首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
LIN Yu-Suo  XUE Jia-Hua 《土壤圈》1996,6(3):225-231
The pH effect on the sorption kinetics of heavy metals in soils was studied using a constant flow leaching method. The soil samples were red soil collected from Yingtan, Jiangxi, and yellow-brown soil from Nanjing, Jiangsu. The heavy metals tested were zinc and cadmium. Assuming that the experimental data fitted to the following kinetic rate equation: 1/c·dx/dt = kx-kx, the rate constant k of sorption could be determined from the slope of the straight line by plotting of 1/c·dx/dt vs. x. The results showed that the pH effect on the rate constants of heavy mental sorption in soils was very significant. The values of k decreased with increasing pH. The sorptions were more sensitive to pH in red soil than in yellow-brown soil.  相似文献   

2.
Anthropogenic activities have caused the accumulation of heavy metals in the soil environment. Pollution of the soils significantly reduces environmental quality and affects human health. In many recent studies, magnetic susceptibility measurements have been used for pollution monitoring. The objective of this research was to determine the spatial variability of magnetic properties and selected heavy metals and the effects of land use on their variability in the surface soils of the Isfahan region, Central Iran. A total of 158 composite surface (0-5 cm) samples of calcareous soils were collected from an area of about 700 km2, located along a cross-border transect from Isfahan City to a steel plant, covering urban, industrial, agricultural and uncultivated land uses. Concentrations of copper (Cu), zinc (Zn), lead (Pb), manganese (Mn), iron (Fe), nickel (Ni), chromium (Cr), and cobalt (Co) and magnetic parameters, magnetic susceptibility at low frequency (χlf), natural remanent magnetization (NRM), saturation isothermal remanent magnetization (SIRM), and isothermal remanent magnetization at the field of 100 mT (IRM100mT) and the backfield of 100 mT (IRM-100mT), were measured in all the soil samples. Results showed that magnetic susceptibility in the urban and industrial land topsoils (0--5 cm) samples was significantly higher than that in the agricultural and uncultivated land soils in the study area. Concentrations of Cu, Zn, Pb, Mn, and Fe were positively correlated with magnetic properties (χlf, IRM100mT, SIRM, IRM-100mT, and NRM), which could be attributed to their inputs from traffic emissions and industrial activities at the study sites. Ni and Cr concentrations showed significant negative correlations with magnetic properties. No significant correlation was found between Co concentration and magnetic parameters. The Tomlinson pollution load index (PLI) showed significant correlation with the magnetic properties (χlf, IRM100mT, SIRM, IRM-100mT, and NRM). The spatial distribution of the selected heavy metals and χlf in the study area suggested that activities at the urban and industrial land sites caused greater pollution as compared to that at the study sites of other land uses. The concentrations of Cu and Zn seemed to have been affected by anthropogenic sources, whereas Ni, Cr, and Co were mainly controlled by natural sources in the study area. Moreover, the concentrations of soil Pb and Fe in the study area could be affected by both lithologic and anthropogenic sources. The magnetic parameters appeared to be a proxy measure for the degree of heavy metal contamination and could be a potential method for the detection and mapping of contaminated soils.  相似文献   

3.
M. DAYANI  J. MOHAMMADI 《土壤圈》2010,20(5):568-577
Due to the lack of regulation and environmental education and awareness, Sepahanshahr located in vicinity of Isfahan City, central Iran, is now a rapid growing residential area suffering from the considerable consequences of poorly regulated mining activities operating in its vicinity. A survey was carried out on soil Pb, Zn and Cd concentrations around Sepahanshahr Town to explore the spatial structure of Pb, Zn and Cd distribution and to map their concentrations using geostatistical techniques. 100 near-surface soil samples were collected and analyzed for Pb, Zn and Cd and some related soil physical and chemical variables such as pH, organic matter content, electrical conductivity, and clay, silt and sand contents. The variography results showed a strong spatial dependency in heavy metals concentration due to the dilution effects of natural factors including atmospheric dispersion and precipitation. The almost same range values calculated for both ln-transformed Pb and sand data suggested presence of spatial co-regionalization. However, ln-transformed Zn data showed a shorter spatial dependency among the three tested heavy metals. Kriged maps of all three heavy metals showed a strong gradient of contamination around the three mining sites activating in the area. The results of this study provide insight into identification of the extent and spatial variability of Pb, Zn and Cd pollution in the mining sites and surrounding urban areas.  相似文献   

