首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the effects of habitat loss and fragmentation on population functioning. We compared demography (daily and total population sizes) and dispersal (dispersal rate and dispersal kernels) of the bog fritillary butterfly in two 6-km2 landscapes differing in their degree of fragmentation. In 2000, we conducted a Capture-Mark-Recapture experiment in a highly fragmented system in the marginal part of the species distribution (Belgium) and in a more continuous system in the central part of its distribution (Finland). A total of 293 and 947 butterflies were marked with 286 and 190 recapture events recorded in the fragmented and the continuous system respectively. Our results suggest that habitat loss and fragmentation affect dispersal more than demography. Although density was lower in the continuous system, it remains in the yearly range of variation observed on 10 generations in the fragmented system. However, in the fragmented system, the dispersal rate dropped drastically (39 vs. 64%) and females moved longer distances. Patch area had a significant effect on migration in the fragmented system only. From our results, we propose the definition of a new parameter, the minimal patch area (MPA) needed to establish a local population in highly fragmented landscapes.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

2.
Habitat fragmentation is considered a major cause of biodiversity loss, both on terrestrial and marine environments. Understanding the effects of habitat fragmentation on the structure and dynamics of natural communities is extremely important to support management actions for biodiversity conservation. However, the effects of habitat fragmentation on marine communities are still poorly understood. Here we evaluated whether habitat fragmentation affects the structure of epifaunal communities in the sublittoral zone, in the northern coast of São Paulo state, Brazil. Five experimental landscapes were constructed, each one forming a large continuous patch. After 4 weeks, each landscape was cut on three patches of different sizes. Epifaunal macroinvertebrate communities were sampled at the edge and interior of experimental landscapes before manipulation to evaluate edge effects. After four more weeks, communities from the three patch sizes were also sampled to evaluate patch size effects. We compared the diversity of communities at different levels of fragmentation by total abundance, rarefied taxon richness, Shannon–Wiener diversity index, Simpson’s dominance index, and abundance of dominant taxa. Higher taxon richness and gastropod abundance were recorded in the patch edges, but no significant differences were found among patch sizes. We found a significant effect of habitat fragmentation, with lower abundances of Gammaridea (the dominant taxon), Ophyuroidea, and Pycnogonida after the experimental fragmentation. Lower abundances of dominant taxa resulted in higher diversity and lower dominance in fragmented landscapes when compared to integral, pre-manipulation landscapes. Our results suggest that fragmentation of landscapes in the system studied can reduce dominance, and that even small patch sizes can be important for the conservation of macroinvertebrate diversity.  相似文献   

3.
We studied habitat selection and breeding success in marked populations of a protected seabird (family Alcidae), the marbled murrelet (Brachyramphus marmoratus), in a relatively intact and a heavily logged old-growth forest landscape in south-western Canada. Murrelets used old-growth fragments either proportionately to their size frequency distribution (intact) or they tended to nest in disproportionately smaller fragments (logged). Multiple regression modelling showed that murrelet distribution could be explained by proximity of nests to landscape features producing biotic and abiotic edge effects. Streams, steeper slopes and lower elevations were selected in both landscapes, probably due to good nesting habitat conditions and easier access to nest sites. In the logged landscape, the murrelets nested closer to recent clearcuts than would be expected. Proximity to the ocean was favoured in the intact area. The models of habitat selection had satisfactory discriminatory ability in both landscapes. Breeding success (probability of nest survival to the middle of the chick rearing period), inferred from nest attendance patterns by radio-tagged parents, was modelled in the logged landscape. Survivorship was greater in areas with recent clearcuts and lower in areas with much regrowth, i.e. it was positively correlated with recent habitat fragmentation. We conclude that marbled murrelets can successfully breed in old-growth forests fragmented by logging.  相似文献   

