首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Effects of bicarbonate (10 mM as NaHCO3) and high pH (pH 8 buffered with HEPES) separately on root growth and accumulation of organic acids in the roots of zinc (Zn)‐efficient (IR36) and Zn‐inefficient (IR26) rice genotypes (Oriza sativa L.) were investigated in this study. The results indicated that shoot dry matter yields were decreased more by bicarbonate than by high pH for the Zn‐inefficient genotype, but not affected for the Zn‐efficient genotype. Root dry weights, especially root length, was significantly decreased by bicarbonate and high pH treatments for the Zn‐inefficient genotype, whereas was considerably enhanced by only bicarbonate treatment for the Zn‐efficient rice genotype. The reduction in root growth of the Zn‐inefficient rice genotype and the enhancement of root length in the Zn‐efficient genotype were greater when plants grown with bicarbonate than with high pH treatment. Accumulation of malate, citrate, and fumarate in roots of the two genotypes increased considerably due to both high pH and bicarbonate treatments, but to a greater extent for the Zn‐inefficient than for the Zn‐efficient cultivars. After an 8‐day treatment, more organic acids accumulated in the roots of the Zn‐inefficient genotype (IR26) when plants grown with bicarbonate than at high pH, but this was not the case for the Zn‐efficient genotype. The influence of root growth by bicarbonate appeared to be one of the major factors for the sensitivity of rice genotypes to Zn deficiency in calcareous soils. The greater inhibitory effect of bicarbonate than high pH on root growth of the Zn‐inefficient genotype might result from an excessive accumulation and inefficient compartmentation of organic acids, particularly citrate and malate, in the root cells.  相似文献   

2.
Zinc (Zn) is a plant nutrient; however, at elevated levels it rapidly becomes phytotoxic. In order to obtain insight into the physiological background of its toxicity, the impact of elevated Zn2+ concentrations (1 to 10 μM) in the root environment on physiological functioning of Chinese cabbage was studied. Exposure of Chinese cabbage (Brassica pekinensis) to elevated Zn2+ concentrations (≥ 5 μM) in the root environment resulted in leaf chlorosis and decreased biomass production. The Zn concentrations of the root and shoot increased with the Zn2+ concentration up to 68‐fold and 14‐fold, respectively, at 10 μM compared to the control. The concentrations of the other mineral nutrients of the shoot were hardly affected by elevated Zn2+ exposure, although in the root both the Cu and Fe concentrations were increased at ≥ 5 µM, whereas the Mn concentration was decreased and the Ca concentration strongly decreased at 10 µM Zn2+. The uptake and metabolism of sulfur and nitrogen were differentially affected at ≥ 5 µM Zn2+. Zn2+ exposure resulted in an increase of sulfate uptake and the activity of the sulfate transporters in the root, and in enhanced total sulfur concentration of the shoot, which could be ascribed partially to an accumulation of sulfate. Moreover, Zn2+ exposure resulted in an up to 6.5‐fold increase in water‐soluble non‐protein thiol (and cysteine) concentration of the root. However, nitrate uptake by the root and the nitrate and total nitrogen concentrations of the shoot were decreased upon Zn2+ exposure, demonstrating the absence of a mutual regulation of the uptake and metabolism of sulfur and nitrogen at toxic Zn levels. Evidently, elevated Zn2+ concentrations in the root environment did not only disturb the uptake, distribution and assimilation of sulfate, it also affected the uptake and metabolism of nitrate in Chinese cabbage.  相似文献   

3.
Phosphorus‐Zn interaction was studied in Gaudiniafragilis plants grown in culture solution. The effect of different P supplies on 65Zn uptake was measured in 21 days‐old seedlings. Zinc as 65Zn absorbed during 24 h decreased when P concentration in the nutrient solution was increased from 0 to 10 mM. The longer the period in high P concentration, the stronger the 65Zn uptake inhibition. The time course of 65Zn uptake showed that both Zn‐influx and net Zn‐uptake were inhibited in 10 mM with respect to 0.1 mM P. The partitioning of the 65Zn absorbed between shoot and root was not affected by P supply. However total 65Zn transported to the shoot was higher in 0,1 than in 10 mM phosphate due to the higher 65Zn absorption. The time course of the inhibition of 65Zn influx by high P concentration showed a rapid initial decrease, probably due to a direct effect of external P concentration, followed by a slower decrease, which was atributed to the increase in the internal P concentration.  相似文献   