4.
东亚季风与城市活动影响下南京市大气沉降多元特征研究   总被引:2,自引:0,他引:2  
Atmospheric deposition, a major pathway of metals entering into soils, plays an important role in soil environment, especially in urban regions where a large amount of pollutants are emitted into atmosphere through various sources. In order to understand the characteristics of atmospheric deposition in urban area and its relation with natural and anthropogenic sources, a three-year study of atmospheric deposition at three typical sites, industrial zone (IN), urban residential area (RZ) and suburban forested scenic area (FA), was carried out in Nanjing, a metropolitan city in eastern China from 2005 to 2007. The bulk deposition rate and element composition of atmospheric deposition varied spatio-temporally in the urban zones of Nanjing. The concentrations of Cu, Zn, Pb and Ca in the atmospheric deposits were strongly enriched in the whole Nanjing region; however, anthropogenic pollutants in atmospheric deposits were diluted by the input of external mineral dust transported from northwestern China. Source apportionment through principal component analysis (PCA) showed that the background atmospheric deposition at the FA site was the combination of external aerosol and local emission sources. The input of long-range transported Asian dust had an important influence on the urban background deposition, especially in spring when the continental dust from the northwestern China prevailed. Marine aerosol source was observed in summer and autumn, the seasons dominated by summer monsoon in Nanjing. In contrast, the contribution of local anthropogenic emission source was constant regardless of seasons. At the RZ and IN sites, the atmospheric deposition was more significantly affected by the nearby human activities than at the FA site. In addition, different urban activities and both the winter and summer Asian monsoons had substantial impacts on the characteristics of dust deposition in urban Nanjing.  相似文献   

5.
城市土壤多环芳烃的特征和来源解析研究进展   总被引:2,自引:0,他引:2  
Polycyclic aromatic hydrocarbons (PAHs) are mainly produced by combustion processes and consist of a number of toxic compounds.They are always emitted as a mixture and have become a major type of pollutants in urban areas.The degree of soil contamination by PAHs is of special concern in areas immediately in proximity to cities with heavy traffic,factories,older buildings,and infrastructure.The accumulation of soil PAHs is also affected by non-anthropogenic factors,such as climate,vegetation,and soil property.This paper reviews three typical source identification techniques,including diagnostic ratios,positive matrix factorization,and principle conrponents analysis.The advantages or disadvantages of these techniques are analyzed.It is recommended that multiple identification techniques be used to determine the sources in order to minimize the weaknesses inherent in each method and thereby to strengthen the conclusions for PAH source identification.  相似文献   

6.
Plants have diverse strategies to cope with phosphorus (P) deficiency. To better understand how maize responds to P deficiency, a field experiment with two P levels, 0 and 100 kg P2O5 ha-1 (P0 and P100, respectively), was carried out as a part of a long-term Pfertilizer field trial. Plant and soil analyses showed that P-deficient maize reduced its growth rate, increased P use efficiency, and formed more thin roots with the diameter less than 0.6 mm at jointing and silking stages, compared to the plants treated with P100. Further, there were no differences in major inorganic P fractions (Ca 2 -P, Ca 8 -P, Al-P, Fe-P, occluded P and Ca 10 -P) between the rhizospheric and bulk soils at each harvest, even when soil Olsen-P was only 1.38 mg kg-1 . These results suggested that maize responded to P deficiency by reducing the internal P demand for growth and increasing P acquisition ability by favorable root morphological alteration at low carbon cost.  相似文献   