4.
This study examined the effects of habitat fragmentation on meadow vole (Microtus pennsylvanicus) population dynamics in experimental landscape patches. The study was conducted from May–November 1993 at the Miami University Ecology Research Center. Eight 0.1-ha small mammal enclosures were used. Four enclosures contained a 160 m2 nonfragmented patch and four enclosures contained four 40 m2 fragmented patches. Thus, each treatment was replicated 4 times in a systematic research design. The patches in both treatments contained high-quality habitat surrounded by low-quality matrix. Six pairs of adult meadow voles were released in each enclosure on 27 May 1993. Populations were monitored by live-trapping and radio-telemetry methods. Significantly greater densities of female voles were found during October in the fragmented treatment compared to the nonfragmented treatment. Also, significantly more females than males were found in the fragmented treatment compared to the nonfragmented treatment for the total study period. Significantly more subadult and juvenile males were found in the matrix versus the patch of the nonfragmented treatment compared to the fragmented treatment. Males in the fragmented treatment had significantly greater mean home range size than males or females in the nonfragmented treatment. There appears to exist a relationship between patch fragmentation and the social structure of meadow vole populations; this relationship appears to function as a population regulatory mechanism.  相似文献   

5.
Metapopulations are conceived as spatially structured populations consisting of distinct units (subpopulations), separated by space or barriers, and connected by dispersal movements. Metapopulations characteristically demonstrate a turnover of local populations going extinct and becoming re-established, resulting in a distribution pattern that shifts over time. Metapopulation theory is used to analyse the effects of habitat fragmentation on birds in the temperate zone, integrating various explanations for the paucity of species in isolated ecotopes.There is some evidence that turnover of local populations occurs in fragmented systems. A few studies based on time series demonstrate the local extinction rate to be related to the size of the habitat fragment, whereas the recolonization rate depends on the degree of isolation. Most evidence comes from short-term pattern studies in which the probability of occurrence was found to depend on the size of habitat fragments, on their relative position in the landscape and on the density of corridors lowering the landscape resistance. These data are consistent with predictions from metapopulation theory. However, almost all investigations consider wood fragmentation in agricultural landscapes, and there is a great need for studies in naturally fragmented landscapes as well as for studies focussing on other, less predictable, habitat types.  相似文献   

6.
We studied the effects of anthropogenic edges on predation and parasitism of forest bird nests in an agriculturally fragmented landscape and a continuously forested landscape in Ontario, Canada. Nesting data were collected at 1937 nests across 10 species in the fragmented landscape from 2002–2008, and 464 nests across 4 species in the continuously forested landscape from 2006–2008. Brood parasitism only occurred in the fragmented landscape, and was positively related to the proportion of rural grassland and row crop habitats within 500-m of nests. Daily nest survival was negatively related to the density of roads within 500-m of nests in the fragmented landscape, but was not influenced by distance to anthropogenic edge in either landscape. Predation rates were higher in the fragmented landscape for Ovenbird and Rose-breasted Grosbeak nests, but did not differ between landscapes for Veery and American Redstart nests. Uniformly high predation in the fragmented landscape may be a result of (1) matrix predators that penetrate deep (>300 m) into the forest interior, or (2) the additive effect of forest-dependent and matrix-associated predators that results in high predation pressure in both edge and interior habitats. Further research focused on the identification of nest predators, their population dynamics, and habitat use is required to understand the underlying mechanisms leading to uniformly high nest predation in fragmented landscapes.  相似文献   

7.
The effects of habitat area and fragmentation are confounded in many studies. Since a reduction in habitat area alone reduces patch size and increases patch isolation, many studies reporting fragmentation effects may really be documenting habitat-area effects. We designed an experimental landscape system in the field, founded on fractal neutral landscape models, to study arthropod community responses to clover habitat in which we adjusted the level of fragmentation independently of habitat area. Overall, habitat area had a greater and more consistent effect on morphospecies richness than fragmentation. Morphospecies richness doubled between 10 and 80% habitat, with the greatest increase occurring up to 40% habitat. Fragmentation had a more subtle and transient effect, exhibiting an interaction at intermediate levels of habitat only at the start of the study or in the early-season (June) survey. In these early surveys, morphospecies richness was higher in clumped 40–50% landscapes but higher in fragmented landscapes at 60–80% habitat. Rare or uncommon species are expected to be most sensitive to fragmentation effects, and we found a significant interaction with fragmentation at intermediate levels of habitat for these types of morphospecies in early surveys. Although the effects of fragmentation are expected to amplify at higher trophic levels, all trophic levels exhibited a significant fragmentation effect at intermediate levels of habitat in these early surveys. Predators/parasitoids were more sensitive to habitat area than herbivores, however. Thus, our results confirm that habitat area is more important than fragmentation for predicting arthropod community responses, at least in this agricultural system.  相似文献   

