首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 48 and 96-hr LC50 values of Pb (Pb(NO3)2) with O. niloticus were 3.34 and 2.15 mg L?1, respectively, compared to 1.91 and 1.72 mg L?1, respectively, for C. lazera. C. tentans larvae and Benacus sp. demonstrated 48-hr LC 50 of 2.68 and 1.89 mg l?1 respectively. The 96-hr LC50 value was 1.77 mg L?1 for Chironomus and 1.36 mg L?1 for Benacus. Clarias appeared to be the most susceptible of the four to Pb poisoning; Chironomus being the least susceptible. Uptake pattern of Pb by fingerlings of O. niloticus and C. lazera exposed to 0.33 and 0.27 mg L?1 Pb, respectively, and the clearance of accumulated Pb were curvilinear. There was an initial ‘fast’ phase of accumulation occurring during the first 96 hr, followed by a slower phase over the remaining 240 hr. Mean Pb concentrations in gills, intestine, liver, muscle, bone, skin and whole body of O. niloticus were 33.30, 22.2, 5.3, 2.8, 1.8 and 14.9 μg g?1, respectively, compared to 28.7, 6.5, 11.5, 2.5, 5.6, 5.9 and 6.8 µg g?1 respectively in C. lazera. The half life of Pb in Oreochromis was 20 hr compared to 43 hr in C. lazera. Bioconcentration factors in Oreochromis and Clarias were 78.3 and 33.8, respectively. The data suggest that O. niloticus accumulates and eliminates Pb faster than C. lazera.  相似文献   

2.
A neutrophilic, autotrophic bacterium that couples iron oxidation to nitrate reduction (iron-oxidizing bacteria [IOB]) under anoxic conditions was isolated from a working bioremediation site in Trail, British Columbia. The site was designed and developed primarily to treat high concentrations of Zn and As that originate from capped industrial landfill sites. The system consisted of two upflow biochemical reactor cells (BCR) followed by three vegetated wetland polishing cells with sub-surface flow and a holding pond. During a 5-year period (2003–2007), the system treated more than 19,100 m3 of contaminated water, removing and sequestering more than 10,700 kg of As, Zn and sulfate at average input water concentrations of: As, 58.6 mg?l?1 (±39.9 mg?l?1); Zn, 51.9 mg?l?1 (±35.4 mg?l?1) and SO4 2?, 781.5 mg?l?1 (±287.8 mg?l?1). The bacterium was isolated in order to better understand the mechanisms underlying the consistent As removal that took place in the system. Analysis using Basic Local Alignment Search Tool (BLAST) database showed that the closest homologies are to Candidatus accumulibacterphosphatis (95 % homology), Dechloromonas aromatica (94 %), and Sideroxydans lithotrophicus ES-1 (92 %) Within the BCR cells, the IOB oxidized Fe2+ generated by iron-reducing bacteria (IRB); the source of the iron was most likely biosolids and coatings of iron oxide on locally available sand used in the matrix. We have provisionally designated the novel bacterium as TR1.  相似文献   

3.
Comamonas sp. UVS was able to decolorize Reactive Blue HERD (RBHERD) dye (50 mg L?1) within 6 h under static condition. The maximum dye concentration degraded was 1,200 mg L?1 within 210 h. A numerical simulation with the model gives an optimal value of 35.71?±?0.696 mg dye g?1 cell h?1 for maximum rate (Vmax) and 112.35?±?0.34 mg L?1 for the Michaelis constant (Km). Comamonas sp. UVS has capability of decolorization of RBHERD in the presence of Mg2+, Ca2+, Cd2+, and Zn2+, whereas decolorization was completely inhibited by Cu2+. Metal ions also affected the levels of biotransformation enzymes during decolorization of RBHERD. Comamonas sp. UVS was also able to decolorize textile effluent with significant reduction in COD. The biodegradation of RBHERD dye was monitored by UV–vis spectroscopy, FTIR spectroscopy, and HPLC.  相似文献   