4.
The interaction effect of applied zinc (Zn) and boron (B) on early vegetative growth and uptake of Zn and B by two oilseed rape (canola) (Brassica napus L.) genotypes was investigated in a sand culture experiment under controlled environmental conditions. Two genotypes (Yickadee and Dunkeld) were grown at three Zn levels (0.05, 0.25, and 2.0 mg kg‐1 soil) and two B levels (0.05 mg kg‐1 soil and 0.5 mg kg‐1 soil). Dunkeld produced significantly higher shoot and root dry matter than Yickadee at low Zn and low B supply indicating the superiority of Dunkeld over Yickadee for tolerance to both low Zn and low B supply. Chlorophyll content of fresh leaf tissue was increased significantly by an increase in Zn and B supply. Zinc deficiency enhanced B concentration in younger and older leaves. Boron concentration was higher in older leaves than in the younger leaves irrespective of B deficiency and sufficiency indicating immobility of B in two oilseed rape genotypes tested. Zinc concentration was higher in younger leaves than in the older leaves indicating mobility of Zn. An increased supply of Zn enhanced B uptake under high boron supply only. Zinc uptake in Dunkeld was enhanced significantly with an increased rate of B supply under high Zn supply, while the effect was not significant in Yickadee. Dunkeld proved to be more efficient in Zn and B uptake than Yickadee.  相似文献   

5.
A sodium bicarbonate (NaHCO3)‐buffered hydroponic growth system was developed that simulates alkaline soil growth conditions necessary to screen sugar beet genotypes for iron (Fe) efficiency character. Three genotypes (NB1, NB4, and F, hybrid, NB 1xNB4) with differing capacities for Strategy I Fe responses were phenotyped successfully using this system. Genotypes NB1 and NB1xNB4 are Fe efficient, while NB4 is Fe inefficient. It was demonstrated that 5 mM NaHCO3 provided buffering within an optimal range (pH 7.3 ‐ pH 6.3) for the duration of ‐Fe treatments, promoted enhanced H+ extrusion, and increased the in vivo capacity for Fe3+‐chelate reduction (Fe3+‐chelate reductase [FCR] activity), especially in the roots of the Fe efficient genotypes. The same concentrations of NaHCO3 did not interfere with Fe supply to +Fe control plants of any genotype. The in vivo capacity for Fe3+‐chelate reduction increased over fivefold in both Fe efficient genotypes (NB1 and NB 1xNB4), but just under twofold in the Fe inefficient genotype (NB4). Localization and duration of enhanced Fe3+‐chelate reduction capacity were dependent upon the Fe efficiency character of each genotype.  相似文献   

6.
The root morphology (root length, diameter) of the three wheat genotypes (Triticum aestivum L. cvs Excalibur and Gatcher, and T. turgidum conv. durum (Desf.) McKay cv Durati) grown in zinc (Zn)‐deficient, sandy soil under controlled conditions has been measured by a root scanner coupled to a computer. Wheat plants were supplied with 0, 0.025, 0.05, 0.1, 0.2, or 0.4 mg Zn/kg soil. Excalibur has previously been identified as the Zn‐efficient genotype which can take up more Zn and has higher yield in soils with low plant‐available Zn. Durati is Zn‐inefficient and Gatcher an intermediate genotype with respect to Zn efficiency. Root and shoot dry matter significantly increased at 0.1 mg Zn/kg soil compared to the 0 Zn level. Zinc content in shoots was lower in Durati than in Excalibur and Gatcher at sufficient supply of Zn. Zinc applications had no significant effect on root morphology at two weeks after sowing. At that time, however, the Zn‐efficient genotype Excalibur developed a longer and thinner roots (greater proportion of fine roots with diameter <0.2 mm) than the less efficient Gatcher and Zn‐inefficient Durati. Hence, growing longer and thinner roots and having a greater proportion of thinner roots in the total root biomass early in the growth period may be the two characters associated with the Zn‐efficient genotypes.  相似文献   

