首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In previous studies in vitro-selection of proline overaccumulating lines of winter wheat (Triticum sativum L. cv. Jo 3063) with increased frost tolerance was reported. These traits were found to be genetically stable. In the present study the improvement of frost tolerance (winter hardiness) under field conditions is confirmed for F7 progenies of the mutants. Moreover, the mutants accumulated higher levels of glucose and fructose, soluble protein and abscisic acid (ABA) in addition to proline than the wild type under cold hardening conditions in a growth chamber as well as under cold hardening field conditions. ABA and proline levels peaked when the temperature decreased, whereas carbohydrate levels increased more slowly at decreasing temperature. Soluble protein levels also increased during cold hardening, but in addition showed sharp declines during frost periods. Increased carbohydrate levels of the mutants were associated with lower osmotic potential values. The differences in carbohydrate, protein and ABA levels between the mutants and the wild type are probably due to pleiotropic effects of the mutation.  相似文献   

2.
Embryogenic calli derived from anther cultures of the two-rowed winter barley cultivar Igri were plated on solid L3 medium containing the proline analogue hydroxyproline (Hyp), 10–20 mmol l–1. Exposure to Hyp caused severe degeneration of most of the calli. Hyp resistant calli, distinguishable by their lighter colour and higher growth rate, and control calli not exposed to Hyp were plated on L3 regeneration medium. From 22,500 anthers exposed to Hyp 46 Hyp resistant regenerates were obtained, which were transferred to soil. After cultivation for 5–10 weeks at normal growth conditions they were cold hardened at 2 C under short day conditions together with control regenerates. Frost tolerance assays with segments of fully grown leaves of unhardened and cold hardened plants revealed that Hyp resistant regenerants were significantly more frost tolerant than the control regenerants. Improved frost tolerance was found also in the progenies R1 to R9, and genotypic segregation in the R1 generation in a 1:2:1 ratio was indicated. Increased proline content was observed in the R2 generation and in subsequent generations and was significantly (P 0.001) correlated with increased frost tolerance in the Hyp lines. Comparative studies of R9 progenies from homozygous R2 plants with the wild type Igri under field conditions in winter at three locations in Europe as well as crossing experiments confirmed the heritable improvement of frost tolerance and winter survival, respectively, in the Hyp lines. The results support the hypothesis that proline accumulation in cold acclimated winter barley plants is causally related to the acquisition of frost tolerance. Moreover, the described biotechnological procedure may be applicable in breeding programs for improved winter hardiness and possibly also for other stress tolerances.  相似文献   

3.
Growing in Central Europe winter instead of spring durum wheat would substantially increase yield potential but is currently hampered by the lack of knowledge of frost tolerance present in elite material. The objectives of our survey were to (i) study the genetic variability and heritability of frost tolerance and its association with other important agronomic and quality traits in durum wheat, (ii) examine the potential to combine frost tolerance with high quality and high grain yield and (iii) investigate the consequences of the heritabilities and associations among traits on the optimum design of a multistage selection programme for winter durum wheat. We investigated 101 elite winter durum wheat lines and four commercial checks in field trials at four locations. Four agronomic as well as nine quality traits were recorded. In addition, frost tolerance was evaluated using a semi‐controlled test resulting in high‐quality phenotypic data. Genotypic variances (σ²G) were significantly larger than zero for all traits, and heritabilities were moderate to high. Several elite durum wheat lines exhibited a frost tolerance comparable to that of two frost‐tolerant Triticum aestivum varieties. Frost tolerance was not negatively associated with other important agronomic and quality traits. The high quality of the phenotypic data for frost tolerance evaluated in a semi‐controlled test suggests that this is a cost‐efficient approach to consider frost tolerance at early stages of a multistage durum wheat breeding programme.  相似文献   