4.
The phytoremediation potential for Pb of Buddleja asiatica (a wild species) and a closely related cultivated species, B. paniculata, was investigated by means of field survey, hydroponic and pot experiments, and field trial experiments. Field surveys showed that B. asiatica had an extraordinary accumulation capacity and tolerance for Pb. Plants grown in soil with 2,369.8–206,152 mg kg?1 total Pb accumulated 1,835.5–4,335.8 mg kg?1 Pb in their shoots. Under hydroponic conditions (10, 20 mg l?1 Pb), both B. asiatica and B. paniculata showed unusually high concentrations of Pb in their roots (12,133–21,667 mg kg?1) and increased biomass production. A pot experiment in a greenhouse without any soil amendments was conducted on three different soils with various Pb contents (10,652, 31,304, 89,083 mg kg?1) for 3 months. The results showed that both species of Buddleja had an increase in the biomass similar to the control plants. There was a slight decrease in survival rates of plants grown in soil with 89,083 mg kg?1 Pb content. A field trial experiment was conducted for 6 months at three sites around the Pb mine area in which plants were provided with Osmocote fertilizer. Both Buddleja species showed 100% survival, increased biomass production and phytoextraction capacity (TF 1.1–2.3) when grown in soil with Pb content of 94,584–101,405 mg kg?1. Plants accumulated 2,273–3,675 mg kg?1 Pb in their shoots. The results suggest these Buddleja plants are suitable for use in the phytoremediation of Pb-contaminated soil.  相似文献   

5.
Acute toxicity screening tests were conducted with water soluble fractions (WSFs) of a solvent refined coal (SRC-II) liquid from a pilot plant and three reference organisms: the cladoceran Daphnia magna, the fathead (FH) minnow Pimephales promelas, and larvae of the midge fly Chironomus tentans. Stock WSFs typically contained 900 to 1100 mg l?1 total carbon (TC) and 700 to 800 mg l?1 total dye complexable phenolics, with lower concentrations of aromatic and saturate hydrocarbons and N compounds. Under standard test conditions (temperature 20 °C, pH 7.3 to 8.2 and hardness 65 to 80 mg l?1 CaCO3), mean LC50 values in mg l? TC were 3.3 for daphnia, 11.l for FH minnow, and 13.7 for midge larvae. Acute toxicity was also examined under other water quality conditions (temperature 10 or 25 °C, pH 6.0 or 6.5, and hardness ? 180 to 220 mg 1?1 CaCO3). The coal liquid was less toxic to daphnids at 10 °C than at 20 or 25 °C, but response of other organisms at different temperatures varied. The pH of the liquid had little effect on toxicity values. All organisms were less susceptible in hard water. Chemical compositions of stock WSFs were similar, suggesting that temperature, pH, and hardness had little effect on solubility of major synfucl components. Dilution indexes for stock WSFs were higher than for petroleum oils, and reflect the greater solubility of chemicals from the liquified coal in freshwater.  相似文献   

6.

Purpose

The main objective of this study was to evaluate the potential of a counter-current leaching process (CCLP) on 14 cycles with leachate treatment at the pilot scale for Pb, Cu, Sb, and Zn removal from the soil of a Canadian small-arms shooting range.

Materials and methods

The metal concentrations in the contaminated soil were 904?±?112 mg Cu kg–1, 8,550?±?940 mg Pb kg–1, 370?±?26 mg Sb kg–1, and 169?±?14 mg Zn kg–1. The CCLP includes three acid leaching steps (0.125 M H2SO4?+?4 M NaCl, pulp density (PD)?=?10 %, t?=?1 h, T?=?20 °C, total volume?=?20 L). The leachate treatment was performed using metal precipitation with a 5-M NaOH solution. The treated effluent was reused for the next metal leaching steps.

Results and discussion

The average metal removal yields were 80.9?±?2.3 % of Cu, 94.5?±?0.7 % of Pb, 51.1?±?4.8 % of Sb, and 43.9?±?3.9 % of Zn. Compared to a conventional leaching process, the CCLP allows a significant economy of water (24,500 L water per ton of soil), sulfuric acid (133 L H2SO4 t–1), NaCl (6,310 kg NaCl t–1), and NaOH (225 kg NaOH t–1). This corresponds to 82 %, 65 %, 90 %, and 75 % of reduction, respectively. The Toxicity Characteristic Leaching Procedure test, which was applied on the remediated soil, demonstrated a large decrease of the lead availability (0.8 mg Pb L–1) in comparison to the untreated soil (142 mg Pb L–1). The estimated total cost of this soil remediation process is 267 US$ t–1.