7.
浙江省永康城市土壤重金属元素富集特征   总被引:6,自引:1,他引:6  
永康169个城市土壤X荧光光谱测试分析表明:Cu、Mn、Co、Fe、Cr、Pb、Ni、Ti八种重金属元素的平均含量超过金衢盆地土壤背景值,且以工业用地类样品的富集程度最高。永康城市土壤重金属污染水平呈整体较轻,局部严重态势;各重金属元素的离散程度均较大,Cu为强变异元素,变异系数为152.93%,其他元素也为中强变异,表明永康城市土壤重金属元素含量在研究区内有较大差异。多元统计分析表明,Cr、Ni、Cu、Pb、Mn等重金属元素主要来源于当地的五金制造等工业和交通运输的影响;Fe、Ti、Co来源主要与成土过程中元素的积累有关,其中Fe有部分来源于五金生产。  相似文献   

8.
Mobility and bioavailability of lead (Pb) could be affected considerably by soil physicochemical properties;however,less is known about the effect of Pb levels and aging time.This study was conducted to evaluate the effects of Pb levels and wetting-drying (WD) cycles on distribution and bioavailability of Pb in three semi-arid zone soils treated with different levels of Pb(NO 3) 2.Wetting-drying cycles simulated the actual field irrigation in the semi-arid soils.A soil with a long history of Pb contamination was also taken as a reference soil.The soils were spiked with various levels of Pb and incubated under WD cycles for 160 d.Sequential extractions and batch sorption experiments were performed to assess the fractionation of Pb in the spiked soils.Redistribution index (U ts) and reduced partitioning parameter (I R) were applied to semi-quantify the distribution of Pb in the spiked soils.A small amount of Pb sorbed was desorbed by the soils,indicating a strong and irreversible binding of Pb in the studied soils.Contribution of carbonate-bound (Car) and residual (Res) Pb fractions to the total Pb of the soils was more than 97%.The Car,soluble plus exchangeable (SE),and organic matter-bound (OMB) fractions of Pb were transferred to the Res fraction under the WD cycles.The I R and U ts values were influenced by Pb loading levels and WD;therefore,the Pb lability and/or redistribution pattern could semi-quantitatively be assessed via these parameters.At the end of the experiment,the I R and U ts values for the Pb salt-spiked soils did not show the quasi-equilibrium state.The lability of Pb in the soils decreased with increasing incubation time and showed a strong dependence on Pb levels and soil chemical composition.WD cycles significantly affected the overall lability of Pb in soils through influencing the redistribution of Pb among solid-phase components.  相似文献   

9.
A long-term field experiment was carried out in the experiment farm of the Sao Paulo State University, Brazil, to evaluate the phytoavailability of Zn, Cd and Pb in a Typic Eutrorthox soil treated with sewage sludge for nine consecutive years, using the sequential extraction and organic matter fractionation methods. During 2005-2006, maize (Zea mays L.) was used as test plants and the experimental design was in randomized complete blocks with four treatments and five replicates. The treatments consisted of four sewage sludge rates (in a dry basis) : 0.0 (control, with mineral fertilization), 45.0, 90.0 and 127.5 t ha-1, annually for nine years. Before maize sowing, the sewage sludge was manually applied to the soil and incorporated at 10 cm depth. Soil samples (0-20 cm layer) for Zn, Cd and Pb analysis were collected 60 days after sowing. The successive applications of sewage sludge to the soil did not affect heavy metal (Cd and Pb) fractions in the soil, with exception of Zn fractions. The Zn, Cd and Pb distributions in the soil were strongly associated with humin and residual fractions, which are characterized by stable chemical bonds. Zinc, Cd and Pb in the soil showed low phytoavailability after nine-year successive applications of sewage sludge to the soil.  相似文献   