7.
Abstract

Extracting sludge‐amended soil with DTPA does not always give a reliable measure of plant‐available heavy metals. The major purpose of this greenhouse pot study was to help explain why. Two anaerobically digested sludges from sewages treated with either Ca(OH)2or FeCl3were applied to 3‐kg samples of a Mollic Albaqualf previously limed with Ca(OH)2rates of 0, 2.5, and 10g/pot that resulted in pHs in the check pots of 5.4, 6.2, or 7.7 after the first harvest. Sludge rates provided 0, 200, 40, 800, and 1600 mg Zn kg‐1of soil. Two consecutive crops of soybeans (Glycine MaxL.) were grown for 42 d each in the greenhouse. DTPA‐extractable, soil‐solution, and plant concentrations of Cu2+, Ni2+, and Zn2+were measured.

Dry matter yields were depressed due to salt toxicity, while DTPA‐extracted Cu2+correlated with plant uptake of Cu2+for both sludges. DTPA‐extracted Ni2+also correlated with plant Ni2+from the Ca(OH)2‐sludge‐amended soil, although DTPA‐extracted Ni2+did not correlate with plant uptake of Ni2+from the FeCl3‐sludge‐amended soil, DTPA‐extracted Zn did not correlate with plant uptake of Zn2+from any sludge‐amended soil. Soil‐solution composition correlated with plant uptake of Cu2+and Ni2+in both sludges; it also correlated with plant uptake of Zn2+from FeCl3‐sludge‐amended soil but not from Ca(OH)2‐sludge‐amended soil. DTPA extraction probably failed with Ni2+and Zn2+because of (i) its ineffectiveness at low pH, (ii) the inability of DTPA to buffer each soil extract near pH 7.3, and (iii) increased amounts of soluble chelated micronutrients at higher sludge rates and higher soil pHs. Soil‐solution composition seemed to fail only where micronutrient cations in solution probably were present largely as organic chelates  相似文献   

8.
The interactive effect of applied zinc (Zn) and soil moisture on early vegetative growth of three alfalfa (lucerne) (Medicago sativa L.) varieties was investigated in a sand‐culture pot experiment to test whether there is link between Zn nutrition and soil moisture stress or excessive moisture tolerance in alfalfa plants. Three varieties (Sceptre, Pioneer L 69, and Hunterfield) with differential Zn efficiency (ability of a variety to grow and yield well in a Zn deficient soil is called a Zn‐efficient variety) were grown at two Zn levels (low Zn supply: 0.05 mg Zn kg‐1 of soil, adequate Zn supply: 2.0 mg Zn kg‐1 of soil) and three levels of soil moisture (soil moisture stress: 3% soil moisture on soil dry weight basis; adequate soil moisture: 12% soil moisture on soil dry weight basis; excessive soil moisture: 18% soil moisture on soil dry weight basis) in a Zn deficient (DTPA Zn: 0.06 mg kg‐1 soil) siliceous sand. Zinc treatments were applied at planting, while soil moisture treatments were applied three weeks after planting and continued for two weeks. Plants were grown in pots under controlled temperature conditions (20°C, 12 h day length; 15°C, 12 h night cycle) in a glasshouse. Plants grown at low Zn supply developed Zn deficiency symptoms, and there was a severe solute leakage from the leaves of Zn‐deficient plants. Adequate Zn supply significantly enhanced the leaf area, leaf to stem ratio, biomass production of shoots, and roots, succulence of plants and Zn concentration in leaves. At low Zn supply, soil moisture stress and excessive moisture treatments significantly depressed the shoot dry matter, leaf area and leaf to stem ratio of alfalfa plants, while there was little impact of soil moisture treatments when supplied Zn concentration was high. The detrimental effects of soil moisture stress and excessive soil moisture under low Zn supply were less pronounced in Sceptre, a Zn‐efficient alfalfa variety compared with Hunterfield, a Zn‐inefficient variety. Results suggest that the ability of alfalfa plants to cope with water stress and excessive soil moisture during early vegetative stage was enhanced with adequate Zn nutrition.  相似文献   

