首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphoenolpyruvate carboxylase (PEPC) is widely distributed in plants and bacteria, and catalyzes the carboxylation of phosphoenolpyruvate to form oxaloacetate and inorganic phosphate. To investigate the molecular mechanisms of the regulation and control of peanut oil, with the degenerated primers and RACE-PCR approach, five PEPC genes were cloned from peanut, and designated as AhPEPC1, AhPEPC2, AhPEPC3, AhPEPC4, and AhPEPC5, respectively. The structure and phylogenetic analysis of PEPC protein indicated that AhPEPC1-4 genes encoded a typical plant-type PEPC-enzyme, and AhPEPC5 a bacterial-type. By real-time quantitative RT-PCR approach the expression pattern of each gene was detected in various tissues of normal and high oil-content peanut varieties. It was found that there was a lower expression level of AhPEPCs genes except for the AhPEPC2 in high-oil peanut than normal-oil peanut line. The results provide some fundamental information for the further investigation of plant PEPC proteins and their role in regulation of oil-content in peanut seeds.  相似文献   

2.
[Objective]The aim of this study was to explore the technical system of induced expression in vitro of goat mammary gland epithelial cell,and evaluate expression efficiency of mammary gland specific vector and foreign protein at the cell level.[Method]Goat mammary gland epithelial cell transfected by human lactoferrin gene was inducted by culturing in DMEM/F12 medium supplemented with 5 mg/L insulin,5 mg/L prolactin and 1 mg/L hydrocortisone.Supernatant was collected per 6 hours and concentrated.Expression situation of foreign protein were detected by SDS-PAGE and Western blotting.[Result]There was target protein expression in the induced culture medium,which molecular weight was about 42 kD.[Conclusion]The method used in this study can induce goat mammary gland epithelial cell to express foreign gene,it lays a foundation for researching heterologous expression of foreign gene and producing mammary gland bioreactor.  相似文献   

3.
This study was to discuss the relationship among the change in the activity of Bombyx mori carboxylesterase (BmCarE) in the midguts, the differential expression of BmCarE gene (bmcare) in the midguts, and the ability of Bombyx mori resistant to densonucleosis virus (BmDNV), and to elucidate the molecular mechanism of resistance to BmDNV-Z. With two silkworm strains, HUABA, which is susceptible to BmDNV-Z, and BC8 (a near isogenic line of HUABA), which is completely resistant to the same virus, as materials, the activity of BmCarE in the midgut was determined by Bio-Tek Synergy, and the differential expression of bmcare between the two strains was investigated by real-time fluorescence quantitative PCR, both at 12, 36, and 72 h post oral inoculation of the two strains with virus (hereafter referred as inoculation). While the activity of BmCarE in the midguts of BC8 inoculation group at 12 h post inoculation was higher than that in the BC8 control group, the HUABA inoculated group, and the HUABA control group by 3.28, 2.26, and 3.02 times, respectively, with the difference being highly significant (P 〈 0.01), there was no statistical difference among the other groups. The relative expression level of bmcare in the midguts of BC8 inoculation group at 12 h post inoculation was higher than that in the BC8 control group, the HUABA inoculation group, and the HUABA control group by 17.714, 21.76, and 15.09 times, respectively, with the difference being highly significant (P 〈 0.01), and there was no statistical difference among other groups. The elevation of BmCarE activity and expression level of bmcare in the resistant strain at 12 h post inoculation may relate to the resistant gene (nsd/nsd) and the stimulation of BmDNV-Z. The molecular basis for the elevation of BmCarE activity in the resistant strain BC8 may be the change in the expression level of bmcare.  相似文献   