10.
苹果栽培区土壤参数的近红外及中红外测定   总被引:2,自引:0,他引:2  
Soil quality monitoring is important in precision agriculture.This study aimed to examine the possibility of assessing the soil parameters in apple-growing regions using spectroscopic methods.A total of 111 soil samples were collected from 11 typical sites of apple orchards,and the croplands surrounding them.Near-infrared(NIR) and mid-infrared(MIR) spectra,combined with partial least square regression,were used to predict the soil parameters,including organic matter(OM) content,pH,and the contents of As,Cu,Zn,Pb,and Cr.Organic matter and pH were closely correlated with As and the heavy metals.The NIR model showed a high prediction accuracy for the determination of OM,pH,and As,with correlation coefficients(r) of 0.89,0.89,and 0.90,respectively.The predictions of these three parameters by MIR showed reduced accuracy,with r values of 0.77,0.84,and 0.92,respectively.The heavy metals could also be measured by spectroscopy due to their correlation with organic matter.Both NIR and MIR had high correlation coefficients for the determination of Cu,Zn,and Cr,with standard errors of prediction of 2.95,10.48,and 9.49 mg kg-1 for NIR and 3.69,5.84,and 6.94 mg kg-1 for MIR,respectively.Pb content behaved differently from the other parameters.Both NIR and MIR underestimated Pb content,with r values of 0.67 and 0.56 and standard errors of prediction of 3.46 and 2.99,respectively.Cu and Zn had a higher correlation with OM and pH and were better predicted than Pb and Cr.Thus,NIR spectra could accurately predict several soil parameters,metallic and nonmetallic,simultaneously,and were more feasible than MIR in analyzing soil parameters in the study area.  相似文献   

11.
陇海铁路郑州—圃田段铁路旁土壤重金属污染   总被引:4,自引:0,他引:4  
The pollution status and horizontal distribution of heavy metals (Ni, Pb, Cr, Zn, Cu, and Cd) in the soil on railroad side along the Zhengzhou-Putian section of Longxi-Haizhou Railroad were studied by collecting soil samples along a sampling section perpendicular to the railroad at the distances of 0, 10, 20, 30, 50, 100, 200, 300, and 500 m from the railroad edge. The concentrations of heavy metals in the sampling soils were higher than those of the control site. The concentrations of Pb, Zn, and Cd were found to be the highest in the soils at the railroad edge, and then decreased with increasing distance from the railroad. The highest concentrations of Ni, Cr, and Cu in soils were located at about 10-30 m from the railroad. Compared with the single factor pollution index (SFPI) of heavy metals calculated for the control site, the average SFPI from the sampling sites decreased in the order of Cr > Cd > Pb > Zn > Ni > Cu. There were notable negative correlations between the integral pollution index (IPI) of soil heavy metals at all sampling sites and the distances from the railroad. According to three IPIs calculated from the background values of heavy metals in och-aquic Cambisols, the heavy metal concentrations in the control soil, and the 2nd levels for soil heavy metals in GB15618-1995, the study area could be divided, based on the distances from the railroad, into four pollution zones: heavy pollution zone (0-10 m), medium pollution zone (10-50 m), slight pollution zone (50-100 m), and warning zone (100-500 m), respectively.  相似文献   

12.
13.
评价城市土壤磷素淋溶风险的化学指标   总被引:8,自引:0,他引:8  
Soils from urban and suburban areas are normally enriched with phosphorus (P). Sixteen urban soils with a wide range of total P concentrations under typical urban land uses were sampled and analyzed for extractable P concentrations using water, sodium bicarbonate and citric acid. Meanwhile the soils were artificially leached in columns and P concentrations in the leachates were determined. With linear regression a two-stage linear relationship was found to exis tbetween concentrations of P in the leachates and soil P contents obtained by various chemical measurements, i.e., there was a “change-point” denoting the critical threshold value for extractable P between the regression lines, above which concentrations of P in leachates increased substantially. These threshold “change-point” values were 1.5 mg kg^-1 for water-soluble P and CaCl2-P, 25 mg kg^-1 for Olsen-P, and 250-350 mg kg^-1 for citric acid-P with the sharpest change and the best predictor [τ2 (upper) = 0.928, τ2 (lower) = 0.807] appearing for Olsen-P. These “change-points” were considered important criteria in assessing the risk of P leaching from urban soils and could be used as standards to delineate and target hazardous areas in urban and suburban areas.  相似文献   