Conclusions

The CCLP process allows high removal yields for Pb and Cu and a significant reduction in water and chemical consumption. Further work should examine the extraction of Sb from small-arms shooting range.  相似文献   

7.
Lygeum spartum, Zygophyllum fabago and Piptatherum miliaceum are typical plant species that grow in mine tailings in semiarid Mediterranean areas. The aim of this work was to investigate metal uptake of these species growing on neutral mine tailings under controlled conditions and their response to fertilizer additions. A neutral mine tailing (pH of soil solution of 7.1–7.2) with high total metal concentrations (9,100 and 5,200 mg kg?1 Zn and Pb, respectively) from Southern Spain was used. Soluble Zn and Pb were low (0.5 and <0.1 mg l?1, respectively) but the major cations and anions reached relatively high levels (e.g. 2,600 and 1,400 mg l?1 Cl and Na). Fertilization caused a significant increase of the plant weight for the three species and decreased metal accumulation with the exception of Cd. Roots accumulated much higher metal concentrations for the three plants than shoots, except Cd in L. spartum. Shoot concentrations for the three plants were 3–14 mg kg?1 Cd, 150–300 mg kg?1 Zn, 4–11 mg kg?1 Cu, and 1–10 mg kg?1 As, and 6–110 mg kg?1 Pb. The results indicate that neutral pH mine tailings present a suitable substrate for establishment of these native plants species and fertilizer favors this establishment. Metal accumulation in plants is relatively low despite high total soil concentrations.  相似文献   

8.
The concentrations of Hg, Cu, Pb, Cd, and Zn accumulated by regional macrophytes were investigated in three tropical wetlands in Colombia. The studied wetlands presented different degrees of metal contamination. Cu and Zn presented the highest concentrations in sediment. Metal accumulation by plants differed among species, sites, and tissues. Metals accumulated in macrophytes were mostly accumulated in root tissues, suggesting an exclusion strategy for metal tolerance. An exception was Hg, which was accumulated mainly in leaves. The ranges of mean metal concentrations were 0.035?C0.953 mg g?1 Hg, 6.5?C250.3 mg g?1 Cu, 0.059?C0.245 mg g?1 Pb, 0.004?C0.066 mg g?1 Cd, and 31.8?363.1 mg g?1 Zn in roots and 0.033?C0.888 mg g?1 Hg, 2.2?C70.7 mg g?1 Cu, 0.005?C0.086 mg g?1 Pb, 0.001?C0.03 mg g?1 Cd, and 12.6?C140.4 mg g?1 Zn in leaves. The scarce correlations registered between metal concentration in sediment and plant tissues indicate that metal concentrations in plants depend on several factors rather than on sediment concentration only. However, when Cu and Zn sediment concentrations increased, these metal concentrations in tissues also increased in Eichhornia crassipes, Ludwigia helminthorriza, and Polygonum punctatum. These species could be proposed as Cu and Zn phytoremediators. Even though macrophytes are important metal accumulators in wetlands, sediment is the main metal compartment due to the fact that its total mass is greater than the corresponding plant biomass in a given area.  相似文献   

9.
For bioremediation of copper-contaminated soils, it is essential to understand copper adsorption and chemical forms in soils related to microbes. In this study, a Penicillium strain, which can tolerate high copper concentrations up to 150 mmol l?1 Cu2+, was isolated from a copper mining area. The objective was to study effects of this fungus on copper adsorptions in solutions and chemical forms in soils. Results from lab experiments showed the maximum biosorptions occurred at 360 min with 6.15 and 15.08 mg g?1 biomass from the media with Cu2+ of 50 and 500 mg l?1, respectively. The copper was quickly adsorbed by the fungus within the contact time of the first 60 min. To characterize the adsorption process of copper, four types of kinetics models were used to fit the copper adsorption data vs. time. Among the kinetics models, the two-constant equation gave the best results, as indicated by the high coefficients of determination (R 2?=?0.89) and high significance (p?<?0.01). The addition of the fungal strain to autoclaved soil facilitated increases in concentrations of acid-soluble copper, copper bound to oxides, and of copper bound to organic matter (p?<?0.05). However, the inoculation of Penicillium sp. A1 led to a decrease of water-soluble copper in the soil. The results suggested that Penicillium sp. A1 has the potential for bioremediation of copper-contaminated soils.  相似文献   

10.
Daphnia magna, initially exposed when less than 48 h old, were maintained at reduced dissolved oxygen (DO) concentrations for 26 days. Exposure was accomplished in a continuous flow recirculating water system. Number of days to first brood, number of young in the first brood, total number of young produced, and dry weight were parameters measured. Statistical analyses show the Daphnia exposed to the lowest DO concentration tested (1.8 mg l?1) had significantly reduced responses for all parameters measured. In addition, the organisms exposed to 2.7 mg l?1 O2 gained less weight than did the controls.  相似文献   