8.
Gu  Weidong  Heikkilä  Raimo  Hanski  Ilkka 《Landscape Ecology》2002,17(8):699-710
Analyzing the population dynamic consequences of spatio-temporal changes in landscape structure is a formidable challenge for spatial ecology. One key population dynamic process in fragmented landscapes is the influence of isolation on colonization rate and thereby on the occurrence of species in habitat fragments, but it is not obvious how isolation should be measured in landscapes that are affected by on-going habitat loss and fragmentation. We suggest the following procedure for the measurement of spatio-temporal isolation. First, a historical record of habitat loss and fragmentation in the landscape is prepared based on snapshots of the extent of the suitable habitat for the focal species. Second, a metapopulation model is used to simulate the occurrence of the species in this landscape, assuming the empirically observed landscape change. The model-predicted pattern of habitat occupancy at a particular point in time (usually the present time) is then compared with empirical observations on the occurrence of the species. We describe a metapopulation model that has been constructed for this purpose, and we apply it to a changing landscape of boreal forests in eastern Finland. We give an example on the occurrence of four threatened polyporous fungi in 18 small fragments of old-growth forest. In none of the species does the current isolation of the fragments nor the time since their isolation explain the occurrence of the species in the study fragments, but in three species the model-predicted occupancy probability had a significant effect on the observed abundance of the species. The model-predicted occupancy probabilities were also calculated by ignoring past landscape changes, that is, by assuming that the landscape had remained in the present configuration for a long time. These probabilities had a significant effect on the abundance of only one of the four species, suggesting that the occurrence of the species tracks landscapes changes with a noticable time lag.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

9.
Forest ecosystems have been widely fragmented by human land use, inducing significant microclimatic and biological changes at the forest edge. If we are to rigorously assess the ecological impacts of habitat fragmentation, there is a need to effectively quantify the amount of edge habitat within a landscape, and to allow this to be modelled for individual species and processes. Edge effect may extend only a few metres or as far as several kilometres, depending on the species or process in question. Therefore, rather than attempting to quantify the amount of edge habitat by using a fixed, case-specific distance to distinguish between edge and core, the area of habitat within continuously-varying distances from the forest edge is of greater utility. We quantified the degree of fragmentation of forests in England, where forests cover 10 % of the land area. We calculated the distance from within the forest patches to the nearest edge (forest vs. non-forest) and other landscape indices, such as mean patch size, edge density and distance to the nearest neighbour. Of the total forest area, 37 % was within 30 m and 74 % within 100 m of the nearest edge. This highlights that, in fragmented landscapes, the habitats close to the edge form a considerable proportion of the total habitat area. We then show how these edge estimates can be combined with ecological response functions, to allow us to generate biologically meaningful estimates of the impacts of fragmentation at a landscape scale.  相似文献   

10.
Land-use change is forcing many animal populations to inhabit forest patches in which different processes can threaten their survival. Some threatening processes are mainly related to forest patch characteristics, but others depend principally on the landscape spatial context. Thus, the impact of both patch and landscape spatial attributes needs to be assessed to have a better understanding of the habitat spatial attributes that constraint the maintenance of populations in fragmented landscapes. Here, we evaluated the relative effect of three patch-scale (i.e., patch size, shape, and isolation) and five landscape-scale metrics (i.e., forest cover, fragmentation, edge density, mean inter-patch isolation distance, and matrix permeability) on population composition and structure of black howler monkeys (Alouatta pigra) in the Lacandona rainforest, Mexico. We measured the landscape-scale metrics at two spatial scales: within 100 and 500 ha landscapes. Our findings revealed that howler monkeys were more strongly affected by local-scale metrics. Smaller and more isolated forest patches showed a lower number of individuals but at higher densities. Population density also tended to be positively associated to matrices with higher proportion of secondary forests and arboreal crops (i.e. with greater permeability), most probably because these matrices can offer supplementary foods. The immature-to-female ratio also increased with matrix permeability, shape complexity, and edge density; habitat characteristics that can increase landscape connectivity and sources availability. The prevention of habitat loss and isolation, and the increment of matrix permeability are therefore needed for the conservation of this endangered Neotropical mammal.  相似文献   