9.
In the present study, plant traits related to the photosynthetic capacity at the whole plant level were compared during grain filling in two maize genotypes with different nitrogen (N) efficiency. The plants were grown in a greenhouse in large root containers and supplied either with suboptimal or optimal rates of N fertilizer. Suboptimal N supply reduced total plant biomass at maturity (47 days (d) after flowering) by 29 % for the efficient genotype and by 36 % for the inefficient genotype. Suboptimal N supply reduced leaf growth of both genotypes. The reduction of leaf area was less severe in the N‐efficient genotype, despite of lower N content in the leaves. This indicates lower sensitivity of leaf growth towards internal N limitation in the efficient genotype. At low N supply, the green leaf area per plant gradually decreased after flowering in both genotypes, because of loss of chlorophyll during leaf senescence. The rate of net photosynthesis per unit leaf area (A) was reduced at low in comparison with high N supply. The ratio of A/leaf N content or leaf chlorophyll content was higher in the efficient genotype, indicating more efficient utilization of internal N for photosynthesis. At the end of grain filling, low N supply led to enhanced intercelluar CO2 concentrations (Ci) in the leaves, indicating limitation of CO2 assimilation by carboxylation rather than by stomatal resistance. The N deficiency‐induced increase of Ci was less pronounced in the efficient genotype. Furthermore, higher photosynthetic rate of the efficient genotype at suboptimal N supply was associated with lower contents of reducing sugars and sucrose in the leaves, whereas starch content was higher than in the inefficient genotype. The ability to avoid excessive sugar accumulation in the leaves under N deficiency might be related to higher photosynthetic N efficiency.  相似文献   

10.
The interactions of zinc (Zn) and cadmium (Cd) in uptake and translocation are common but not consistent. We hypothesized that Cd2+ and Zn2+ activity in the apoplasmic solution bathing root-cells could affect Zn accumulation in plants dependent on the wheat genotype. This hypothesis was tested using seedlings of two bread wheat genotypes (Triticum aestivum L. cvs. Rushan and Cross) and one durum wheat genotype (Triticum durum L. cv. Arya) with different Zn efficiencies grown in chelate-buffered nutrient solutions with three Zn2+ (10?11.11, 10?9.11, and 10?8.81?µM) and two Cd2+ (10?11.21 and 10?10.2?µM) activity levels. Increasing Zn2+ activity in the nutrient solution significantly increased Zn concentration in root and shoots of all three wheat genotypes, although the magnitude of this increase was dependent on the genotype. Cadmium decreased Zn concentration in roots of “Cross” while it had no significant effect on root Zn concentration in “Rushan.” At Zn2+?=?10?11.11?µM, Cd decreased shoot Zn concentration in “Arya” whereas it increased shoot Zn concentration at Zn2+?=?10?8.81?µM. Cadmium increased shoot Zn concentration of “Rushan” and “Cross” at Zn2+?=?10?8.81?µM but it had no significant effect on shoot Zn concentration of these genotypes at Zn2+?=?10?11.11?µM. The zinc-inefficient genotype “Arya” accumulated significantly more Cd in its root in comparison with “Cross” and “Rushan.” Cadmium concentration in roots of “Arya” was decreased significantly with increasing Zn activity. The effect of Zn on accumulation of Cd in roots of “Cross” and “Rushan” was dependent on the dose provided, and therefore, both synergistic (at Zn2+?=?10?9.11?µM) and antagonistic (at Zn2+?=?10?8.81?µM) interactive effects were found in these genotypes. Zinc supply increased the Zn concentration of xylem sap in “Cross” and “Rushan” whereas Zn content in xylem sap of “Arya” was decreased at Zn2+?=?10?9.11?µM and thereafter increased at Zn2+?=?10?8.81?µM. Cadmium treatment reduced Zn concentration in xylem sap of “Arya,” while it tended to increase Zn content in xylem sap of “Cross.” At Zn-deficient conditions, greater retention of Zn in root cell walls of Zn-inefficient “Arya” resulted in lower root-to-shoot transport of Zn in this genotype. Results revealed that the effect of Cd on the root-to-shoot translocation of Zn via the xylem is dependent on wheat genotype and Zn activity in the nutrient solution.  相似文献   