14.
We determined heavy metal, polycyclic aromatic hydrocarbon (PAH), and polychlorinated biphenyl (PCB) concentrations in 18 topsoils of Uberlândia (420,000 inhabitants, Brazil) and in 3 rural topsoils. Concentrations of Al (11—124 g kg—1) and Fe (13—109 g kg—1) are large because of desilification. Concentrations of Cd (0.1—0.5 mg kg—1), Cr (13—72), Cu (6—154), Mn (28—974), Ni (4—29), Pb (3—26), Zn (4—107), the sum of 20 PAHs (=Σ20PAHs:7—390 μg kg—1), and the sum of 14 PCBs (=Σ14PCBs:0.05—1.25) are comparable to or below background concentrations in temperate soils except for Cu at two sites. More than 67% of the metals are strongly bound in Fe oxides and silicates; metals are more bioavailable in the urban than in the rural soils. The most abundant PAHs in the urban soils, on average, are naphthalene (19.0 ± 13.4% of Σ20PAHs) and the benzo(b+j+k)fluoranthenes (11.4 ± 6.7%); the most abundant PCBs are nos. 138 (23.3 ± 11.0% of Σ14PCBs) and 153 (14.3 ± 6.4%). The rural soils contain larger percentages of low molecular PAHs and up to tetra‒chlorinated PCBs than the urban soils. The different pollutant concentrations and patterns in the studied tropical compared with many temperate soils indicate different sources and fate.  相似文献   

15.
Human activities can affect the biogeochemical cycling of phosphorus substantially. However, the relationship between P accumulation and urban development process is largely unknown. This study investigated the influence of urban development on the P accumulation in urban and suburban soils, using Nanjing (China) as a case. Based on its urban development history, Nanjing was divided into suburban and urban area, and the urban area was subdivided into urban north and urban south. Soil total P (TP) and available P (AP) of 578 samples from 68 pedons at different locations were measured. Thickness‐weighted mean P content of each pedon (Pw), P content of the surface soil layer (Ps), the highest P content of each pedon (Ph), and the lowest P content (Pl) of each pedon were selected as statistical indices. Compared with the background value, urban and suburban soils were enriched in P. The highest TP content was up to 11.14 g P kg–1, and the highest AP content was up to 360 mg P kg–1. However, analysis of variance (ANOVA) and multiple comparisons of Pw, Ps, Ph, Pl showed that urban south with longest residential history had the highest TPw, TPs TPh, and APw, APl contents, and urbanizing suburban had the lowest TPw and APw, APl contents. For both APs and APh, there was no significant difference between suburban and urban area. However, significant differences between urban south and urban north were observed. The results demonstrated that urban development process, including population quantity and level of urban infrastructure, could influence soil P accumulation and distribution in urban environment. A more detailed assessment is required to avoid the potential secondary eutrophication caused by excess P release from those anthropogenic high‐P soils.  相似文献   

16.
Urban and peri-urban agriculture in dry semi-arid northern Nigeria relies on untreated wastewater for all-year irrigation and the production of vegetables for urban markets. Human and animal exposure to potentially toxic metals is attributed to the consumption of vegetables raised in metal-polluted soils. The objective of this study was to determine the bioavailability and soil–plant transfer of Cd, Pb and Zn to amaranthus (Amaranthus caudatus) and lettuce (Latuca sativa) raised in the garden fields and to assess their safety for human consumption. Ten farmers’ fields were selected per location for analysis of Cd, Pb and Zn in soils and vegetables. Whereas total concentrations of Cd and Zn were greater than the safe or permissible limits for agricultural soils, the Pb concentration was less than its maximum allowable concentration. However, the concentration of Pb and Cd in edible portions of amaranthus exceeded the safe limit for human consumption by 7–13 times, while lettuce exceeded the limit by 11–17 times. Cadmium was more rapidly transferred from soil through root to shoot than Zn > Pb. The plant tissue concentrations of the metals were not significantly correlated with the Diethylene triamine pentaacetic acid (DTPA) and dilute CaCl2-extractable concentrations of the metals in the soils. Furthermore, permissible limit of Pb established as standards for agricultural lands may not be suitable to ensure produce safety in Urban and peri-urban agriculture (UPA) in the city of Kano.  相似文献   