11.
Even among forest specialists, species-specific responses to anthropogenic forest fragmentation may vary considerably. Some appear to be confined to forest interiors, and perceive a fragmented landscape as a mosaic of suitable fragments and hostile matrix. Others, however, are able to make use of matrix habitats and perceive the landscape in shades of grey rather than black-and-white. We analysed data of 42 Chiroxiphia caudata (Blue Manakin), 10 Pyriglena leucoptera (White-shouldered Fire-eye) and 19 Sclerurus scansor (Rufous-breasted Leaftosser) radio-tracked in the Atlantic Rainforest of Brazil between 2003 and 2005. We illustrate how habitat preferences may determine how species respond to or perceive the landscape structure. We compared available with used habitat to develop a species-specific preference index for each of six habitat classes. All three species preferred old forest, but relative use of other classes differed significantly. S. scansor perceived great contrast between old forest and matrix, whereas the other two species perceived greater habitat continuity. For conservation planning, our study offers three important messages: (1) some forest specialist species are able to persist in highly fragmented landscapes; (2) some forest species may be able to make use of different anthropogenic habitat types to various degrees; whereas (3) others are restricted to the remaining forest fragments. Our study suggests species most confined to forest interiors to be considered as potential umbrella species for landscape-scale conservation planning.  相似文献   

12.
We studied the effects of habitat fragmentation, measured as forest stand size and isolation, on the distribution of Eurasian red squirrels (Sciurus vulgaris). Squirrel density was surveyed during four years in 46 forest stands (0.1–500 ha) in a forest landscape in south-central Sweden. The only factor that significantly influenced a density index was the proportion of spruce within a habitat fragment. Neither fragment size nor degree of isolation were significant. Furthermore, none of the interactions with year were significant, suggesting the same pattern in all four years. Thus, the effect of habitat fragmentation in this study seems to be only pure habitat loss, i.e. halving the proportion of preferred habitat in the landscape should result in a halving of the red squirrel population. Therefore, the landscape can be viewed as functionally continuous for the squirrels, although the preferred habitat was divided into fragments. The most likely explanation for the difference between this study and other studies on squirrels that found effects due to habitat fragmentation is a combination of shorter distances and less hostile surroundings in our study area. To identify landscape effects requires multiple studies because single studies usually consider only one landscape.  相似文献   

13.
Habitat fragmentation is expected to disrupt dispersal, and thus we explored how patch metrics of landscape structure, such as percolation thresholds used to define landscape connectivity, corresponded with dispersal success on neutral landscapes. We simulated dispersal as either a purely random process (random direction and random step lengths) or as an area-limited random walk (random direction, but movement limited to an adjacent cell at each dispersal step) and quantified dispersal success for 1000 individuals on random and fractal landscape maps across a range of habitat abundance and fragmentation. Dispersal success increased with the number of cells a disperser could search (m), but poor dispersers (m<5) searching via area-limited dispersal on fractal landscapes were more successful at locating suitable habitat than random dispersers on either random or fractal landscapes. Dispersal success was enhanced on fractal landscapes relative to random ones because of the greater spatial contagion of habitat. Dispersal success decreased proportionate to habitat loss for poor dispersers (m=1) on random landscapes, but exhibited an abrupt threshold at low levels of habitat abundance (p<0.1) for area-limited dispersers (m<10) on fractal landscapes. Conventional metrics of patch structure, including percolation, did not exhibit threshold behavior in the region of the dispersal threshold. A lacunarity analysis of the gap structure of landscape patterns, however, revealed a strong threshold in the variability of gap sizes at low levels of habitat abundance (p<0.1) in fractal landscapes, the same region in which abrupt declines in dispersal success were observed. The interpatch distances or gaps across which dispersers must move in search of suitable habitat should influence dispersal success, and our results suggest that there is a critical gap-size structure to fractal landscapes that interferes with the ability of dispersers to locate suitable habitat when habitat is rare. We suggest that the gap structure of landscapes is a more important determinant of dispersal than patch structure, although both are ultimately required to predict the ecological consequences of habitat fragmentation.  相似文献   