4.
Summary A number of previously selected hydroxyproline (hyp) resistant cell lines of a diploid potato (Solanum tuberosum L., clone H2578, 2n=2x=24) could be regenerated into plants which were further analysed. Hyp resistance, although lower than in the originally selected calli, was still present in regenerated shoots and in callus initiated from these shoots and it was not lost upon (mini)tuber propagation. Regenerated shoots showed a wide range of phenotypic variation. The chromosome number, analysed in 4 clones, appeared to be hypotetraploid (44 or 45). Tuber-propagated regenerants generally showed increased frost tolerance both at the plant and the cell level. In leaves this seemed to be associated with increased levels of both proline and total amino acid content. However, in callus only the total amino acid content but not proline was still elevated. In the wild type the frost tolerance of the tubers appeared to be lower than that of the leaves. Between tubers of wild type and the hyp resistant regenerants no differences in frost tolerance were found, although proline and total amino acid content tended to be higher in tubers from the regenerants.  相似文献   

5.
Changing climatic conditions in north-western Europe are accompanied by occasional extreme weather conditions. This requires breeding of winter oilseed rape cultivars which are resilient to diverse abiotic stress factors, e.g. frost, drought and heat. The degree of vernalization requirement of winter oilseed rape has been found to be related to frost tolerance and winter hardiness. Shoot elongation before winter in particular has been identified as one decisive factor for frost tolerance in winter oilseed rape. However, the relationship between vernalization requirement and shoot elongation before winter is not known. In the present study the genetic variation for shoot elongation before winter and vernalization requirement of 19 genetic diverse breeding lines and cultivars were analyzed. Autumn and spring sown field experiments in multiple environments were performed to determine shoot elongation before winter and vernalization requirement, respectively. In spring sown field experiments, genotypes with a low vernalization requirement were characterized by the occurrence of long bolting plants with flower buds. Large and significant genotypic variation was found for shoot length in the autumn sown and spring sown environment. Broad sense heritability was quite high for shoot length in the spring sown environment (h2?=?97%), whereas it was only of medium size for shoot length before winter (h2?=?62%). Although the correlation between shoot length before winter and shoot length in the spring sown environment was positive (Spearman’s rank rS?=?0.48*), a number of genotypes with reduced shoot elongation before winter and low vernalization requirement were identified. Results indicate that genotypes with a reduced shoot elongation before winter independent of their vernalization requirement can be selected in breeding programs.  相似文献   

6.
采用RT-PCR法亚克隆了PDI基因保守区内450 bp的靶标序列作为干扰区段, 构建了含有内含子hpRNA (ihpRNA)的双元表达载体pTCK303-RiOsPDI, 经农杆菌介导转化日本晴, 获得转基因植株; 通过在T0代对其潮霉素(Hyg)抗性基因的PCR鉴定, 确定携带有干扰片段的T-DNA区已整合到水稻基因组中, 且在转基因T1代符合3∶1的分离模式。半定量PCR和荧光定量PCR的检测结果表明, PDI基因沉默转基因阳性植株不同器官中的PDI表达量均显著降低, 尤其是其籽粒中表达量较微, 几乎能引起靶基因80%左右沉默。对转基因T2代植株的高温结实特性和籽粒理化品质的检测结果, PDI基因沉默会引起高温胁迫处理下结实率的大幅度降低, 耐热性显著下降, 但其在常温处理下的结实率与对照之间无显著差异。此外, PDI基因沉默后, 稻米的透明度下降、垩白度增加, 但对籽粒粗蛋白总量和直链淀粉含量的影响不甚明显。  相似文献   

