首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic matter composition is an important soil constituent with regard to function in soil ecosystems. In the recent paper litter and humic compound contents from about 100 mineral soil investigations are presented. The soil horizons are divided into four groups (Ah, Ap, M. Bh) in order to compare the SOM quality. Ap and Ah horizons showed a similar litter and humic compound distribution. Structural differences in the humic compound fractions were only visible with CPMAS 13C-NMR. SOM-containing non-spodic subsoil horizons had a similar SOM quality as the A horizons. In the Bh horizons the humic compounds dominated with about 75% in the SOM. Alkylic and O-alkylic carbon units are the main fractions. The combination of the solid-state 13C-NMR spectroscopy of whole soil samples and the wet chemical analysis of litter compounds allowed the estimation of the liner and chemically defined humic compound distribution in soil samples.  相似文献   

2.
In Schleswig-Holstein, F.R.G., two typical soil associations from loamy boulder marl and loamy pleistocene sands were mapped and ecologically characterized in order to show the necessity of an adequate classification of Colluvic Cumulic Anthrosols (Colluvisols). More than 50% of the original soils have been altered by erosion. The depth of the colluvic wM horizon ranges between 10 cm and more than 100 cm. The amounts of soil organic matter and plant available nutrients are much higher in the Colluvisols than in the haplic soils. Soil classification does not deal with all these aspects with regard to mapping of colluvic soils. In the German soil classification adequate and ecologically significant definitions and instructions of the nomenclature of colluvic soils are not available. Therefore, a proposal is presented to classify colluvic soils. In addition the threshold value of 0.6% soil organic matter in sandy parent material is too low in order to distinguish a Bv from a M horizon; 1.0% would be a more acceptable value. It would be necessary to investigate yield on erodic, non-erodic and colluvic soils in order to determine the effect of erosion and accumulation on crop yield.  相似文献   

3.
‘Colluvisols’ (Colluvi-cumulic Anthrosols) are an important soil unit in North Germany. In the landscape of loamy till these soils are associated with eroded Luvisols. The soil organic matter (SOM) of top layers of both soils was compared by using approaches of wet chemistry, CPMAS 13C-NMR and pyrolysis field-ionization mass spectrometry (Py-FIMS). The Luvisols are sources of SOM transfer due to a continuous erosion process. The annual input of straw and plant residues induces the dominance of litter compounds like proteins, polysaccharides and lignin in the SOM. The Colluvisols are sinks of SOM transfer with a predominance of humic compounds. Lignin is degraded forming humic compounds with an alkylic and aromatic structure. In these soils selected compounds with higher mass signals were detected by Py-FIMS, which may indicate the existence of typical “SOM markers” in the colluvic materials.  相似文献   

4.
Abstract

The knowledge of soil organic matter (SOM) composition is important for research in soil science. This is why two classical wet chemical extraction procedures were tested and combined to characterize SOM. Twenty‐five samples from typical forest and arable soils in Schleswig‐Holstein, Northwest Germany, were investigated in the laboratory. Lipids were extracted using a pre‐step method. Several polysaccharide fractions were extracted sucessively with inorganic acids in a litter compound analysis (LCA). Proteins and lignins were determined in the bulk soil sample. In a humic compound analysis (HCA), fulvic and humic acids were extracted in the classical way with NaOH, and the non‐humic substances were removed with the aid of the “Sulfacetolysis” from the residues (= usually “humins")‐ The combination of these two wet chemical extraction proce dures (LCA and HCA) permitted quantitative estimations of the SOM composition in several soil horizons. The LCA method produced a better recovery rate (104%±4%) than the HCA methode (95%±15%). The litter compound/humic compound ratio of both analyses, and the combination of both correlated with visible humification grades in a significant way (r = ‐0.733 to ‐0.742***). LCA may be sufficient for solving special pedogenetic problems, because of its high recovery rate and the strong correlation between LCA and HCA.  相似文献   

