共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years the use of porous material sensors for matric potential, which were originally intended for soil drier than ?100 kPa, has been extended to wet soils. In these wetter soils, unpredictable behaviour of the sensors has been reported. We have studied the design of porous material sensors of matric potential in soil and propose a hypothesis to explain this unpredictability, and suggest recommendations for a design of sensor which will behave more reliably. The development of an experimental porous material sensor of matric potential based on this design is described. It operates between 0 and ?60 kPa, and both the drying and wetting moisture characteristics were measured. In this sensor the porous material was a ceramic and its water content was measured with a dielectric water content sensor. We tested a simple closed‐form hysteresis model to convert the measured water content of the porous material into matric potential under laboratory conditions. This was shown to give better results than using a calibration based on the drying moisture characteristic curve, where the predicted matric potentials were too small. The use of the experimental sensors in the field environment is described. Both types of sensor were installed using the same procedure. As far as we are aware the experimental sensor described in this paper is the first porous material sensor of matric potential that can be installed in the same way as a conventional tensiometer. Both conventional tensiometers and the experimental porous material sensors gave similar estimates of matric potential. 相似文献
2.
Purpose Soil strength and thus stability concerning wind erosion are controlled by the soil water content. The concept of soil critical
water content (Θ crit.) for deflation was extended to include matric potential (Ψ crit.) as well. The focus of this paper is to quantify the Θ crit. and Ψ crit. as the upper boundary for wind erosion or as the lower boundary for soil strength, to model the Ψ crit. at the immediate soil surface (0–0.2 cm) and to evaluate the effect of soil moisture upon erosion as a function of time and
sampling height. 相似文献
3.
土壤水分、基质势是描述土壤持水特性的重要参数,不同类型土壤的水分特征曲线存在明显差异。目前在野外环境下通常采用传感器分离测量法测定土壤水分特征曲线,但因土壤的空间异质性导致较大的测量误差。为此,该研究设计了一种可同步测量土壤水分、基质势和温度的复合传感器,主要组成部分包括32位MCU主控芯片、继电器切换模块、介电水分/基质势测量模块和温度测量模块,主控芯片通过控制继电器切换实现土壤水分、基质势和温度的同步测定,同时进行温度校正。采用森林土壤、农田壤土和砂土对复合传感器进行性能测试、标定和观测试验,并与商业化仪器的测量结果进行对比。结果表明:在干燥至近饱和范围内,复合传感器测定的土壤水分和基质势均具有良好的单调性,决定系数R2均大于0.98,土壤体积含水率和基质势的测量范围分别为0~40%和-1 500~-15 kPa,水分和基质势的响应时间分别为450 ms和150 s。采用商业化仪器分离测量方法与本文复合传感器分别同步测定森林土壤、农田壤土和砂土的水分特征曲线,2种方法测得的土壤水分特征曲线的皮尔逊相关系数均大于0.96。本文研制的复合传感器可以实现不同类型土壤水分特征曲线的准确测定,为农业生产和环境监测等领域提供可靠的技术支持。 相似文献
4.
The matric potential of soil water was determined using the freezing point depression method for a range of soil types. Soil water characteristic curves of these soils were obtained and compared with those obtained by the pressure plate, psychrometer, and vapor pressure methods resulting in excellent agreement between the freezing point depression method and the other methods over the range of -10.0 to -0.1 MPa in matric potential (i.e., temperature range of -8.00 to -0.08°C for freezing point) in all soil types. Over those ranges of matric potentials and temperatures, the effect of temperature-dependence on the freezing point of soils both in terms of specific volume of water and latent heat of water freezing was negligibly small. Freezing point of soils was independent of the bulk density of soils due to the fact that soil water in the range of matric potentials less than -0.1 MPa was affected predominantly by adsorptive forces between water and the soil matrix. The results from this study indicate that the freezing point depression method is a simple and practical technique to determine the soil water content in the vicinity of the wilting point 相似文献
5.