7.
Chickpea (Cicer arietinum L.) is known to be salt-sensitive and in many regions of the world its yields are restricted by salinity. Recent identification of large variation in chickpea yield under salinity, if genetically controlled, offers an opportunity to develop cultivars with improved salt tolerance. Two chickpea land races, ICC 6263 (salt sensitive) and ICC 1431 (salt tolerant), were inter-crossed to study gene action involved in different agronomic traits under saline and control conditions. The generation mean analysis in six populations, viz. P1, P2, F1, F2, BC1P1 and BC1P2, revealed significant gene interactions for days to flowering, days to maturity, and stem Na and K concentrations in control and saline treatments, as well as for 100-seed weight under salinity. Seed yield, pods per plant, seeds per plant, and stem Cl concentration were controlled by additive effects under saline conditions. Broad-sense heritability values (>0.5) for most traits were generally higher in saline than in control conditions, whereas the narrow-sense heritability values for yield traits, and stem Na and K concentrations, were lower in saline than control conditions. The influence of the sensitive parent was higher on the expression of different traits; the additive and dominant genes acted in opposite directions which led to lower heritability estimates in early generations. These results indicate that selection for yield under salinity would be more effective in later filial generations after gene fixation.  相似文献   

8.
The use of genetic resources could be more effective and efficient if we were able to predict the presence or absence of useful traits in different populations or accessions. We analyzed the extent to which taxonomic, geographic and ecological factors can predict the presence of frost tolerance in wild potatoes. We used screening data for 1646 samples from 87 species that had been collected in 12 countries in the Americas. There was a strong association of frost tolerance with species and to a lesser extent with taxonomic series. There was significant geographic clustering of areas with wild potatoes with similar levels of frost tolerance. Areas with a high level of frost tolerance are the central and southern Peruvian Andes, the lowlands of Argentina and adjacent areas, and a small area in the central Chilean Andes. There is a greater chance of finding wild potatoes with high levels of frost tolerance in areas with a yearly mean minimum temperature below 3 °C than there is in warmer areas. However, temperature is only a weak predictor of frost tolerance. Temperature data alone did not predict observed frost tolerance in eastern Argentina/Uruguay and falsely predicted it in the southwestern United States. Because many wild potato species occur over small areas, taxonomic, ecological, and geographical factors are difficult to disentangle. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Subunits of high molecular weight glutenins strongly influence wheat bread making quality and can be associated with important agronomic traits. Polish winter wheats show a significant quantitative dominance of the null allele over the coding alleles of the Glu-A1 locus. To identify the causes of such skewed distribution, 116 F5 lines obtained from six cross combinations were analyzed for their HMW glutenin subunits and 11 agronomic characteristics, such as plant height and uniformity, leaf blotch and leaf rust resistance, grain yield per plot, number of grains per ear, grain yield per ear, 1000 kernel weight, frost tolerance, total protein content and the SDS-sedimentation value. The SDS-sedimentation value, resistance to leaf blotch and frost tolerance showed statistically significant associations with the status of the Glu-A1 locus. It appears that chromosome 1A with the null allele at Glu-A1 carries a closely linked locus responsible for frost tolerance. With early strong selection for winter hardiness, the null allele of Glu-A1 becomes fixed in advanced breeding materials despite its strong negative impact on the end use quality.  相似文献   

10.
Accurate estimation of winter wheat frost kill in cold‐temperate agricultural regions is limited by lack of data on soil temperature at wheat crown depth, which determines winter survival. We compared the ability of four models of differing complexity to predict observed soil temperature at 2 cm depth during two winter seasons (2013‐14 and 2014‐15) at Ultuna, Sweden, and at 1 cm depth at Ilseng and Ås, Norway. Predicted and observed soil temperature at 2 cm depth was then used in FROSTOL model simulations of the frost tolerance of winter wheat at Ultuna. Compared with the observed soil temperature at 2 cm depth, soil temperature was better predicted by detailed models than simpler models for both seasons at Ultuna. The LT50 (temperature at which 50 % of plants die) predictions from FROSTOL model simulations using input from the most detailed soil temperature model agreed better with LT50 FROSTOL outputs from observed soil temperature than what LT50 FROSTOL predictions using temperature from simpler models did. These results highlight the need for simpler temperature prediction tools to be further improved when used to evaluate winter wheat frost kill.  相似文献   