14.
15.
Landscape connectivity is considered important for species persistence, but linkages among landscape populations (metalandscape connectivity) may be necessary to ensure the long-term viability of some migratory songbirds at a broader regional scale. Because of regional source-sink dynamics, these species can maintain steady populations within extensively fragmented landscapes (landscape sinks) owing to high levels of immigration from source landscapes. We undertook a modeling study to identify the conditions under which immigration, an index of metalandscape connectivity, could rescue declining populations of songbirds in heavily disturbed landscapes. In general, low to moderate levels of immigration (m = 0–20%) were sufficient to rescue species with low edge-sensitivity in landscapes where<70% habitat had been destroyed. At the other extreme, moderate to high levels of immigration (m = 11–40%) were usually required to rescue highly edge-sensitive species in these same landscapes. Very high levels of immigration (m>40%) were required to rescue highly edge-sensitive species in extensively fragmented landscapes that had lost >50% habitat, or when any landscape lost ≥50% habitat gradually over a period of 100 or more years (r = 0.5% habitat lost/year). Paradoxically higher levels of immigration were thus necessary to offset population declines when habitat was lost gradually than when it was lost quickly, where population response lagged behind landscape change. This implies that the importance of metalandscape connectivity for population viability may not be fully appreciated in landscapes undergoing rapid rates of change. Natural immigration rates for migratory songbirds match the very high levels (>40%) we found necessary to sustain populations in heavily disturbed landscapes, which underscores the importance of metalandscape connectivity for the continued persistence of many migratory songbirds in the face of widespread habitat loss and fragmentation.  相似文献   

16.
Previous research has suggested that ducks and songbirds may benefit from prairie landscapes that consist primarily of contiguous grasslands. However, the relative importance of landscape-level vs. local characteristics on mechanisms underlying observed patterns is unclear. We measured effects of grassland amount and fragmentation on upland and wetland songbird and duck density and nest success, and on some nest predators, across 16 landscapes in southern Alberta, Canada. We compared these landscape-level effects with local-scale responses, including distance to various edges and vegetation characteristics. We also evaluated several statistical approaches to comparing effects of habitat characteristics at multiple spatial scales. Few species were influenced by grassland amount or fragmentation. In contrast, distance to edge and local vegetation characteristics had significant effects on densities and nest success of many species. Previous studies that reported effects of landscape characteristics may have detected patterns driven by local mechanisms. As a corollary, results were very sensitive to statistical model structure; landscape level effects were much less apparent when local characteristics were included in the models.  相似文献   

17.

Seagrasses, which form critical subtidal habitats for marine organisms worldwide, are fragmented via natural processes but are increasingly being fragmented and degraded by boating, fishing, and coastal development. We constructed an individual-based model to test how habitat fragmentation and loss influenced predator–prey interactions and cohort size for a group of settling juvenile blue crabs (Callinectes sapidus Rathbun) in seagrass landscapes. Using results from field studies suggesting that strong top-down processes influence the relationship between cannibalistic blue crab populations and seagrass landscape structure, we constructed a model in which prey (juvenile blue crabs) are eaten by mesopredators (larger blue crabs) which in turn are eaten by top-level predators (e.g., large fishes). In our model, we varied the following parameters within four increasingly fragmented seagrass landscapes to test for their relative effects on cohort size: juvenile blue crab (prey) predator avoidance response, hunting ability of mesopredators and predators, the presence of a top-level predator, and prey settlement routines. Generally, prey cohort size was maximized in the presence of top-level predators and when mesopredators and predators exhibited random searching behavior vs. directed hunting. Cohort size for stationary (tethered) prey was maximized in fragmented landscapes, which corresponds to results from field experiments, whereas mobile prey able to detect and avoid predators had higher survival in continuous landscapes. Prey settlement patterns had relatively small influences on cohort size. We conclude that the effects of seagrass fragmentation and loss on organisms such as blue crabs will depend heavily on behaviors of prey and predatory organisms and how these behaviors change with landscape structure.