11.
We investigated the coupling of abundance of bacteria, phytoplankton and ciliates with hydrocarbons in the surface water and sediments of five interconnected ponds in the arid Sfax solar salterns. This study aimed at determining the potential sources of hydrocarbons and the effects of salinity gradients on microorganism metabolism. Hydrocarbon analysis was performed by gas chromatography (GC-FID) and gas chromatography coupled with mass spectrometry (GC-MS). The GC-FID allowed the detection of aliphatic hydrocarbons and n-alkanes ranging from n-C13 to n-C30. Total aliphatic hydrocarbon concentrations varied from 92.5 mg. l?1 in the first pond (having marine characteristics) to 661.1 mg. l?1 in the last pond (crystallizer) (316.8?±?120.1 mg. l?1) for water samples and from 26.7 to 127.8 μg. g?1 dry weight for sediment samples. The GC-MS enabled us to detect halogenated hydrocarbons (bromoalkanes and chloroalkanes) and n-alkenes. The distribution of n-alkanes indices coupled to several environmental factors suggests that a major fraction of hydrocarbons resulted from both prokaryotic (bacteria) and eukaryotic (protists) developments. A low hydrocarbon fraction might be petrogenic.  相似文献   

12.
The main purpose of this work was to conduct a kinetic study on cell growth and hexavalent chromium [Cr(VI)] removal by Candida sp. FGSFEP in a concentric draft-tube airlift bioreactor. The yeast was batch-cultivated in a 5.2-l airlift bioreactor containing culture medium with an initial Cr(VI) concentration of 1.5 mM. The maximum specific growth rate of Candida sp. FGSFEP in the airlift bioreactor was 0.0244 h?1, which was 71.83% higher than that obtained in flasks. The yeast strain was capable of reducing 1.5 mM Cr(VI) completely and exhibited a high volumetric rate [1.64 mg Cr(VI) l?1 h?1], specific rate [0.95 mg Cr(VI) g?1 biomass h?1] and capacity [44.38 mg Cr(VI) g?1 biomass] of Cr(VI) reduction in the airlift bioreactor, with values higher than those obtained in flasks. Therefore, culture of Candida sp. FGSFEP in a concentric draft-tube airlift bioreactor could be a promising technological alternative for the aerobic treatment of Cr(VI)-contaminated industrial effluents.  相似文献   

13.
Interactions between Zn and Cd on the accumulation of these metals in coontail, Ceratophyllum demersum were studied at different metal concentrations. Plants were grown in nutrient solution containing Cd (0.05–0.25 mg l?1) and Zn (0.5–5 mgl?1). High concentrations of Zn caused a significant decrease in Cd accumulation. In general, adding Cd solution decreased Zn accumulation in C. demersum except at the lowest concentration of Zn in which the Zn accumulation was similar to that without Cd. C. demersum could accumulate high concentrations of both Cd and Zn. The influence of humic acid (HA) on Cd and Zn accumulation was also studied. HA had a significant effect on Zn accumulation in plants. 2 mg l?1 of HA reduced Zn accumulation at 1 mg l?1 level (from 2,167 to 803 mg kg?1). Cd uptake by plant tissue, toxicity symptoms and accumulation at 0.25 and 0.5 mg l?1, were reduced (from 515 to 154 mg kg?1 and from 816 to 305 mg kg?1, respectively) by addition of 2 mg l?1 of HA. Cd uptake reached a maximum on day 9 of treatment, while that of Zn was observed on day 15. Long-term accumulation study revealed that HA reduced toxicity and accumulation of heavy metals.  相似文献   

14.
Influences of phosphorus and nitrogen on uranium and arsenic accumulation in Lemna gibba L. were investigated in the laboratory hydroponic cultures and in the field pot experiments. The initial uranium and arsenic concentrations in solutions for the hydroponic cultures were 1000 μ g l?1 each, while in situ trials used tailing water containing 198.7 ± 20.0 μ g U l?1 and 75.0 ± 0.4 μ g As l?1 at a former uranium mine in eastern Germany. A test of three PO4 3? concentrations (0.01, 13.6 and 40.0 mg l?1) in the hydroponic cultures, highest uranium accumulated in L. gibba under the culture with highest PO4 3?. Significant differences in uranium accumulation were between 0.01 mg l?1 and 13.6 mg l?1 PO4 3? cultures only (ANOVA p = 0.05). In the field, addition of 40.0 mg l?1 PO4 3? increased the bioaccumulation of uranium significantly. Contrary, high PO4 3? concentrations suppressed the bioaccumulation of arsenic in both the laboratory and the field. The bioaccumulation of both uranium and arsenic increased slightly with the increase of NH4 + concentration. However, high NH4 + concentrations reduced the yield in the control experiments. The concentration of uranium rose temporarily to 856.0 ± 294.0 μ g l?1, while the concentration of arsenic sunk slightly and temporarily immediately after amending the tailing waters with 40 mg l?1 PO4 3?. The speciation of uranium in the tailing water was modelled with geochemical code PhreeqC, which predicted that uranyl carbonate species dominated before addition of phosphates, but after increasing the PO4 3? concentrations, uranyl phosphates species became dominant. Addition of NH4 + to the tailing water had negligible influence on free available uranium and arsenic concentrations. Thus, manipulations to enhance uranium and arsenic attenuation by L. gibba has limitation when the amendments interact with other elements including the contaminants in the milieu, and when the target contaminants have antagonistic behaviour in the tailing water.  相似文献   