11.
Interactions between different genotypic tissues in citrus graft chimeras   总被引:3,自引:0,他引:3  
The heritability of tolerance of wheat F3 lines to competition from annual ryegrass (Lolium rigidum), and its relationship to morphological traits, were determined using crosses between wheat cultivars with good and poor competitive ability. Forty F2-derived F3 lines from a cross between two late flowering varieties (Machete × Spear) and 40 from a cross between early flowering varieties (Wilgoyne × Gutha) were grown in the field with and without annual ryegrass. There was significant genetic variation between lines within each of the two populations in a number of aspects of plant growth and development, including yield in monoculture. The estimates of heritability for % yield loss due to competition were 0.25 and 0.57 in the two crosses respectively, indicating that selection for high tolerance to competition in the F3 generation or later should be effective. Fairly strong relationships between height and % yield loss and between leaf length and % yield loss suggest that these may be useful auxiliary traits when selecting for low % yield loss. However, differences between crosses in the magnitude and sign of genetic and phenotypic correlation between traits indicate that competitive ability is a complex character influenced by many factors. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
转PvP5CS1基因拟南芥植株对干旱和盐胁迫的反应   总被引:2,自引:0,他引:2  
为探索普通菜豆脯氨酸合成酶基因P5CS1在植物渗透胁迫中的作用,本研究应用农杆菌介导法,将PvP5CS1基因转入拟南芥,获得6株阳性转基因株系;通过检测转基因植株与野生型植株在干旱和盐胁迫下种子发芽率,幼苗脯氨酸含量、株系电导率、相对根长和成株死亡率,分析了PvP5CS1基因的表达对改善拟南芥抗渗透胁迫的效应。结果表明,在150 mmol L-1 NaCl和150 mmol L-1甘露醇渗透胁迫下,转基因植株平均相对发芽率分别是野生型的1.6倍和1.62倍;150、250 mmol L-1甘露醇和150 mmol L-1 NaCl处理下,转基因拟南芥植株平均脯氨酸含量分别是野生型的2.68、1.30和1.30倍;平均相对电导率分别是野生型植株的85%、77%和85%;平均相对根长分别是野生型植株的1.2、1.3和1.2倍;300 mmol L-1 NaCl处理下,转基因植株的平均死亡率为42%,显著低于野生型(90%)(P<0.05);干旱胁迫下,转基因植株的平均死亡率为56%,显著低于野生型(70%)(P<0.05),说明PvP5CS1基因在拟南芥中的表达明显改善了转基因植株的抗旱性和耐盐性。  相似文献   

13.
Most durum wheat (Triticum durum) varieties possess only low winter hardiness due to their frost susceptibility. In North America and Central Europe, durum wheat is therefore typically sown in spring to circumvent the local winter conditions. However, the yield potential of durum in these regions could be much better exploited if durum varieties with increased frost tolerance were available, which could be sown in autumn. A factor limiting breeding for increased frost tolerance is the variation in the occurrence of frost stress across years. The ‘Weihenstephaner Auswinterungsanlage’ is a semi‐controlled test that exposes the plants to all weather conditions. Snow coverage of the plants, serving as frost protection, is prevented by the movable glass lid of the semi‐controlled test. In this study, different scorings for frost tolerance based on this semi‐controlled test were evaluated and compared with frost tolerance data in the field. Our results illustrate the potential of the ‘Weihenstephaner Auswinterungsanlage’ as an indirect selection tool for frost tolerance in durum breeding programmes, especially when regular frost tolerance data from the field are not available.  相似文献   