5.
Properties and composition of 25 soil samples (0.8–51% Corg) were determined by morphology, wet chemistry, CPMAS-13C-NMR-spectroscopy and pyrolysis-field ionization mass spectrometry (Py-FIMS). The recovery rate of organic carbon was 102% (±15%). The correlation between the litter compound/humic compound ratio and humification grade, estimated with morphological observations, was strong (r2 = 0.502***). A typical classification of horizons (L, O, H, Ah+M) with regard to organic compounds (wet chemistry and 13C-NMR) was not always significant. The pyrolysis-mass spectra confirmed and extended on the basis of molecular chemical structures the results of wet chemistry, especially with polysaccharides, nitrogen compounds, lignin, lipids and alkylaromatics (r2 = 0.818–0.937***). A correlation between the NMR-aliphatics, the humic compounds isolated by wet chemistry, and the long-chain aliphatic carbon units in the pyrolysis-mass spectra was established.  相似文献   

6.
The thermal diffusivity of the upper horizons of model soddy-podzolic soils in the lysimeters depends on their water contents and varies within 2.1?4.32 × 10?7 m2/s in the Ap horizon, 1.59?3.99 × 10?7 m2/s in the B1 horizon, 1.28?3.74 × 10?7 m2/s in the plowed B2 horizon, and 1.12?4.10 × 10?7 m2/s in the B2 horizon. The dependence of the thermal diffusivity on the soil water content is described by an inverted parabolic curve for the Ap horizon, an S-shaped curve for the B1 and B2 horizons, and by a curve of transitional type for the plowed B2 horizon. The temperature regimes of model soils with different morphologies of the profile do not differ much and are close to the soil temperature regime under natural conditions on the plots of the weather station of Moscow State University.  相似文献   

7.
《Geoderma》2006,130(1-2):35-46
Tropical soils are generally depleted in organic carbon (OC) due to environmental conditions favouring decomposition and mineralisation of soil organic matter (SOM). In Northern Laos, sloping soils are subjected to slash and burn agriculture, which leads to production of black carbon (BC), a stable SOM fraction. BC may directly influence the quantity and quality of SOM sequestered in tropical soils. The aim of this study was to quantify BC content and evaluate its impact on the chemical and stable isotope composition of SOM along a catena composed of Dystrochrepts at the bottom of the slope, Alfisols (midslope) and Inceptisols at the top of the slope for different burning frequencies. Six soil profiles, situated on a slope ranging from a river bank to the summit of a hill, were sampled. The stable isotope compositions (13C and 15N) of samples from both organo-mineral A and mineral B and C horizons were determined. The chemical composition of SOM analysed by 13C CPMAS NMR spectroscopy and the contribution of BC determined by dichromate oxidation were compared to OC and iron oxide content as well as land management including the burning cycle.The highest C contents were recorded at midslope positions. At any position on the slope, δ13C and δ15N ratios showed an enrichment in 13C and 15N with increasing soil depth. The OC content of soil horizons was related to their aryl C content, which is the component most likely driven by BC inputs. The BC contributions analysed by dichromate oxidation ranged from 3% to 7% of total OC. A positive correlation was obtained between aryl C and the BC content of SOM. Comparison of BC content and stable isotope composition of SOM showed that BC influenced the δ13C and the δ15N stable isotope ratios of these soils. BC was not associated with the mineral phase. The highest BC contents were measured under intensive slash and burn practice in the vicinity of the boundary of Alfisols at the top of the slope, where erosion was severe. Therefore, BC, a SOM component strongly influencing OC sequestration of these soils, is susceptible to translocation down the slope.  相似文献   