15.
A simple marine algal bioassay method is described for short- and long-term studies on pesticides and industrial wastes. It can be used for rapid screening of a variety of substances with single-species and multiplespecies tests and gives relative toxicities of the pollutants tested. Algae are grown in optically matched culture tubes that fit directly into a spectrophotometer, allowing population density to be estimated by absorbance without removal of samples. 96 h EC50 values for some pesticides and the diatomSkeletonema costatum are: EPN, 340 μg l?1; carbophenothion, 109 μg l?1; DEF, 366ug l?1; ethoprop, 8.4 mg l?1; methyl parathion, 5.3 mg l?1; and phorate, 1.3 mg l?1. Presence of the chelator EDTA in medium had no effect on toxicity of carbaryl toS. costatum, Nitzschia angularum, Chlorococcum sp. andChlorella sp. Liquid industrial wastes either stimulated growth, inhibited growth, or stimulated growth at low concentrations but inhibited it at higher concentrations. In mixed-species studies with the herbicide neburon, presence of a resistant species protected the sensitive species. Liquid industrial waste from a paper products plant caused changes in relative numbers, as compared to controls, whenS. costatum andPorphyridium cruentum were grown together.  相似文献   

16.
Heavy metal phytoextraction is a soil remediation technique, which makes use of plants in removing contamination from soil. The plants must thus be tolerant to heavy metals, adaptable to soil and climate characteristics, and able to take up large amounts of heavy metals. Most of the high biomass productive plants such as, maize, oat and sunflower are plants, which do not grow in cold climates or need intensive care. In this study three “weed” plants, Borago officinalis; Sinapis alba L. and Phacelia boratus were investigated for their ability to tolerate and accumulate high amounts of Cd and Pb. Pot experiments were performed with soil containing Cd and Pb at concentrations of up to 180 mg kg?1 and 2,400 mg kg?1 respectively. All three plants showed high levels of tolerance. Borago officinalis; and Sinapis alba L. accumulated 109 mg kg?1 and 123 mg kg?1 Cd, respectively at the highest Cd spiked soil concentration. Phacelia boratus reached a Cd concentration of 42 mg kg?1 at a Cd soil concentration of 100 mg kg?1. In the case of Pb, B. officinalis and S. alba L. displayed Pb concentrations of 25 mg kg?1 and 29 mg kg?1, respectively at the highest Pb spiked soil concentration. Although the Pb uptake in P. boratus reached up to 57 mg kg?1 at a Pb spiked soil concentration of 1,200 mg kg?1, it is not suitable for phytoextraction because of its too low biomass.  相似文献   

17.
The rate at which dried soils are rewetted can affect the quantities and forms of nutrients in leachates. Both dried and moist replicated (n?=?3) samples of two contrasting grassland soil types (clayey vs brown earth) were irrigated during laboratory experiments with identical total amounts of water, but at different rates, ranging from 0 h, increasing by 30-min increments up to 4 h, and additionally a 24-h rewetting rate. Total P concentrations in leachates from dried samples of both soils generally decreased as rewetting rate increased, ranging from 2,923?±?589 μg P L?1 (0.5 h rewetting rate) to 731?±?46.0 μg P L?1 (24 h, clayey soil) and 1,588?±?45.1 μg P L?1 (0.5 h) to 439?±?25.5 μg P L?1 (24 h brown earth). Similar patterns in concentrations occurred for molybdate reactive P (MRP), although concentrations were generally an order of magnitude lower, indicating that the majority of the leached P was probably organic. The moist brown earth leached relatively high concentrations of MRP (maximum 232?±?10.6 μg P L?1, 0.5 h), unlike the moist clayey soil (maximum 20.4?±?10.0 μg P L?1, 0 h). The total oxidised N concentrations in leachates were less affected by rewetting rate, although longer rewetting rates resulted in decreased concentrations in leachates from the dried samples of both soils. The difference in responses to rewetting rates of the two soils is probably due to differences in the fate of the microbial biomass and adsorption properties in the soils. Results show that soil moisture could be an important factor in regulating nutrient losses and availability, especially under changing patterns of rainfall predicted by future climate change scenarios.  相似文献   