14.
The aims of the study were to determine why young Miscanthus × giganteus plants are more frost sensitive during the first winter than older plants, to compare cold tolerance of plants propagated in in vivo and in vitro conditions, and to select plants with higher cold tolerance. The study was performed in three experiments in which plants were prehardened at 12 °C for 2 weeks, hardened at 5 °C for 3 weeks and next chilled at 0 °C or ?3 °C for 3 or 14 days. Afterwards shoot regrowth from rhizomes was evaluated. In Experiment 1 frost tolerance of young plants obtained from a horticultural farm and plants that had already survived the first winter in the field was compared on the basis of LT50 coefficient. In Experiment 2 frost tolerance of plants obtained in vivo and in vitro was compared. Experiment 3 was performed on four groups of plants: in vivo and in vitro obtained plants which were twice selected in cold, as well as in vivo and in vitro obtained plants which were cold treated once. Plants of all these groups were analysed with respect to their frost tolerance. They were prehardened, hardened and subjected to a temperature of 0 °C or ?3 °C for 14 days. The changes in processes accompanying cold acclimation occurring in the rhizomes or leaves of these plants were investigated. The content of abscisic acid, low-molecular antioxidants and phenolics, as well as catalase and non-specific peroxidase activities were analysed.Young commercially obtained plants were more frost sensitive than plants which had survived the first winter in the field. This effect could be caused by a small amount of storage compounds accumulated in finely divided rhizomes produced in a horticultural farm. Prehardening temperature of 12 °C caused more considerable changes in cold acclimation processes in Miscanthus rhizomes than hardening temperature of 5 °C. Plants propagated by in vitro culture were more cold tolerant but only in the first vegetative season compared to plants obtained in vivo. Plants chilled twice demonstrated a higher low-molecular antioxidant level, as well as a greater capability of phenolic accumulation compared to plants which were once cold stressed. Regardless of the recurrence of cold acclimation, ABA level was significantly increased in leaves by prehardening and in rhizomes by hardening. Each repetition of cold acclimation increased cold tolerance and shoot regeneration ability of M. × giganteus rhizomes.  相似文献   

15.
Based on soil temperature, snow depth and the grown cultivar's maximum attainable level of frost tolerance (LT50c), the FROSTOL model simulates development of frost tolerance (LT50) and winter damage, thereby enabling risk calculations for winter wheat survival. To explore the accuracy of this model, four winter wheat cultivars were sown in a field experiment in Uppsala, Sweden in 2013 and 2014. The LT50 was determined by tests of frost tolerance in November, and the cultivars’ LT50c was estimated. Further, recorded winter survival from 20 winter wheat field variety trials in Sweden and Norway was collected from two winter seasons with substantial winter damages. FROSTOL simulations were run for selected cultivars at each location. According to percentage of winter damage, the cultivar survival was classified as “survived,” “intermediate” or “killed.” Mean correspondence between recorded and simulated class of winter survival was 75% and 37% for the locations in Sweden and Norway, respectively. Stress factors that were not accounted for in FROSTOL might explain the poorer accuracy at the Norwegian locations. The accuracy was poorest for cultivars with intermediate LT50c levels. When low temperature was the main cause of damage, as at the Swedish locations, the model accuracy was satisfying.  相似文献   

16.
Summary X irradiation of dry seeds of Corchorus capsularis L. cv. JRC 212 induced variations in plant height as evidenced by the high values of genotypic variance and heritability estimate in M3 generation. Selection on the basis of line mean of plant height in M3 generation was effective in increasing plant height as well as fibre yield in M3 generation. A higher response for plant height rather than for fibre yield itself was observed in lower irradiation dose while responses for these two traits were almost similar in higher dose. An average of 12% increase in fibre yield was achieved in M6 generation when all top five lines were selected. The top two lines, had 17% and 16% higher fibre yield than that of control.  相似文献   