A method was developed for rapid measurement of soil denitrification under conditions where natural soil structure and aeration status is maintained. Air was continuously recirculated by means of a membrane pump through a soil core and a sample loop of a gas chromatograph equipped with an electron capture detector. Addition of acetylene to the recirculating air permitted measurement of denitrification in the soil core. Because of the rapid distribution of C 2H 2 and removal of N 2O provided by the gas flow, denitrification rates could usually be determined in less than 2 h. By means of external 6-way and 8-way valves, four soil cores could be simultaneously analyzed on one gas Chromatograph equipped with dual detectors. Soil cores could also be stored at 4°C for later analysis without affecting the denitrification rate. The detection limit for denitrification rate measurements was 0.5 ngN g ?1 soil day ?1 or approximately 2.6 g N ha ?1 day ?1. Coefficients of variation for repeated measurements on the same soil core were usually less than 15%, but coefficients of variation for repacked or natural cores of the same soil were much higher (70–90%) Disruption of the natural soil structure by sieving increased the denitrification rate in an aggregated clay loam soil, but decreased the rate in a non-aggregated sandy soil. These results illustrate the importance of maintaining natural soil structure during denitrification measurements. The effect of pumping gas through soil was evaluated by comparing denitrification rates in soil cores where C 2H 2 was allowed to distribute into the soil by passive diffusion with rates obtained by pumping. Lower denitrification rates were observed in the static incubation presumably due to limited diffusion of C 2H 2 into or N 2O out of the denitrifying sites in the soil. This diffusion limitation could be overcome in the static incubations if C 2H 2 was initially distributed through the soil by pumping. This gas flow method is well suited to the study of soil denitrification rates under nearly natural conditions because the indigenous substrates and anaerobic microsites are preserved, the rapidity in which denitrification rates can be measured, and the high sensitivity and relatively low analytical variability of the method. 相似文献
6.
A filter–paper technique that can be used to measure the matric potential of field soil is described in detail. When a calibrated batch of filter papers is used, the precision is limited by the variability between individual papers and the limitation of weighing to the nearest mg. The absolute accuracy is also limited by the instruments used for calibration. There was reasonable agreement between batches of the same type of paper, suggesting that our generalized calibration curves can be used for Whatman No. 42 filter papers where accuracy is not paramount. For potentials ≥?2.5 MPa, papers need to be equilibrated with the soil for 6 d. To achieve the same accuracy at lower potentials longer equilibration periods are required. Results suggest that the technique should be effective down to at least ?100 MPa if soils are allowed to equilibrate fully with the papers. Coefficients of determination ( r2) for the calibration lines were all ≥0.92. A regression of log(-matric potential) measured by the filter paper technique against measurements made using tensiometers and a psychrometer over a range of potentials between ?1 kPa and ?10 MPa gave an r2 value of 0.995. 相似文献
7.
The influence of soil matric potential on sharp eyespot was examined in wheat seedlings following seed treatment with the fungicide cyproconazole. Emergence of wheat was tested at matric potentials between 0 and –850 hPa in non-infested soil and in soil infested with Rhizoctonia cerealis. Optimal shoot emergence was at –50 and –20 hPa in non-infested and infested soil, respectively. Disease severity was strongly affected by soil matric potential. It continuously increased as matric potential decreased from –5 to –200 hPa. In contrast, optimum growth conditions for the pathogen was at matric potentials between –50 and –200 hPa. With decreasing matric potential the drought stress for the plant seems to increase its predisposition to the pathogen. Seed treatment with cyproconazole reduced sharp eyespot although disease severity increased with decreasing soil matric potential. 相似文献
8.