  相似文献   

18.
Seagrasses, which form critical subtidal habitats for marine organisms worldwide, are fragmented via natural processes but are increasingly being fragmented and degraded by boating, fishing, and coastal development. We constructed an individual-based model to test how habitat fragmentation and loss influenced predator–prey interactions and cohort size for a group of settling juvenile blue crabs (Callinectes sapidus Rathbun) in seagrass landscapes. Using results from field studies suggesting that strong top-down processes influence the relationship between cannibalistic blue crab populations and seagrass landscape structure, we constructed a model in which prey (juvenile blue crabs) are eaten by mesopredators (larger blue crabs) which in turn are eaten by top-level predators (e.g., large fishes). In our model, we varied the following parameters within four increasingly fragmented seagrass landscapes to test for their relative effects on cohort size: juvenile blue crab (prey) predator avoidance response, hunting ability of mesopredators and predators, the presence of a top-level predator, and prey settlement routines. Generally, prey cohort size was maximized in the presence of top-level predators and when mesopredators and predators exhibited random searching behavior vs. directed hunting. Cohort size for stationary (tethered) prey was maximized in fragmented landscapes, which corresponds to results from field experiments, whereas mobile prey able to detect and avoid predators had higher survival in continuous landscapes. Prey settlement patterns had relatively small influences on cohort size. We conclude that the effects of seagrass fragmentation and loss on organisms such as blue crabs will depend heavily on behaviors of prey and predatory organisms and how these behaviors change with landscape structure.  相似文献   

19.
Landscape effects mediate breeding bird abundance in midwestern forests   总被引:1,自引:0,他引:1  
We examine the influence of both local habitat and landscape variables on avian species abundance at forested study sites situated within fragmented and contiguous landscapes. The study was conducted over a six year period (1991–1996) at 10 study sites equally divided between the heavily forested Missouri Ozarks and forest fragments in central Missouri. We found greater species richness and diversity in the fragments, but there was a higher percentage of Neotropical migrants in the Ozarks. We found significant differences in the mean number of birds detected between the central Missouri fragments and the unfragmented Ozarks for 15 (63%) of 24 focal species. We used stepwise regression to determine which of 12 local vegetation variables and 4 landscape variables (forest cover, core area, edge density, and mean patch size) accounted for the greatest amount of variation in abundance for 24 bird species. Seven species (29%) were most sensitive to local vegetation variables, while 16 species (67%) responded most strongly to one of four landscape variables. Landscape variables are significant predictors of abundance for many bird species; resource managers should consider multiple measures of landscape sensitivity when making bird population management decisions.Order of first two authors decided by coin toss  相似文献   

20.
Organisms may be constrained by the energetic costs incurred while obtaining resources in fragmented landscapes. We used a spatially neutral model of deer wintering habitat to evaluate the effects of landscape fragmentation on the aggregation of deer habitat. The spatially neutral model used Bayesian probabilities to predict where deer wintering areas occurred. The probabilities were conditional on 12 landscape variables measured at 22,750 contiguous 0.4 ha locations. The model predicted deer habitat at each location independently, thereby enabling a comparison of habitat aggregation in observed, simulated, and random distributions of deer habitat. The predictions of the neutral model exhibited greater fragmentation than observed in nature, suggesting that suitable, yet isolated, locations were not visited by deer. The most suitable sites for deer were clumped in the neutral model, regardless of scale. The inclusion of less suitable sites preserved significant aggregation at fine scales but not at broad scales. Species operate at different scales within a landscape, so ecologists, nature reserve designers and natural resource planners may benefit from models that focus on the proximity of habitat sites as a function of both spatial scale and habitat quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号