11.
Abstract

The relative zinc (Zn) efficiencies of 33 wheat and 3 barley cultivars were determined by growing them in chelate‐buffered culture solutions. Zn efficiency, determined by growth in a Zn‐deficient solution relative to that in a medium containing an adequate concentration of Zn, was found to vary between 10% and 63% among the cultivars tested. Out of the 36 cultivars tested, 12 proved to be Zn efficient, 10 were Zn inefficient, and the remaining 14 varieties were classed as intermediate. The most Zn‐efficient cultivars included Bakhtawar, Gatcher S61, Wilgoyne, and Madrigal, and the most Zn inefficient included Durati, Songlen, Excalibur, and Chakwal‐86. Zn‐efficient cultivars accumulated greater amounts of Zn in their shoots than inefficient cultivars, but the correlation between shoot Zn and shoot dry matter production was poor. All the cultivars accumulated higher concentrations of iron (Fe), copper (Cu), manganese (Mn), and phosphorus (P) at deficient levels of Zn, compared with adequate Zn concentrations. The Zn‐inefficient cultivars accumulated higher concentrations of these other elements compared to efficient cultivars.  相似文献   

12.
Abstract

Rice grown on a recently water‐leveled Crowley silt loam that contained less than 1.8 μg g‐1 of 0.1 N HCl‐extractable Zn with pH levels ranging from 6.8 to 7.7, responded to Zn application. Each kg ha of applied Zn as Zn chelate, 14.2 % Zn, resulted in increases of +673, +477, and +2026 kg rice ha‐1 at pH 6.8, 7.3, and 7.7, respectively. There was a critically low concentration of Zn in rice plants at the midtillering, first joint, and panicle differentiation stages of plant development when no Zn was applied. A yield response to applied Zn was obtained when the concentration of Zn in rice tissue was less than 15 μg g‐1.

Application of Zn resulted in a significant increase in the uptake of N by rice plants at each of the three stages of plant development. Application of Zn also resulted in relatively large and significant increases in the uptake of Zn from the soil irrespective of soil pH. The uptake of Zn by rice plants at each of the growth stages showed a two‐ to three‐fold increase following Zn application when soil pH was 6.8 and 7.3. Also, the uptake of Zn by rice plants following Zn application showed a four‐fold increase at midtillering, a five‐fold increase at first joint, and a six‐fold increase at panicle differentiation, respectively, when soil pH was 7.7.  相似文献   

13.
Abstract

A greenhouse experiment was carried out to study severity of the zinc (Zn) deficiency symptoms on leaves, shoot dry weight and shoot content and concentration of Zn in 164 winter type bread wheat genotypes (Triticunt aestivum L.) grown in a Zn‐deficient calcareous soil with (+Zn=10 mg Zn kg?1 soil) and without (‐Zn) Zn supply for 45 days. Tolerance of the genotypes to Zn deficiency was ranked based on the relative shoot growth (Zn efficiency ratio), calculated as the ratio of the shoot dry weight produced under Zn deficiency to that produced under adequate Zn supply. There was a substantial difference in genotypic tolerance to Zn deficiency. Among the 164 genotypes, 108 genotypes had severe visible symptoms of Zn deficiency (whitish‐brown necrotic patches) on leaves, while in 25 genotypes Zn deficiency symptoms were slight or absent, and the remaining genotypes (e.g., 31 genotypes) showed mild deficiency symptoms. Generally, the genotypes with higher tolerance to Zn deficiency originated from Balkan countries and Turkey, while genotypes originating from the breeding programs in the Great Plains of the United States were mostly sensitive to Zn deficiency. Among the 164 wheat genotypes, Zn efficiency ratio varied from 0.33 to 0.77. The differences in tolerance to Zn deficiency were totally independent of shoot Zn concentrations, but showed a close relationship to the total amount (content) of Zn per shoot. The absolute shoot growth of the genotypes under Zn deficiency corresponded very well with the differences in tolerance to Zn deficiency. Under adequate Zn supply, the 10 most Zn‐ inefficient genotypes and the 10 most Zn‐efficient genotypes were very similar in their shoot dry weight. However, under Zn deficiency, shoot dry weight of the Zn‐efficient genotypes was, on average, 1.6‐fold higher compared to the Zn‐inefficient genotypes. The results of this study show large, exploitable genotypic variation for tolerance to Zn deficiency in bread wheat. Based on this data, total amount of Zn per shoot, absolute shoot growth under Zn deficiency, and relative shoot growth can be used as reliable plant parameters for assessing genotypic variation in tolerance to Zn deficiency in bread wheat.  相似文献   