8.
The 14C age of soil organic matter is known to increase with soil depth. Therefore, the aim of this study was to examine the stabilization of carbon compounds in the entire soil profile using particle size fractionation to distinguish SOM pools with different turnover rates. Samples were taken from a Dystric Cambisol and a Haplic Podzol under forest, which are representative soil types under humid climate conditions. The conceptual approach included the analyses of particle size fractions of all mineral soil horizons for elemental composition and chemical structure of the organic matter by 13C cross-polarization magic angle spinning nuclear magnetic resonance (CPMAS NMR) spectroscopy. The contribution of phenols and hydroxyalkanoic acids, which represent recalcitrant plant litter compounds, was analyzed after CuO oxidation.In the Dystric Cambisol, the highest carbon concentration as well as the highest percentage of total organic carbon are found in the <6.3 μm fractions of the B and C horizons. In the Haplic Podzol, carbon distribution among the particle size fractions of the Bh and Bvs horizons is influenced by the adsorption of dissolved organic matter. A relationship between the carbon enrichment in fractions <6.3 μm and the 14C activity of the bulk soil indicates that stabilization of SOM occurs in fine particle size fractions of both soils. 13C CPMAS NMR spectroscopy shows that a high concentration of alkyl carbon is present in the fine particle size fractions of the B horizons of the Dystric Cambisol. Decreasing contribution of O-alkyl and aromatic carbon with particle size as well as soil depth indicates that these compounds are not stabilized in the Dystric Cambisol. These results are in accordance with data obtained by wet chemical analyses showing that cutin/suberin-derived hydroxyalkanoic acids are preserved in the fine particle size fractions of the B horizons. The organic matter composition in particle size fractions of the top- and subsoil horizons of the Haplic Podzol shows that this soil is acting like a chromatographic system preserving insoluble alkyl carbon in the fine particle size fractions of the A horizon. Small molecules, most probably organic acids, dominate in the fine particle size fractions of the C horizons, where they are stabilized in clay-sized fractions most likely due to the interaction with the mineral phase. The characterization of lignin-derived phenols indicated, in accordance with the NMR measurements, that these compounds are not stabilized in the mineral soil horizons.  相似文献   

9.
Soil organic matter (SOM) was studied in relation to vertic processes (i.e., shrinking/swelling, cracking, vertical turbation, lateral shearing, gilgai formation) in Vertisols and vertic soils of the North Caucasus in Russia, and Texas and Louisiana in the USA. Their impact on SOM properties and distribution was analyzed according to various levels of soil organization, such as soil cover, profile, horizon, and aggregate structure using chemical methods, micromorphology, isotopic analyses, and physical fractionation. The greatest variations both in the distribution and properties of SOM were found in mature Vertisols at the level of soil cover including Ctot, organic carbon stocks, stable carbon isotopic composition, and SOM 14C-age, chemical composition. The distribution of SOM at the profile and horizon levels was related to the functioning of Vertisols during wet-dry cycles. The isotopic and chemical study of densi-granulometric fractions at the aggregate level reflected the minor role of vertic processes.  相似文献   

10.
Minerals with large specific surface areas promote the stabilization of soil organic matter (SOM). We analysed three acidic soils (dystric, skeletic Leptic Cambisol; dystric, laxic Leptic Cambisol; skeletic Leptic Entic Podzol) under Norway spruce (Picea abies) forest with different mineral compositions to determine the effects of soil type on carbon (C) stabilization in soil. The relationship between the amount and chemical composition of soil organic matter (SOM), clay content, oxalate‐extractable Fe and Al (Feo; Alo), and dithionite‐extractable Fe (Fed) before and after treatment with 10% hydrofluoric acid (HF) in topsoil and subsoil horizons was analysed. Radiocarbon age, 13C CPMAS NMR spectra, lignin phenol content and neutral sugar content in the soils before and after HF‐treatment were determined and compared for bulk soil samples and particle size separates. Changes in the chemical composition of SOM after HF‐treatment were small for the A‐horizons. In contrast, for B‐horizons, HF‐soluble (mineral‐associated) and HF‐resistant (non‐mineral‐associated) SOM showed systematic differences in functional C groups. The non‐mineral associated SOM in the B‐horizons was significantly depleted in microbially‐derived sugars, and the contribution of O/N‐alkyl C to total organic C was less after HF‐treatment. The radiocarbon age of the mineral‐associated SOM was younger than that of the HF‐resistant SOM in subsoil horizons with small amounts of oxalate‐extractable Al and Fe. However, in horizons with large amounts of oxalate‐extractable Al and Fe the HF‐soluble SOM was considerably older than the HF‐resistant SOM. In acid subsoils a specific fraction of the organic C pool (O/N‐alkyl C; microbially‐derived sugars) is preferentially stabilized by association with Fe and Al minerals. Stabilization of SOM with the mineral matrix in soils with large amounts of oxalate‐extractable Alo and Feo results in a particularly stable and relatively old C pool, which is potentially stable for thousands of years.  相似文献   

