caused by intense incident radiation at Yunnan, as there was little difference in crop radiation use efficiency (RUE) between locations. Large leaf area index (LAI) was also suggested to be an important factor. Average nitrogen (N) accumulation over 2 years was 49% higher at Yunnan than at Kyoto, and also contributed to the large biomass accumulation at Yunnan. The treatments of varied N application for Takanari revealed that the ratio of N accumulated at maturity to the amount of fertilized N was significantly higher at Yunnan than at Kyoto, even though there was no great difference in soil fertility. The Takanari plot with high N application showed a N saturation in plant growth at Kyoto, which might be related to low radiation and relatively high temperatures during the mid-growth stage. These results indicate that the high potential yield of irrigated rice in Yunnan is achieved mainly by intense incident solar radiation, which caused the large biomass and the N accumulation. The low nighttime temperature during the mid-growth stage was also suggested to be an important factor for large biomass accumulation and high grain yield at Yunnan.  相似文献   

20.
《Field Crops Research》1988,18(1):17-30
Differences in biomass accumulation due to variable nitrogen supply in maize and sorghum grown under irrigation in the semi-arid tropics were associated with differences in both radiation interception and the efficiency with which intercepted radiation was used to produce dry matter. Radiation-use efficiency was more responsive to N supply than was radiation interception. Radiation-use efficiency increased with higher rates of applied N; maximum radiation-use efficiency was greater in maize than in sorghum; and radiation-use efficiency declined during grain filling in maize more than in sorghum. These differences were explained in terms of specific leaf N. A linear relationship, which was similar for both species, was fitted between radiation-use efficiency and specific leaf N. It is concluded that radiation-use efficiency may not be as stable across environments as was previously thought, but rather depends on the balance of leaf growth, N uptake and allocation to leaves, and N mobilization from leaves to grain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号