4.
Heat shock protein 70(HSP70) is one of the most important members in the heat shock protein family, and plays important roles in the thermotolerance of insect. To explore the molecular mechanism of thermotolerance of Frankliniella occidentalis adults, the difference in the expression of HSP70s in F. occidentalis male or female adults under the thermal stress was studied under the laboratory conditions. Two full length c DNAs of HSP70s gene(Fohsc704 and Fohsc705) were cloned from F. occidentalis by using RT-PCR and RACE. The genomic sequence was demonstrated by genomic validation, and the position and size of the intron were analyzed by sequence analysis of c DNA. Real-time PCR was used to analyze the HSP70 expression patterns. The c DNA of Fohsc704 and Fohsc705 possessed 2 073 and 1 476 bp which encoded 690 and 491 amino acids(aa) with a calculated molecular weight of 75 and 54 k Da, respectively. Four introns in Fohsc704 and six introns in Fohsc705 protein were found. However, the HSP70 protein sequences in our study were ended with EKKN and GIFL, which were different from the reported Fo HSP70s. Various expression patterns of Fohsc704 and Fohsc705 were found in both genders of F. occidentalis under thermal stress. The expression of Fohsc704 and Fohsc705 reached to the highest level at –12 and –8°C in male adults, respectively, and Fohsc705 expressed the highest level at 33°C in female adults. In conclusion, HSP70s of F. occidentalis in our study are novel heat shock proteins. There were difference in expression patterns of the two hsc70s in genders of F. occidentalis, and the two HSP70s play important roles in the thermotolerance of F. occidentalis.  相似文献   

5.
Verticillium wilt is a severe disease in eggplant caused by Verticillium dahliae.Polygalacturonase-inhibiting proteins (PGIPs) have been shown to be involved in preventing the invasion of fungus including V.dahliae.Cloning genes encoding PGIPs is quite valuable for plant resistance breeding to Verticillium wilt.In this study,a cDNA encoding the polygalacturonase-inhibiting protein was isolated from Solanum torvum by RT-PCR and RACE,designated StPGIP (accession no.FJ943498).The cDNA sequence of StPGIP was 1 097 bp long and contained an open reading frame of 990 bp.The predicted amino acid sequence of the gene consisted of 329 amino acids and had conserved LRRs.The StPGIP protein had a high identity with PGIPs from other species.Analysis of StPGIP expression at the mRNA level by RT-PCR showed that the gene was expressed in all organs and could be induced to increase expression by V.erticillium dahliae infection.  相似文献   

6.
In order to study erythromycin resistance of Streptococcus suis under high or low concentration of selective drug pressure, Streptococcus suis strain LN was isolated from a diseased pig in 2005 and showed to be susceptible to erythromycin as determined by disc diffusion and tube dilution tests. In this study, clean level rabbits were divided into three groups of six rabbits each, including a prevention dosage group, a treatment dosage group, and a control group. After injection with S. suis strain LN, erythromycin (20 μg mL^-1) was taken orally in the prevention dosage group, erythromycin (5 mg kg^-1) was injected intramuscularly in the treatment dosage group, and no treatment was given in the control group. S. suis with intermediate resistance to erythromycin was isolated on the 5th day after infection from the prevention dosage group (5th PDG) and on the 7th day after infection from the treatment dosage group (7th TDG). Both isolates were determined to be the constitutive macrolide-lincosamide-streptogramin B (cMLSB) resistance phenotype. The resistance gene ermB was detected in all of the isolates. The results suggested that both the 5th PDG and 7th TDG isolates had a mutation (A2372T) in the 23S rRNA gene. In addition, the 5th PDG isolates had a mutation in ribosomal protein L4 (detected as G268A) and a mutation in ribosomal protein L22 (A345C); and the 7th TDG isolates had a C insertion at site 564. Each of these mutations is considered as a possible mechanism of erythromycin resistance in S. suis strain LN. This study demonstrated that erythromycin resistance was readily induced in S. suis at a low erythromycin dose creating selective pressure in vivo. Resistance appeared to be mediated by ribosome methylation, encoded by the ermB gene.  相似文献   

7.
Fusarium wilt caused by Fusarium oxysporum f.sp. cucumerinum (Owen) is one of the most devastating diseases in cucumber production worldwide. Recent progresses in the mechanism of resistance to Fusarium wilt in cucumber were reviewed in this paper, including pathogenic mechanism of Fusarium oxysporum, the resistance mechanism of cucumber, the heredity of resistance, and the location of resistance genes. Following works should be the location and cloning of resistance genes with molecular biologic methods.  相似文献   

8.
9.
10.
11.
Sugar content is a determinant of apple(Malus×domestica Borkh.) sweetness. However, the molecular mechanism underlying sucrose accumulation in apple fruit remains elusive. Herein, this study reported the role of the sucrose transporter MdSUT2.1 in the regulation of sucrose accumulation in apples. The MdSUT2.1 gene encoded a protein with 612 amino acid residues that could be localized at the plasma membrane when expressed in tobacco leaf protoplasts.MdSUT2.1 was highly expressed in fruit and was ...  相似文献   