11.
Pair correlation coefficients (r) between the acidity parameters for the main genetic horizons of soddy-podzolic soils (SPSs), typical podzolic soils (TPSs), gley-podzolic soils (GPSs), and tundra surfacegley soils (TSGSs) have been calculated on the basis of a previously developed database. A significant direct linear correlation has been revealed between the pHwater and pHKCl values in the organic and eluvial horizons of each soil, but the degree of correlation decreased when going from the less acidic SPSs to the more acidic soils of other taxons. This could be related to the fact that, under strongly acid conditions, extra Al3+ was dissolved in the KCl solutions from complex compounds in the organic horizons and from Al hydroxide interlayers in the soil chlorites. No significant linear correlation has been found between the exchangeable acidity (H exch) and the activity of the [H]+ ions in the KCl extract (a(H+)KCl) calculated per unit of mass in the organic horizons of the SPSs, but it has been revealed in the organic horizons of the other soils because of the presence of the strongest organic acids in their KCl extracts. The high r values between the H exch and a(H+)KCl in all the soils of the taiga zones have been related to the common source and composition of the acidic components. The correlation between the exchangeable and total (H tot) acidities in the organic horizons of the podzolic soils has been characterized by high r values because of the common source of the acidity: H+ and probably Al3+ ions located on the functional groups of organic acids. High r values between the H exch and a(H+)KCl have been observed in the mineral horizons of all the soils, because the Al3+ hydroxo complexes occurring on the surface and in the interlayer spaces of the clay minerals were sources of both acidity forms.  相似文献   

12.
Andosols are characterised by high organic matter (OM) content throughout the soil profile, which is mainly due to the stabilisation of soil organic matter (SOM) by mineral interactions. The aim of the study was to examine whether there were differences in the chemical composition of mineral-associated SOM and free OM in the top A horizon and in the subsoil (horizons below the A11 horizon). Our experimental approach included the replicated sampling of a fulvic and an umbic Andosol under pine and laurel forest located on the island of Tenerife with a Mediterranean sub-humid climate. We determined the extent of the organo-mineral interactions by comparing the sizes of the light (free) and heavy (dense) soil fractions obtained by physical separation through flotation in a liquid with a density of 1.9 g cm–3. We determined the elemental and isotopic composition of both fractions and analysed their chemical composition by analytical pyrolysis. The elemental and isotopic composition showed similar values with depth despite the different vegetation and climatic conditions prevailing at the two sites. Carbon (C) stabilised by mineral interactions increased with depth and represented 80–90% of the total C in the lowest horizons. The heavy fractions mainly released N-containing compounds upon analytical pyrolysis, whereas lignin-derived and alkyl compounds were the principal pyrolysis products released from the light fractions of the top- and subsoil horizons. Principal component analysis showed that the chemical composition of OM stabilised by mineral interaction differs in the different horizons of the soil profile. In the A horizons, the chemical composition of this OM was similar to those of the light fractions, i.e. litter input. There was a gradual change in the bulk molecular composition from a higher contribution of plant-derived molecules in the light and heavy fractions of the A horizon to more microbial-derived molecules as well as black C-derived molecules at depth. We conclude that transport processes in addition to decomposition and possibly in situ ageing affect the chemical composition of mineral-associated OM in subsoils.  相似文献   