17.
Genetic parameters for six quantitative traits in the early generation of segregating populations of common beans (Phaseolus vulgaris L.) were evaluated. A Bayesian approach was used for estimating the variance components, breeding values and broad sense heritability of the quantitative traits under analysis. The Markov Chain Monte Carlo method was utilized to analyze the contribution of genes affecting complex traits. Twenty-four F3 families were evaluated in the field during 2005 in Santa Catarina, southern Brazil. With regard to the grain yield and yield components, the additive variances were relatively similar to the dominance variances. This result is confirmed by the 95% credible set from the posterior distribution. The mean estimates of broad-sense heritability (H2) varied from 11.5% to 64.2%. The heritability estimates of yield and yield components were higher than the estimates for the number of days until flowering and reproductive period. However, for grain yield, the 95% heritability credible set included the heritability estimates from point of crop duration. The predicted genetic gain reached the highest value for the number of pods per plant (10.95%). Days to flowering and reproductive period had the lowest values of genetic advance. One hundred seed-weight, grain yield and seeds per pod exhibited a similar predictable level of genetic gain: GA = 5.73%, 5.81% and 4.77%, respectively. The Bayesian framework provided information that is useful for a breeding program, since it contributes to the understanding of how quantitative traits are genetically controlled.  相似文献   

18.
Summary Under phytotronic conditions investigations were made on the effect of important environmental factors, such as temperature, water and an increasing concentration of atmospheric CO2, on the hardening of young cereal plants.In all the varieties derived from the major wheat growing regions of the world the hardening process was favourably influenced by a doubling of atmospheric CO2 content, so that a significantly larger number of plants survived the frost test than for plants of the same variety raised under normal conditions.A reduction in freezing temperature and an increase in soil moisture content caused a slight reduction in survival % for varieties with excellent frost resistance and a great reduction for those with medium or poor frost resistance.Predictions suggest that in Central Europe, as the result of global climatic changes, there will be a reduction in the quantity of winter precipitation, a considerable rise in winter temperatures and an increase in atmospheric CO2 concentration. Judging by the experimental results, these changes could improve the overwintering of winter cereals; at the same time, however, a number of factors (mainly the reduction of precipitation) leading to yield losses must be expected during the vegetation period.  相似文献   

19.
F. Rizza    D. Pagani    A. M. Stanca  L. Cattivelli 《Plant Breeding》2001,120(5):389-396
The efficiency of the excitation capture by open Photosystem II (PSII) reaction centres was measured by the Fv/Fm ratios in a collection of winter and spring oats in order to assess the effects of hardening and freezing on the functionality of PSII and also the suitability of a chlorophyll fluorescence‐based method to screen oat cultivars for frost tolerance. A significant reversible decrease in Fv/Fm was found in all genotypes during acclimation to low, non‐freezing temperatures. Fv/Fm analysis appears to be an attractive test for the evaluation of frost tolerance in oats, being rapid, non‐invasive and capable of monitoring a trait related to a crucial stage in the acquisition of frost tolerance. It is more sensitive and precise than other standard methods and highly correlated with field‐evaluated frost damage. The measurements made during recovery 1 or 2 days after stress when the visual symptoms are not yet expressed, were especially advantageous because of the large variability in genotype response. The r‐values (close to 0.8) were reduced due to the non‐standard behaviour of the winter cultivar ‘Aintree’. The cold acclimation response of this genotype has been analysed in detail and the limits of artificial freezing tests are discussed.  相似文献   

20.
The consumption of products made from Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) has increased in recent years in Japan. Increased consumer demand has led to recognition of the need for early varieties of this crop with high and stable yields. In order to accomplish this, more information is needed on the genetic mechanisms affecting earliness and yield. We conducted genetic analysis of 3 agronomic traits (days to flowering, plant height and total seed weight per plant) to segregate F2 and F3 populations derived from a cross between Tartary buckwheat cultivars ‘Hokuriku No. 4’ and ‘Ishisoba’. Broad-sense heritability estimates for days to flowering, plant height and total seed weight were 0.70, 0.62 and 0.75, respectively, in F3 population. Narrow-sense heritability for total seed weight (0.51) was highest, followed by heritability for days to flowering (0.37), with heritability for plant height (0.26) lowest. Later flowering was associated with increased plant height and higher yields. From the F4 generation, we identified twelve candidate plants with earlier maturity and reduced plant height compared to ‘Hokuriku No. 4’, but almost the same total seed weight. These results suggest that hybridization breeding using the single seed descent (SSD) method is an effective approach for improving agronomic characteristics of Tartary buckwheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号