14.
Manganese efficiency is a term used to describe the ability of plants to obtain higher relative yields at low Mn supply compared to other species. To evaluate Mn efficiency of wheat (Triticum aestivum L.) and raya (Brassica juncea L.), a greenhouse pot experiment was conducted using Mn deficient Typic Ustochrept loamy sand soil, treated with 0, 50, and 100 mg Mn (kg soil)–1. In the no‐Mn treatment, wheat had produced only 30 % of its maximum dry matter yield (DMY) with a shoot concentration of 10.8 mg Mn (kg DM)–1 after 51 days of growth, while raya had produced 65 % of its maximum DMY with 13.0 mg Mn (kg DM)–1. Taking relative shoot yield as a measure of Mn efficiency, raya was more efficient than wheat. Both crops produced the maximum DMY with 50 mg Mn (kg soil)–1. Even though raya had a lower root length : DMY ratio and a higher shoot growth rate, it acquired higher Mn concentrations in the shoot than wheat under similar soil conditions, because of a 2.5 times higher Mn influx. Model calculations were used to calculate the difference of Mn solution concentration (ΔCL) between the bulk soil (CLi) and the root surface (CL0) that is needed to drive the flux by diffusion equal to the measured influx. The results showed that ΔCL was smaller than CLi, which indicates that chemical mobilization of Mn was not needed to explain the observed Mn uptake even for raya. According to these calculations, the higher Mn influx of raya was caused by more efficient uptake kinetics, allowing for a 4.5 times higher Mn influx at the same Mn concentration at the root surface.  相似文献   

15.
Abstract

Although sunflower (Helianthus annus L.) is an Fe efficient plant, tumorous crown gall tissue development and tissue ability to reduce Fe3+ to Fe2+ were both diminished by Fe‐deficiency stress. Crown gall also develops readily on Fe‐efficient and Fe‐inefficient tomato cultivars (Lycopersicon esculentum Mill.). The objective of this study was to determine if the effect of a limited Fe supply on the growth, nutrition and reduction of Fe3+ to Fe2+ by tumorous crown gall would differ between Fe‐efficient T3238FER and Fe‐inefficient T3238fer tomato. Healthy green 25‐day‐old plants were either stem‐inoculated with Agrobacterium tumefaciens to induce tumorous crown gall tissue development or were left uninoculated for comparison. Plants were grown in modified Hoagland nutrient solutions containing 0.0, 0.15, 0.6 and 2.0 mg Fe L?1. Yield of tumorous crown gall tissue was not diminished by low solution Fe in T3238FER, but was in T3238fer. This was attributed to inability of the T3238fer tomato to make Fe available to itself. Tumor tissue from both cultivars contained more Fe, Cu and P than normal stem tissues, which confirms a modified metabolism in these tissues previously observed in sunflower. An abundant supply of Fe enhances the development and growth of the tumorous crown gall tissue, but a deficient supply of Fe retards its growth.  相似文献   