PurposeIn the lowland area of the North China Plain (NCP), increasing utilization of brackish water could promote the transformation of precipitation into available water resources, and alleviate the conflict between increase food production and freshwater scarcity. However, the processes of soil water movement and salt migration might be altered, because utilization of brackish water results in frequent changes in groundwater depth and thickness of vadose zone. Thus, it was necessary to understand soil water movement and salt migration when using brackish water for irrigation. Materials and methodsIn this study, soil matric potential (SMP) and total dissolved solids (TDS) at multiple depths were measured in situ to investigate the mechanisms of soil water movement and salt migration at one grassland (site 1) and at three typical irrigated croplands (sites 2, 3, and 4) with different soil textures and groundwater depths in a lowland area of the NCP. Results and discussionThe study showed that deep soil water and groundwater were recharged generally following heavy precipitation during rainy season. SMP values increased quickly at site 4 due to relatively homogeneous soils, followed by site 3?>?site 2?>?site 1 with an obvious hysteresis response of SMP at multiple depths to precipitation. Soil water mainly moved downward in piston flow, and preferential flow also existed in the soil above 100 cm in the percolation process at four sites. Generally, SMP values followed the order of site 4?>?site 1?>?site 2?>?site 3 and exhibited an inverse trend for TDS, which was mainly due to soil heterogeneity and soil texture in vertical profiles. The differences in SMP among the four sites were mainly due to land use and groundwater depth. There were significantly differences in spatiotemporal distribution of water and salts between homogenous and heterogeneous soils. The processes of infiltration and water redistribution ended quickly in relatively homogeneous soils after heavy rains. However, there was obvious hysteresis in SMP with an increase in soil depth in heterogeneous soils. ConclusionsHomogenous soils favored water infiltration, salt leaching, and groundwater recharge, and the flow of soil water flow was blocked and salt accumulated significantly in layered soils. The soil water movement and the transformation relationship between water and salt in the vadose zone provided a basis for utilization of brackish water irrigation in lowland region of the NCP. 相似文献
9.
土体冻结过程中不同位置液态水的能量差引起了水分迁移与重分布,进而引发冻胀,关于势能差驱动下的冻土水分迁移问题一直由于技术手段的匮乏而没有完全解决。利用新近推出的可用于冻土水热研究的p F meter基质势传感器与5TM水分传感器,实时监测研究饱和青藏红黏土单向冻结过程中基质势-液态含水率-温度-含冰量-水分迁移量-冻胀变形之间在时间、空间上的耦合变化关系。结果表明:土体温度场变化引起内部液态水相变,打破了原有的能量平衡,试验结束后12~14 cm土样高处含水率最高达到55%,靠近冻融交界面处(10 cm)的未冻区含水率减小至25.8%,水分整体向冷端发生迁移;土体冻胀的快慢及冻胀量大小与水分迁移速率及数量具有线性关系;试验后土体内总含水率的分布与分凝冰透镜体的分布一致,已冻区液态含水率的分布与温度梯度近似成线性关系,未冻区液态含水率的分布与水分的迁移量有关,与温度梯度无关。此外,温度场对水分场的变化具有诱导作用但二者并不同步,当冻结速率减小到一定程度时水分才开始迁移,第10小时后温度场趋于稳定而水分迁移并未停止。研究成果揭示了土体单向冻结过程中液态水、基质势、温度等物理参数的动态变化过程及内在联系,为冻胀机制的研究以及冻胀模型的建立提供了试验基础。 相似文献
10.
该文通过田间试验研究覆膜滴灌条件下土壤基质势对土壤盐分分布的影响。试验设3个水平的土壤基质势处理: -5 kPa (S1),-15 kPa (S2) 和-25 kPa (S3),每个处理重复3次,按随机区组布置。试验结果表明:垄作覆膜滴灌条件下各盐分离子的迁移和分布特性不同。Na+ 和Cl- 易被灌溉水淋洗,主要分布在湿润体的边缘,在滴头附近含量最低,远离滴头含量逐渐增大,土壤基质势越高,淋洗效果越明显,离子含量和土壤总盐量呈线性相关。Mg2+、Ca2+、HCO3-含量受土壤基质势影响较小,在土壤剖面分布相对均匀,离子含量和土壤总盐量之间没有明显相关关系。盐渍化土壤中总盐分的淋洗主要受到作物播种时第一次大水量灌溉和苗期阶段较高土壤基质势控制的灌溉影响,作物生育中后期不同土壤基质势处理对土壤总盐分的淋洗影响较小。该研究结果对盐碱地水盐调控和灌溉制度的制定具有理论意义和应用价值。 相似文献
12.