13.
熊佰炼  高扬  彭韬  颜雄 《土壤学报》2021,58(5):1472-1485
浅层岩溶裂隙(SKF)为植物提供生长空间、水分和养分,是石漠化地区的重要生境类型。以矩形和漏斗形SKF剖面为研究对象,采用干、湿筛分法和Le Bissonnais法,分析了不同土层土壤团聚体稳定性特征和破坏机理,测定了团聚体中土壤有机质(SOM)、碱解氮(AHN)和有效磷(AP)的含量。结果表明:SKF剖面粒径>0.25 mm的团聚体均超过90%,PAD值范围为0.01%~4.75%。干、湿筛作用下,MWD值变化范围分别为4.63~7.69 mm和1.33~4.24 mm,团聚体分形维数D范围分别为1.57~2.18和1.55~2.15。SKF土壤团聚体的稳定性随剖面深度加深而降低,矩形SKF土壤团聚体的稳定性要强于漏斗形SKF,快速湿润产生的消散作用是造成团聚体破碎的主要机制。团聚体破坏率(PAD)、团聚体分形维数(D)和平均重量直径(MWD)这三类指标均表明,SKF土壤团聚体水稳定性、通透性均较好。SKF剖面30 cm以下土层,团聚体SOM、AHN和AP含量相较0~20 cm土层大幅下降,含量范围分别为13.27±0.94~37.53±3.47 g?kg-1、71.58±3.27~198.54±22.63 mg?kg-1和0.15±0.03~ 0.38±0.10 mg?kg-1,土壤AP十分贫乏。SKF形态会影响SOM含量随土层深度的变化,矩形SKF 30 cm以下土层含量随深度加深而降低,而漏斗形SKF则没有显著性差异。随土层深度加深,矩形和漏斗形SKF剖面AP含量的变化趋势一致,AHN含量的变化趋势则与SKF形态之间没有明显关联。SOM、AHN和AP含量越高,SKF剖面团聚体水稳定性越强。  相似文献   

14.
To determine whether there is a relationship between the composition of soil organic matter and the activity of the soil microbial biomass, the composition of the organic matter in 12 typical arable soils in Northwest Germany was investigated by wet chemical analysis and CPMAS cross polarization magic angle spinning 13C-NMR spectroscopy. The data were correlated with the microbial biomass as estimated by substrate-induced respiration. A strong correlation between the microbial biomass and alkylic C compounds was observed (r=-0.960***). Recalcitrant substances were enriched in this fraction, which were classified as humic acids according to the wet chemical procedure. The microbial decomposition of these humic acids is probably retarded, due to their chemical structure and/or physical bonding, when the soil microbial biomass activity is limited.  相似文献   

15.
Distribution and transformation of SOM in an Argentinian Hapludoll under arable land use and afforested with Pinus radiata was investigated by a combined approach using particle-size fractionation, wet-chemical analysis and 13C NMR spectroscopy. The soils showed thick mollic A horizons and had high organic carbon (OC) contents even in the subsoil, clay-sized separates having the highest OC concentrations. Under pine, a thick forest floor was built up. CuO oxidation data indicated low transformation of lignin in the forest floor, but advanced oxidative decomposition in the mineral soil horizon. In contrast, non-cellulosic carbohydrates, appeared to be stabilized in the mineral soil horizon against mineralization. Humic acids extracted from the mineral soil horizons showed an extremely high aromaticity. We assume that this was due to the production of pyrogenic aromatic moieties (black carbon) as a result of frequent fires in this ecosystem. No clear profile differentiation with respect to SOM quality was obtained. Composition of SOM in the mineral soil appeared not yet influenced from land use.  相似文献   