16.
Abstract

Iron‐inefficient TAM 0–312 and Fe‐efficient Coker 227 oats (Strategy II plants) differ in their release of phytosiderophore in response to iron‐deficiency stress—the Fe‐efficient Coker 227 releases a phytosiderophore whereas the Fe‐inefficient TAM 0–312 does not. The phytosiderophore released by Coker 227 oats in response to Fe‐deficiency stress does not appear to transport Fe into the plant as Fe phytosiderophore. When the Fe‐inefficient TAM 0–312 and Fe‐efficient Coker 227 oats were subjected to Fe supplied as Fe2+(BPDS)3, Fe3+HEDTA, as Fe3+EDDHA, Coker 227 utilized the Fe more efficiently than TAM 0–312 in every case. Both cultivars reduced Fe3+ as FeCl3 to form Fe2+(BPOS)3 and responded better to this form of Fe than Fe supplied as the ferric chelate. Reduction of Fe3+ at the root appears to be a factor that facilitates iron uptake by Coker 227 oats and the release of a phytosiderophore appears to make more Fe available at the root that can be reduced and transported to plant tops.  相似文献   

17.
Cadmium (Cd) uptake by white lupin (Lupinus albus) was studied at low Cd concentrations (0.05nM to 5 μM) in hydroponic solution. Ten 12‐day old seedlings were pretreated in 0.5 mM CaCl2 solution in presence and absence of metabolic inhibitors (DCCD, DNP or NaN3). Cadmium solutions were labelled with carrier free 109CdCl2. Cadmium uptake was measured after a 2 h desorption in unlabelled CdCl2 solution. In the absence of any metabolic inhibitor and at 5 [μM Cd, roots absorbed 235.23 μg Cd/g root dry weight. Over the range of lnM to 5 μM Cd, exchangeable Cd represented approximately 5% of the absorbed fraction, and about 25 % of the total absorbed Cd was adsorbed to the root. Cadmium was passively absorbed to about 30% as observed in the presence of the inhibitor (DCCD). Ative absorption which represented 70% of Cd uptake involved H+‐ATPase carriers. Cadmium absorption was reduced to 30 and 20% in presence of lanthanum (La3+) and zinc (Zn2+), respectively which suggested that calcium (Ca), Cd, and Zn use the same carriers. Cadmium uptake in presence of DNP or NaN3 was approximately 4‐ fold that in control. Data showed presomption for an excretion of Cd out of root cells which could be the expression of a detoxification process limiting cell contamination.  相似文献   

18.
Wheat cultivars differ widely in manganese (Mn) efficiency. To investigate the reasons for different Mn efficiencies, a pot experiment with soil, a solution‐culture experiment, and model calculations were carried out. The pot experiment was conducted with wheat (Triticum aestivum L. cvs. PBW 373, PBW 154, PBW 343, PBW 138, and Triticum durum L. cvs. PBW 34 and PDW 233) grown in a screen house in India. The soil was a loamy sand with pH 8.1, DTPA‐extractable Mn 1.62 mg (kg soil)–1, and initial soil solution Mn concentration (CLi) of 0.19 μM. When fertilized with 50 mg Mn (kg soil)–1, CLi increased to 0.32 μM. At CLi 0.19 μM, wheat cv. PBW 373 produced 74% of its maximum shoot dry weight (SDW) with 64% of its maximum root length (RL), while cv. PDW 233 produced only 25% of its maximum SDW with 11% of its maximum RL. The other wheat cultivars were between these extremes. Manganese deficiency caused a reduction in shoot growth, but more strongly reduced root growth. The low Mn efficiency of T. durum cv. PDW 233 was related to a strong depression of its root growth. Manganese influx was similar for all cultivars. In solution culture below 1 μM Mn, under controlled climate‐chamber conditions, Mn influx was linearly related to Mn concentration. Both the efficient cv. PBW 343 and the inefficient cv. PDW 233 had a similar influx. Uptake kinetic parameters from the solution experiment together with soil and plant parameters from the pot experiment were used in a mechanistic nutrient‐uptake model. Calculated values of Mn influx for wheat grown in soil were 55% to 74% of measured values. A sensitivity analysis showed that increasing CLi or the slope of the uptake isotherm by about 30% would be enough to reach the observed influx. The results of this research indicate that an increase of Mn solubility by microbial or chemical mobilization would increase Mn uptake. But on the other hand, no chemical mobilization would be required to increase Mn uptake if the plant improved its uptake kinetics. Low Mn efficiency of some wheat cultivars was related to their reduced root growth at low soil Mn supply.  相似文献   