Understanding of the detailed mechanisms of how roots anchor in and reinforce soil is complicated by the variability and complexity of both materials. This study controlled material stiffness and architecture of root analogues, by using rubber and wood, and also employed real willow root segments, to investigate the effect on pullout resistance in wet and air‐dry sand. The architecture of model roots included either no laterals (tap‐root) or a single pair at two different locations (herringbone and dichotomous). During pullout tests, data on load and displacement were recorded. These studies were combined with Particle Image Velocimetry (PIV) image analysis of the model root‐soil system at a transparent interface during pullout to increase understanding of mechanical interactions along the root. Model rubber roots with small stiffness had increasing pullout resistance as the branching and the depth of the lateral roots increased. Similarly, with the stiff wooden root models, the models with lateral roots embedded deeper showed greatest resistance. PIV showed that rubber model roots mobilized their interface shear strength progressively whilst rigid roots mobilized it equally and more rapidly over the whole root length. Soil water suction increased the pullout resistance of the roots by increasing the effective stress and soil strength. Separate pullout tests conducted on willow root samples embedded in sand showed similar behaviour to the rigid model roots. These tests also demonstrated the effect of the root curvature and rough interface on the maximum pullout resistance. 相似文献
13.
Summary To assess the ability of endogeic earthworms to tolerate variations in soil water potential, groups of these worms were subjected to different, constant levels of soil water suction () over a period of 17 days. At water suctions varying from 0.3 kPa (pF 0.5) to 1990 kPa (pF 4.3), the earthworms showed no physiological ability to a maintain constant internal water content as assessed by the fresh weight. The relationship between weight loss and the increase in water, suction was modelled and the following critical thresholds were identified: <60 kPa did not affect earthworm weight; >620 kPa led to diapause; between these two values, earthworm weight was closely governed by the variation in . At the intermediate suction of 167 kPa, the exchange of water between the earthworms and the soil was at a maximum, and this value is therefore proposed as the level at which the diapause is induced. These modelled values were the diapause is induced. These modelled values were compared with those obtained under field conditions. 相似文献
14.
Abstract Plant root exposure to soil aluminum (Al) depends on the soil solution Al concentration and transport to the root by diffusion. Changes in Al diffusive flux for two Oxisols was measured under laboratory conditions as a function of pH, water matric potential, and applications of gypsum, potassium chloride, and calcium phosphate. Double‐faced cation exchange resin sheets served as sinks for Al transported during 10‐day incubations through chambers containing 314 cm 3 of soil. Across a range of soil pH values from 4.5 to 5.5, maximum diffusive flux of Al occurred at pH values of 4.7–4.8 in both soils and corresponded to increases of 2.2–3.0% relative to the unlimed treatment. Between pH values of 4.7–4.8 and 5.4, diffusive flux of Al decreased by 38 and 46% in the two Oxisols. Diffusive flux of Al decreased by 16–20% for the two Oxisols as soil water potentials decreased from ‐10 to ‐200 kPa. Magnitude of the reductions in diffusive flux of Al with decreasing soil water potential were less than those reported for diffusive flux of phosphorus (P) in prior investigations. Diffusive flux of Al increased by as much as 4‐fold with additions of CaSO 4 and KCl, which increased the soil solution Al concentration. Additions of 400 mg P dm ‐3 of soil had no effect on Al diffusion in either Oxisol. 相似文献
15.
The capillary-sorption hysteresis within the entire range of the soil water contents has been studied in zonal soil types of the European part of Russia. The degree of hysteresis in the sorption and capillary-sorption ranges has been estimated. The main factors of the hysteresis are established. In the area of water sorption, this phenomenon is due to different wetting angles in the course of the soil wetting-drying cycles because of the heterogeneous hydrophilic and hydrophobic surfaces of the soil particles. In the area of capillary moistening, the pore-size distribution as a function of the soil macro-and microstructure is important, as this characteristic is closely related to shrinking and swelling processes. 相似文献
16.
A soil—plant—atmosphere model for sunflower ( Helianthus annuus L.), together with clear sky weather data for several days, is used to study the relationship between canopy temperature and root-zone soil water potential. Considering the empirical dependence of stomatal resistance on insolation, air temperature and leaf water potential, a continuity equation for water flux in the soil—plant—atmosphere system is solved for the leaf water potential. The transpirational flux is calculated using Monteith's combination equation, while the canopy temperature is calculated from the energy balance equation. The simulation shows that, at high soil water potentials, canopy temperature is determined primarily by air and dew point temperatures. These results agree with an empirically derived linear regression equation relating canopy-air temperature differential to air vapor pressure deficit. The model predictions of leaf water potential are also in agreement with observations, indicating that measurements of canopy temperature together with a knowledge of air and dew point temperatures can provide a reliable estimate of the root-zone soil water potential. 相似文献
17.