16.
Relationships between soil lightness, soil organic matter (SOM) composition, content of organic C, CaCO3, and texture were studied using 42 top‐soil horizons from different soil types located in southern Germany. SOM composition was determined by CPMAS 13C NMR spectroscopy, soil color was measured by diffuse‐reflectance spectrophotometry and given in the CIE L*a*b* color coordination system (Commission Internationale de l'Eclairage, 1978). Multiple‐regression analysis showed, that soil lightness of top‐soil horizons is principally determined by OC concentration, but CaCO3 and soil texture are also major variables. Soil lightness decreased with increasing OC content. Carbonate content had an important effect on soil lightness even at low concentrations due to its lightening property. Regressions between soil lightness and organic C content were strongly linear, when the soils were differentiated according to texture and CaCO3 content. The aryl‐C content was the only SOM component which correlated significantly with soil lightness (rS = –0.87). In the linear regressions carried out on the different soil groups, soil aryl‐C content was a more significant predictor for soil lightness than total OC content.  相似文献   

17.
Data from two Podzol O and E horizons, sampled in 1-cm layers at 13 points within 2 m × 2 m plots, were used to test the hypothesis that the composition of hydrogen ions (H) and aluminium (Al) adsorbed to the solid-phase soil organic matter (SOM) determines pH and Al solubility in organic-rich acidic forest soils. Organically adsorbed Al was extracted sequentially with 0.5 m CuCl2 and organically adsorbed H was determined as the difference between total acidity titrated to pH 8.2 and Al extracted in 0.5 m CuCl2. The quotient between fractions of SOM sites binding Al and H (NAl/NH) is shown to determine the variation in pH and Al solubility. It is furthermore shown that models in which pH and Al solubility are linked via a pH-dependent solubility of an Al hydroxide and in which cation exchange between Al3+ and Ca2+, rather than cation exchange between Al3+ and H+, is the main pH-buffering process cannot be used to simulate pH or Al solubility in O and E horizons. The fraction of SOM sites adsorbing Al increased by depth in the lower O and throughout the E horizon at the same magnitude as sites adsorbing H decreased. The fraction of sites binding the cations Ca2+ + Mg2+ + K+ + Na+ remained constant. It is suggested that a net reaction between Al silicates (proton acceptors) and protonated functional groups in SOM (proton donors) is the long-term chemical process determining the composition of organically adsorbed H and Al in the lower part of the O and in the E horizon of Podzols. Thus, in the long term, pH and Al solubility are determined by the interaction between organic acidity and Al alkalinity.  相似文献   