19.
Abstract

To investigate the activity of free cadmium (Cd2+), copper (Cu2+), lead (Pb2+), and zinc (Zn2+) ions and analyze their dependence on pH and other soil properties, ten contaminated soils were sampled and analyzed for total contents of Cd, Cu, Pb, and Zn (CdT, CuT, PbT, and ZnT, respectively), 0.43 MHNO3‐extractable Cd, Cu, Pb, and Zn (CdN, CuN, PbN, and ZnN, respectively), pH, dissolved organic matter (DOC), cation exchange capacity (CEC), ammonium oxalate extractable aluminum (Al) and iron (Fe), and dissolved calcium [Ca2+]. The activity of free Pb2+, Cd2+, Cu2+, and Zn2+ ions in soil solutions was determined using Donnan equilibrium/graphite furnace atomic absorption (DE/GFAA). The solubility of Cd in soils varied from 0.16 to 0.94 μg L‐1, Cu from 3.43 to 7.42 μg L‐1, Pb from 1.23 to 5.8 μg L‐1, and Zn from 24.5 to 34.3 μg L. In saturation soil extracts, the activity of free Cd2+ ions constituted 42 to 82% of the dissolved fraction, for Cu2+the range was 0.1 to 7.8%, for Pb2+ 0.1 to 5.1% and for Zn2+2 to 72%. The principal species of Cd, Cu, Pb, and Zn in the soil solution is free metal ions and hydrolyzed ions. Soil pH displayed a pronounced effect on the activity of free Cd2+, Cu2t, Pb2+, and Zn2+ ions.  相似文献   

20.
Using six bread wheat genotypes (Triticum aesttvum L. cvs. Dagdas‐94, Gerek‐79, BDME‐10, SBVD 1–21, SBVD 2–22 and Partizanka Niska) and one durum wheat genotype (Triticum durum L. cv. Kunduru‐1149) experiments were carried out to study the relationship between the rate of phytosiderophore release and susceptibility of genotypes to zinc (Zn) deficiency during 15 days of growth in nutrient solution with (1 μM Zn) and without Zn supply. Among the genotypes, Dagdas‐94 and Gerek‐79 are Zn efficient, while the others are highly susceptible to Zn deficiency, when grown on severely Zn deficient calcareous soils in Turkey. Similar to the field observations, visual Zn deficiency symptoms, such as whitish‐brown lesions on leaf blades occurred first and severely in durum wheat Kunduru‐1149 and bread wheats Partizanka Niska, BDME‐10, SBVD 1–21 and SBVD 2–22. Visual Zn deficiency symptoms were less severe in the bread wheats Gerek‐79 and particularly Dagdas‐94. These genotypic differences in susceptibility to Zn deficiency were not related to the concentrations of Zn in shoots or roots. All bread wheat genotypes contained similar Zn concentration in the dry matter. In all genotypes supplied adequately with Zn, the rate of phytosiderophore release was very low and did not exceed 0.5 μmol/48 plants/ 3 h. However, under Zn deficiency the release of phytosiderophores increased in all bread wheat genotypes, but not in the durum wheat genotype. The corresponding rates of phytosiderophore release in Zn deficient durum wheat genotype were 1.2 umol and in Zn deficient bread wheat genotypes ranged between 8.6 μmol for Partizanka Niska to 17.4 umol for SBVD 2–22. In Dagdas‐94, the most Zn efficient genotype, the highest rate of phytosiderophore release was 14.8 umol. The results indicate that the release rate of phytosiderophores does not relate well with the susceptibility of bread wheat genotypes to Zn deficiency. Root uptake and root‐to‐shoot transport of Zn and particularly internal utilization of Zn may be more important mechanisms involved in expression of Zn efficiency in bread wheat genotypes than release of phytosiderophores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号