Quantification of phosphorus (P) concentrations in microbial biomass is required to better understand how P immobilization and turnover in soils are controlled by environmental and anthropogenic factors. Soil microbial biomass P (MBP) is generally extracted using the chloroform fumigation-direct extraction procedure and then analysed for P using the ammonium molybdate-ascorbic acid method on a flow injection analysis (FIA) system. Our objective was to determine whether a microscale malachite green method on a microplate system would provide as accurate MBP analysis as the ascorbic acid method on an FIA system. Twelve soils were collected from agricultural fields in southwestern Quebec, fumigated with chloroform and extracted with 0.5 M NaHCO 3 (pH 8.5). The dissolved inorganic phosphorus (DIP) concentration in fumigated soils was not affected by the method of analysis, and results from the two systems of analysis were significantly correlated ( r =0.998, P <0.05). The MBP concentrations in these agricultural soils were between 0.36 and 60.05 g P g –1, consistent with other published values. Our results indicate that MBP can be assessed equally well with the malachite green method using a microplate system as with the ascorbic acid method on an FIA system. The microplate system is rapid and requires smaller volumes of samples and reagents than the FIA system, thus reducing the quantity of waste produced. We conclude that the microscale malachite green method could be applied to measure the MBP concentration in a wide range of soils with good sensitivity, reproducibility and accuracy. 相似文献
18.
在中国科学院海伦农田生态系统国家野外科学观测研究站, 应用长期定位试验研究了干旱年份不同施肥处理下的黑土农田水分状况.结果表明:在干旱年份, 大气降水不能满足玉米对水分的需求, 土壤利用"土壤水库"中的水分进行补给, 在玉米全生育期土壤供水量占玉米耗水量的比例为22.23%~25.99%;肥料的施用能够调节土壤的供水能力, 表现为化肥+有机肥处理>化肥处理>无肥处理;玉米的耗水量和耗水强度也表现出相同趋势;肥料的施用, 特别是化肥和有机肥配合施用能够提高玉米的水分利用效率. 相似文献
19.
通过在红壤坡耕地上营建不同抗旱措施,以顺坡耕作为对照,研究梯田、柱孔和坑穴3种抗旱措施对土壤养分的影响。结果表明:坑穴措施对土壤有机质、全氮和全磷的改良效果优于柱孔和梯田,而柱孔对土壤全钾的改良效果最好,与顺坡耕作相比,梯田没有提高土壤的全磷质量分数;坑穴改良碱解氮和速效磷的能力高于柱孔,而速效钾则相反,坡耕地改为梯田形式后,提高了有效磷质量分数,碱解氮和有效钾的质量分数却在降低。 相似文献
20.
针对当前植物根区不同深度下土壤含水量测量存在的传感器安装困难、对原位土壤扰动大以及传感器间一致性差等问题,该文基于阻抗法设计了一种三深度土壤水分传感器。该传感器不仅可以同时测量3个不同深度的土壤含水量,并且在安装时对原位土壤扰动极小。试验标定结果显示,该传感器具有较高的精度,所测的土壤含水量与烘干法所得的实际含水量非常吻合,决定系数R2和均方根误差(RMSE,root mean square error)分别达到0.996和0.013 cm3/cm3;传感器可适用于多种不同质地的土壤,在3种不同质地土壤中的输出灵敏度均大于1V/(cm3/cm3)。传感器的输出与土壤体积含水量呈现良好的线性关系,对黏土、砂土及壤土的决定系数R2分别达到0.983、0.965和0.975;土壤水分入渗试验结果进一步表明,该传感器性能良好,3个不同深度的传感器电极具有较高的一致性,在壤土和砂土样本中3个深度传感器电极的输出,相对误差分别小于2%和5%。 相似文献
|