18.
The knowledge of profile distribution of soil organic carbon (SOC) in long‐term agricultural systems could help to store atmospheric carbon in the soil. We investigated profile distribution of easily oxidisable Walkley–Black SOC pool (SOCWB) under long‐term rice‐wheat (R‐W) and maize‐wheat (M‐W) cropping systems under soils of different pedogenesis. The soil samples were collected from the characteristic genetic horizons and analysed for carbon fractions. The SOCWB was the highest in soils under R‐W systems in both Alfisols and Inceptisols. The SOCWB stock in the deeper profile horizons under R‐W system was significantly (p < 0·05) higher than that under M‐W system especially in Typic Hapludalfs. Long‐term R‐W system could store on average 3·55 Mg ha−1 more SOCWB than M‐W system in the Ap horizon. The SOCWB stock in the Ap horizon of all pedons was significantly (p < 0·05) higher in Alfisols than that in Inceptisols. About 60–90% of the total profile SOCWB stock was contributed by B‐horizon because of its greater extent. Considering the whole profile, clay was negatively correlated with SOC fractions; however, the SOC fractions were closely related to each other. This study reveals that the distribution of SOCWB is different in long‐term R‐W and M‐W systems not only in surface but also in the deeper horizons and the magnitude of the variation is influenced by the specific pedogenic processes. This indicates the significance of profile SOCWB stock instead of topsoil SOCWB stock in quantifying carbon retention potential of the long‐term management practices. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Occluded, or intra-aggregate, soil organic matter (SOM) comprises a significant portion of the total C pool in forest soils and often has very long mean residence times (MRTs). However, occluded C characteristics vary widely among soils and the genesis and composition of the occluded organic matter pool are not well understood. This work sought to define the major controls on the composition and MRT of occluded SOM in western U.S. conifer forest soils with specific focus on the influence of soil mineral assemblage and aggregate stability. We sampled soils from a lithosequence of four parent materials (rhyolite, granite, basalt, and dolostone) under Pinus ponderosa. Three pedons were excavated to the depth of refusal at each site and sampled by genetic horizon. After density separation at 1.8 g cm−3 into free/light, occluded and mineral fractions, the chemical nature and mean residence time of organics in each fraction were compared. SOM chemistry was explored through the use of stable isotope analyses, 13C NMR, and pyrolysis GC/MS. Soil charcoal content estimates were based on 13C NMR analyses. Estimates of SOM MRT were based on steady-state modeling of SOM radiocarbon abundance measurements. Across all soils, the occluded fraction was 0.5–5 times enriched in charcoal in comparison to the bulk soil and had a substantially longer MRT than either the mineral fraction or the free/light fraction. These results suggest that charcoal from periodic burning is the primary source of occluded organics in these soils, and that the structural properties of charcoal promote its aggregation and long-term preservation. Surprisingly, aggregate stability, as measured through ultrasonic dispersion, was not correlated with occluded SOM abundance or MRT, perhaps raising questions of how well laboratory measurements of aggregate stability capture the dynamics of aggregate turnover under field conditions. Examination of the molecular characteristics of the occluded fraction was more conclusive. Occluded fraction composition did not change substantially with soil mineral assemblage, but was increasingly enriched in charcoal with depth relative to bulk SOM. Enrichment levels of 13C and 15N suggested a similar degree of microbial processing for the free/light and occluded fractions, and molecular structure of occluded and free/light fractions were also similar aside from charcoal enrichment in the occluded fraction. Results highlight the importance of both fire and aggregate formation to the long-term preservation of organics in western U.S. conifer forests which experience periodic burning, and suggest that the composition of occluded SOM in these soils is dependent on fire and the selective occlusion of charcoal.  相似文献   

20.
Soil organic matter (SOM) stabilisation in subsoil horizons received much attention in recent years, due to the presence of compounds with very long residence times. The reasons for enhanced organic carbon stabilisation in subsoil horizons are poorly understood. In this study, we characterised SOM in adjacent soil compartments with different pedological functioning. We sampled SOM in visually identifiable zones in form of tongues and the adjacent soil matrix from deep soil horizons (60-140 cm depth) of 3 profiles under agricultural land. The samples were analysed for elemental and isotopic composition, radiocarbon age, chemical composition and lignin signature. The objective of the study was to examine if the tongues are characterised by contrasting carbon amounts and composition with regards to the soil matrix.Our results indicate that tongues have two times higher carbon content and are depleted in 15N with regards to the adjacent soil matrix. SOM in the tongues is characterised by up to modern radiocarbon ages, whereas SOM in the adjacent soil matrix is several thousand years old. Twenty percent more HF soluble carbon in the soil matrix suggest that more mineral bound, highly mobile SOM is present compared to tongues. Differences in chemical composition concern the lignin component, which seems to be preserved in the soil matrix. These data may be explained by different functioning in the two parts of the soil profile. In tongues, fresh carbon input by preferential flow and/or roots may lead to higher SOM turnover compared to the soil matrix. This heterogeneous distribution of stabilised SOM must be taken into account, when studying carbon sequestration in deep soil horizons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号