17.
Background, Aim and Scope  In urban areas, soils are often dramatically altered by anthropogenic activity and these modifications distinguish these soils (Anthrosols, Technosols) from those in natural systems. In urban environments, they receive considerable pollution from industry, traffic and refuse. Since contaminated soil particles can be easily inhaled or ingested, there is a potential transfer of toxic pollutants to humans. Risk assessment is essentially based on the determination of the total or mobile contents of pollutants in soils using chemical extractions. This approach could be improved by taking into consideration the bioavailable fractions of these toxic elements as measured by biotests. The coarse soil fraction usually neglected in analyses can nevertheless have an effect on the concentration of metals in the soil solution. This coarse fraction is made up of the natural materials and of technic materials constituting anthropogenic soils (plastic, paper, fabric, wood, bones, metallic elements and building materials). These materials have variable capacities to release or adsorb trace elements. Samples representative of different technic fraction components of Marrakech urban soils permit one to quantify their contribution to the enrichment of the soluble metal concentrations. Works are carried out to achieve partial extractions of metals from the three fractions (less than 2 mm, coarse natural and coarse technic) of selected urban soils in order to determine their contribution to the metal contamination of soils. Materials and Methods  Selected soils were collected from 9 sites according to a gradient of increasing anthropogenic influence from suburban to urban zones. Soils were air-dried, homogenized, and sieved (2 mm). The coarse fraction was sorted to separate the different technic materials and natural materials. Water extractions were run, on the natural, coarse fraction, on the complete technic fraction of the 9 soils and on average samples made of technic materials sorted out of 58 topsoils sampled from different sites in the city of Marrakech. Results  Results show that the percentage of the technic fraction increases while approaching the historic city center. It represented about 14% in the most anthropogenically disturbed soils. Along this gradient, soils changed progressively from Anthrosols to Technosols according to the WRB classification of urban and industrial soils. Analyses of metal contents showed that the fine fraction (<2 mm) mainly contributed to the metallic contamination of the water soluble fraction. The natural coarse fraction had the highest contribution to the copper release and was responsible for the release of all water-extractable copper in some soils. Concerning the technic fraction, it has a significant contribution essentially in the most anthropogenically disturbed soils as characterized by an elevated percentage of anthropogenic elements. The water extractable metal contents of average samples of these anthropogenic elements shows that elevated metal concentrations were released by bones, wood, plastic and fabric/paper. Discussion  This study concerns soils in urban areas, which are strongly impacted by human activities. Part of the soils can be classified as Anthrosols, profoundly impacted through the addition of organic materials from household wastes, irrigation, or cultivation. Other soils strongly impacted by human activities are Technosols dominated or strongly influenced by man-made materials. Technosols appear mostly in urban and industrial areas and are more likely to be contaminated than Anthrosols. The composition and heterogeneity of urban soils lead to modifications of the mobility and availability of pollutants depending on successive land-uses and on the composition of technic materials. The fine fraction offers a high transferring surface capacity, leading to a high mobilization of metals. The technic fraction contributes significantly to the metal release in the Technosols. This property can be explained by a reversible adsorption of metals on the organic matter. Conclusions  Results confirm that anthropogenic activity causes a wide spatial diversity of soil quality in the urban and suburban area. It introduces large amounts of technic materials in soils that could have an impact on the metal availability. It therefore acts on the metal bioavailability in the urban Technosols. Recommendations and Perspectives  These results show that it is necessary, in addition to the characterization of the fine particles, to take into account the contribution of the coarse fraction of the Technosols in the evaluation of risks of transfer of metals to the food chain.  相似文献   