18.
This study assessed the accumulation of Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in the sediment and biomass of P. australis (Cav.) Trin. ex Steud. in a combined constructed wetland (CW) designed for the treatment of domestic wastewater of 750 population equivalents. The CW consists of two vertical subsurface flow (VSSF) reed beds followed by two horizontal subsurface flow (HSSF) reed beds. The sediment in the VSSF reed bed was contaminated with Cu (201 ?±? 27 mg kg?1 DM) and Zn (662 ?±? 94 mg kg?1 DM) after 4 years of operation. Concentrations of Cd, Cu, Pb and Zn in the sediment generally decreased along the treatment path of the CW. On the contrary, higher Al, Cr, Fe, Mn and Ni concentrations were observed in the sediment of the inlet area of the HSSF reed bed. Redox conditions were presumably responsible for this observed trend. Metal concentrations in the reed biomass did not show excessive values. Accumulation in the aboveground reed biomass accounted for only 0.5 and 1.4% of, respectively, the Cu and Zn mass load in the influent. The sediment was the main pool for metal accumulation in the CW.  相似文献   

19.
Salvinia minima has been reported as a cadmium and lead hyperaccumulator being the adsorption and intracellular accumulation the main uptake mechanisms. However, its physicochemical properties, the effect of metal concentration and the presence of organic and inorganic compounds on its hyperaccumulating capacity are still unknown. Furthermore, the specific adsorption and accumulation mechanisms occurring in the plant are not clear yet. Thus, based on a compartmentalization analysis, a bioadsorption (BAF) and an intracellular accumulation factor (IAF) were calculated in order to differentiate and quantify these two mechanisms. The use of kinetic models allowed predicting the specific type of uptake mechanisms involved. Healthy plants were exposed to five lead concentrations ranging from 0.80?±?0.0 to 28.40?±?0.22 mg Pb2+l?1 in batch systems. A synthetic wastewater, amended with propionic acid and magnesium sulfate, and deionized water were used as media. The BAF and IAF contributed to gain an in-depth insight into the hyperaccumulating lead capacity of S. minima. It is clear that such capacity is mainly due to adsorption (BAF 780–1980) most likely due to its exceptional physico-chemical characteristics such as a very high surface area (264 m2 g?1) and a high content of carboxylic groups (0.95 mmol H+g?1 dw). Chemisorption was predicted as the responsible mechanism according to the pseudo-second order adsorption model. Surprisingly, the ability of S. minima to accumulate the metal into the cells (IAF 57–1007) was not inhibited at concentrations as high as 28.40±0.22 mg Pb2+l?1.  相似文献   

20.
The 137Cs and 40K activities and transfer factors from soil to vegetables, grass, and milk from villages located around Tarapur Atomic Power Station (TAPS) were determined using high-resolution gamma spectrometry. A total of 32 soil, 21 vegetable, 23 dry paddy grass, and 23 milk samples were collected from 23 different agricultural farms from various villages around TAPS to determine transfer factors for natural environment. The mean concentration values for 137Cs and 40K in soil, grass, and milk were 2.39?±?0.86 Bq kg?1, 0.31?±?0.23 Bq kg?1, and 12.4?±?5.7 mBq L?1 and 179?±?31 Bq kg?1, 412?±?138 Bq kg?1, and 37.6?±?9.3 Bq L?1, respectively, for soil?Cgrass?Cmilk pathway. In the soil?Cvegetation pathway, the mean concentrations values for 137Cs and 40K were 2.15?±?1.04 Bq kg?1, 16.5?±?7.5 mBq kg?1, and 185?±?24, 89?±?50 Bq kg?1, respectively. The evaluated mean transfer factors from soil?Cgrass, grass?Cmilk, and soil?Cvegetation for 137Cs were 0.14, 0.0044, and 0.0073 and that of 40K were 2.42, 0.0053, and 0.49, respectively. Only 15 out of total 44 milk and vegetable samples were detected positive for 137Cs, indicating a very low level of bioavailability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号