12.
13.
Cucumber powdery mildew is one of the most destructive diseases of cucumber throughout the world. In the present study, inheritance of powdery mildew resistance in three crosses, and linkage of resistance with amplified fragment length polymorphism (AFLP) markers are studied to formulate efficient strategies for breeding cultivars resistant to powdery mildew. The joint analysis of multiple generations and AFLP technique has been applied in this study. The best model is the one with two major genes, additive, dominant, and epistatic effects, plus polygenes with additive, dominant, and epistatic effects (E-l-0 model). The heritabilities of the major genes varied from 64.26% to 97.82%, and susceptibility was incompletely dominant for the two major genes in the three crosses studied. The additive effects of the two major genes and the dominant effect of the second major gene were high, and the epistatic effect of the additive-dominant between the two major genes was the highest in cross I . In cross II, the absolute value of the additive effect, dominant effect, and potential ratio of the first major gene were far higher than those of the second major gene, and the epistatic effect of the additive-additive was the highest. The genetic parameters of the two major genes in cross III were similar to those in cross II. Correlation and regression analyses showed that marker E25/M63-103 was linked to a susceptible gene controlling powdery mildew resistance. The marker could account for 19.98% of the phenotypic variation. When the marker was tested on a diverse set of 29 cucumber lines, the correlation between phenotype and genotype was not significant, which suggested cultivar specialty of gene expression or different methods of resistance to powdery mildew. The target DNA fragment was 103 bp in length, and only a small part was found to be homologous to DNA in the other species evaluated, which indicated that it was unique to the cucumber genome.  相似文献   

14.
In this study, a gene encoding a superoxide dismutase (SOD) was cloned from senescent leaves of cotton (Gossypium hirsutum), and its expressing profile was analyzed. The gene was cloned by rapid amplification of cDNA ends (RACE) method. Northern blotting was used to show the profile of the gene expression, and the enzyme activity was mensurated by NBT deoxidization method in different growth periods. The full length of a gene of cytosolic copper/zinc superoxide dismutase (Cu/Zn-SOD) was isolated from cotton (GenBank Accession Number: DQ445093). The sequence of cDNA contained 682 bp, the opening reading frame 456 bp, and encoded polypeptide 152 amino acids with the predicted molecular mass of 15.03 kD and theoretical pI of 6.09. The amino acid sequence was similar with the other plants from 82 to 87%. Southern blotting showed that the gene had different number of copies in different cotton species. Northern blotting suggested that the gene had different expression in different tissues and development stages. The enzyme activity was the highest in peak flowering stage. The cotton cytosolic (Cu/Zn-SOD) had lower copies in the upland cotton. The copper/zinc superoxide dismutase mRNA expressing level showed regular changing in the whole development stages; it was lower in the former stages, higher in latter stages and the highest at the peak flowering stage. The curve of the copper/zinc superoxide dismutase mRNA expressing level was consistent with that of the Cu/Zn-SOD enzyme activity. The copper/zinc superoxide dismutase mRNA expressing levels of different organs showed that the gene was higher in the root, leaf, and lower in the flower.  相似文献   

15.
《农业科学与技术》2016,(3):523-525
Objective] This study was conducted to clone and analyze ERECTA-LIKE1 gene in Zea mays by PCR and bioinfor-matics methods and to construct plant expression vector pCambia3301-zmERECTA-LIKE1. [Method] zmERECTA-LIKE1 (zmERL1) gene was obtained using RT-PCR, and physical-chemical properties were analyzed by bioinformatics methods, including domains, transmembrane regions, N-Glycosylation potential sites phosphorylation sites, and etc. [Result] Bioinformatics results showed that zmERL1 gene was 2 169 bp, which encoded a protein consisting of 722 amino acids, 11 N-glycosylation potential sites and 42 kinase specific phosphorylation sites. According to CDD2.23 and TMHMM Server v. 2.0 software, there were leucine-rich repeats, a PKC domain and a transmembrane region in this protein. The theoretical pI and molecular weight of zmERL1 encoded protein was 6.20 and 79 184.8 using Compute PI/Mw tool. Furthermore, we constructed the plant expression vector pCambia3301-zmERECTA-LIKE1 by subcloning zmERL1 gene into pCambia3301 instead of GUS. [Conclusion] The results provide a theoretical basis for the application of zmERL1 gene in future study.  相似文献   