18.
Neither the phosphorus (P)‐rich soils in urban areas nor their environmental implications have been adequately studied. This study investigated soils of typical urban function zones in Nanjing/China, like park, residential areas, school yards, campus as well as suburb vegetable land and garbage filling sites, and meantime ground water in situ. Typical soils were also experimentally leached for P leaching evaluation. All studied soils were enriched with P with enrichment ratios varying from 2 to 10 for total P and 5 to 22 for NaHCO3‐extractable P, as compared with the original parent soils. The C : P ratios also indicated strong enrichment of P in urban soils. In urban areas the maximum P layer appeared as buried under different depth while in suburban soils as epipedon. The various morphology of P distribution suggested different soil formation patterns, which were related to the land use history. Groundwater P was significantly correlated with the maximum extractable P content of P in soil profiles and even better with the weighted average P content of the whole profile or P content of the soil layer at or close to groundwater table. Dissolved P in experimental leachate was comparable with that of groundwater but higher than environmentally acceptable level. Furthermore, there was a significant correlation between solution P and different extractable P forms of the studied soils. Simple P tests can provide an evaluation of the potential risk of urban soils in discharging P to water system.  相似文献   

19.
陕西泾惠渠灌区土壤重金属空间分布特征及来源   总被引:19,自引:3,他引:16  
土壤重金属空间变异性是监测和评价农田生态系统环境质量的前提。该文基于104个表层土壤样品的重金属实测含量,运用多元统计和地统计相结合的方法,对陕西泾惠渠灌区土壤重金属含量的分布特征和来源进行了分析。结果表明,土壤中Hg、As、Cd、Cr、Pb、Cu、Zn、Ni 8种重金属平均质量分数分别为0.091、15.40、0.25、75.50、27.20、28.10、81.10、36.60 mg/kg,均超出土壤背景值(参考1986年报道的陕西省关中平原主要农业土壤中重金属含量),但低于国家土壤环境质量二级标准(GB15618-1995)。地统计分析表明,Hg、Ni、As基底效应介于25%~75%之间,属于中等空间相关;而Zn、Pb、Cd、Cu、Cr基底效应均大于75%,属于空间弱相关。多元统计分析表明,泾惠渠灌区土壤中Cd、Pb、Zn、Cu、As、Cr和Ni的累积主要源于农业生产活动、交通运输等人为活动,而Hg的累积则主要受工业排废的影响。目前,该灌区土壤环境质量良好,但土壤重金属有累积的倾向,应引起重视。  相似文献   

20.
In order to reclaim a clay quarry, a topsoil material was mixed with gravelly spoil at different ratios and with various rates of sewage sludge. The influence of three spoil/topsoil ratios (1:1, 2:1 and 3:1) and three sludge rates (40, 80 and 120 t ha−1) on chemical properties of the resulting material was investigated, with emphasis on heavy metal (Fe, Cu, Mn, Ni and Zn) contents. The mixtures topsoil/spoil/sludge were water saturated and incubated for 15 or 30 days in a chamber under controlled conditions. The incubated samples were analysed for pH, total carbon and nitrogen, and total, available, exchangeable and soluble heavy metals. The addition of spoil to the topsoil increased the volume of material available, by utilizing an inert material unsuitable by itself to grow plants. The addition of sewage sludge repaired the disadvantages of the spoil, increasing the pH and the organic matter contents. The total heavy metal contents in the mixtures followed the sequence Fe>>Mn>>Zn, Cu>Ni. All except Cu were within the ranges allowed for agricultural lands. The available heavy metals constituted a small fraction of total contents and decrease with time due to complexation and immobilization processes. The exchangeable and soluble fractions were almost negligible; only small amounts of Mn, Zn and Cu were detected. Therefore, the risk of contamination by heavy metals is insignificant in the conditions investigated. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号