16.
Based on the sequence of a novel expressed sequence tag (EST), the full-length cDNA of 1 017 nucleotides was cloned from Brassica napus cv. Xiangyou 15 through rapid amplification of cDNA ends (RACE). The gene was designated as Bnhol34 (HQ585980), encoding a protein of 338 amino acids. BLAST analysis showed no high degree of sequence identity to any known gene. The calculated molecular weight of the Bnhol34 protein was 36.23 kDa, and the theoretical isoelectric point was 8.74. The Bnhol34 was also cloned from a high oleic acid mutant 854-1 through homologous cloning. There was no difference between the two Bnhol34 genes. Bnhol34 was localized in a tissue-specific manner in B. napus, and its expression level was about eight-fold greater in Xiangyou 15 seeds than in 854-1. The promoter region sequences of Bnhol34 were then isolated from Xiangyou 15 and 854-1, and a 93-bp deletion was found to occur in the Bnhol34 promoter region of 854-1. Three abscisic acid-responsive cis-elements (ABRE) were identified in the promoter region of Xiangyou 15. Real-time PCR analyses revealed that exogenous abscisic acid increased Bnhol34 expression by about four-fold in Xiangyou 15 seeds, yet did not change Bnhol34 expression in 854-1. It appeared that Bnhol34 might be abscisic acid insensitive in 854-1.  相似文献   

17.
18.
We have reported that the roots of figleaf gourd(Cucurbita ficifolia,as rootstock) could improve the resistance of cucumber seedlings(Cucumis sativus L.cv.Jinyan 4,as scion) to 6 h stress at low temperature and low irradiance [1].In this experiment,the relationship between the mineral elements uptake and photosynthetic activity of photosystems in figleaf gourd and cucumber seedlings were to be studied during lowtemperature(8 C) stress under lowirradiance(100 μmol m-2 s-1 PFD) for 5 days.Compared with control seedlings,the maximal photochemical efficiency of PS2(Fv/Fm) and the oxidizable P700(P700+) of both figleaf gourd and cucumber seedlings decreased,and both Fv/Fm and P700+ were lower in cucumber leaves than in figleaf gourd seedlings at the end of the stress.Superoxide dismutase(SOD) activity was higher in both leaves and roots of figleaf gourd than in leaves and roots of cucumber at both room temperature and low temperature.However,the product rate of O 2 was lower in figleaf gourd leaves than in cucumber leaves.Upon exposure to the stress,the malondialdehyde(MDA) content increased markedly in leaves and roots of figleaf gourd and cucumber seedlings,and it grewfaster in cucumber seedlings than that in figleaf gourd seedlings.Under adaptive conditions,some mineral elements(Such as Cu,Zn,Mn and Mg) have different contents in leaves and roots between figleaf gourd seedlings and cucumber seedlings.However,at the end of the stress these elements were accumulated apparently in both leaves and roots of figleaf gourd accompanied by no obvious change in cucumber seedlings.  相似文献   

19.
20.
The aim of this study is to construct a prokaryotic expression vector of mouse Nanog gene and to express it in E. coli. A pair of primers was designed according to digestion sites in plasmid pGEX-KG and the Nanog gene sequence published by GenBank. The DNA fragment of 918 bp was amplified by polymerase chain reaction (PCR) from the pNA992 recombinant plasmid with Nanog gene, then cloned into pGEX-KG and transformed into the host E. coli strain TG Ⅰ. The sequence of the fragment was matched with the original sequence of pNA992. It indicated that fusion expression vector, pGEX-KG- Nanog, was constructed successfully. The pGEX-KG-Nanog plasmid was extracted from E. coli strain TG Ⅰ and was transformed into BL21(DE3) for expression. After induction by isopropyl-β-D-thiogalactoside (IPTG) at 37℃, the expression product of Nanog gene was identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and the expression condition was optimized. Nanog fusion protein was successfully expressed in the form of inclusion bodies. The molecular weight of the inclusion body was 63 kDa. Meanwhile, the optimum condition for the expression of Nanog fusion protein was induced with 0.8 mmol L^-1 IPTG for 5 h. The mouse Nanog gene was successfully expressed in E. coli, which laid a foundation for the purification of Nanog protein and for the preparation of polyclonal antibody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号