首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Combining ability of seed vigor and seed yield in soybean   总被引:4,自引:0,他引:4  
Youngkoo Cho  Roy A. Scott 《Euphytica》2000,112(2):145-150
Studies have shown no consensus in relationships between seed yield and vigor in soybean [Glycine max (L.) Merrill]. The lack of information regarding the inheritance of seed vigor prompted this study to determine the types of gene action and combining ability estimates for seed vigor and its related traits. Five high and six low seed vigor soybean genotypes were crossed in a diallel, and selfed to produce 55 F2 progenies, which were examined, along with the parents, for seed vigor, yield, and seed weight. Significant genotype and environment effects were found for seed vigor and yield. General combining ability (GCA) effects for seed vigor and seed yield were significant (p≤ 0.01) and larger than specific combining ability (SCA) effects. Significant GCA and SCA effects were found for seed weight, indicating that both additive and non additive genetic effects were involved in conditioning seed weight. The ratios of mean square, 2GCA / (2GCA+SCA), were 0.96 for seed vigor and 0.93 for seed yield. These ratios indicated that additive gene effects were more important than non additive gene effects for seed vigor and seed yield in these crosses. Mean seed vigor(83.8%), as determined by accelerated aging germination, and mean seed yield (2,155 kg ha-1)in high vigor × high vigor crosses were higher than the high vigor × low vigor and low vigor × low vigor crosses. Mean percent accelerated aging germination rates in F2 populations from diallel crosses were significantly related to mid-parent seed vigor(r2 = 0.52**) and midparent seed size (r2 = 0.31**). These results indicated that levels of seed vigor can be improved through breeding, while maintaining high yields because of the predominance of GCA effects in both seed vigor and seed yield. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
M. I. E. Arabi 《Euphytica》2005,145(1-2):161-170
Barley breeders in Syria attempting to develop barley (Hordeum vulgare L.) cultivars resistant to barley leaf stripe (BLS) disease caused by Pyrenophora graminea Ito & Kuribayashi [anamorph Drechslera graminea (Rabenh. Ex. Schlech. Shoem.)]. Information on the combining ability for BLS resistance in Syria is not available. This study was conducted to evaluate, in 10 genetically diverse barley parents, general combining ability (GCA) and specific combining ability (SCA) effects towards the determination of the genetic basis of disease resistance and to estimate genetic variability for yield components and its modification by BLS. Ten parental genotypes varying in their reactions to BLS were crossed in a half-diallel mating design to generate 45 full-sib families. The families and the parents were inoculated with P. graminea and evaluated for resistance in replicated field tests (three inoculated and three non-inoculated plots). The parents chosen showed wide variations for resistance to BLS. Genetic component analysis showed significant effects for both GCA and SCA for resistance to BLS, suggesting that additive as well as non-additive genetic mechanisms were involved in the expression of resistance in these parents. GCA effects were more important than SCA effects. Resistant parents exhibited high negative GCA indicating that additive gene effects were more predominant, and suggesting their prime suitability for use in barley breeding programs to improve resistance to BLS. Narrow-sense heritability was 58% and broad-sense heritability was 99% indicating that selection for BLS resistance should be effective in these crosses. A high genetic variability for the agronomic traits studied was observed. Yield components decreased significantly in inoculated plants and more pronounced in diseased plants. Significant GCA was observed for all traits. Values for GCA were, in some cases, significantly modified by BLS. This indicates that attention must be paid to the danger of drawing conclusion in quantitative genetics studies dealing with both diseased and healthy plants. Two genotypes, Banteng and Igri, had high negative GCA effects and are promising parents for enhancement of BLS resistance.  相似文献   

3.
Sweetpotato virus disease (SPVD) is due to the dual infection and synergistic interaction of Sweetpotato feathery mottle potyvirus (SPFMV) and Sweetpotato chlorotic stunt crinivirus(SPCSV), and causes up to 98% yield loss in sweetpotato in East Africa. This study was conducted to determine the inheritance of resistance to SPVD in sweetpotato and to estimate the nature of genetic variance. Ten parental clones varying in reaction to SPVD were crossed in a half diallel mating design to generate 45 full-sib families. The families were graft-inoculated with SPCSV and SPFMV to induce SPVD and evaluated for resistance in a randomized complete block design at two sites in Namulonge, Uganda during 1998–2000. In serological assays for SPFMV and SPCSV,resistance to symptom development and recovery from initial systemic SPVD symptoms, characterised resistant genotypes. Genetic component analysis showed significant effects for both general combining ability (GCA) and specific combining ability (SCA) for resistance to SPVD. GCA to SCA variance component ratios were large (0.51–0.87), hence GCA effects were more important than SCA effects. Resistant parents exhibited high GCA indicating that additive gene effects were predominant in the inheritance of resistance to SPVD and recovery. Narrow-sense heritability (31–41%) and broad-sense heritability (73–98%) were moderate to high, indicating that rapid genetic gains for SPVD resistance could be accomplished by mass selection breeding techniques. Two genotypes, New Kawogo and Sowola, had high negative GCA effects and had several families in specific crosses,which exhibited rapid recovery from SPVD,and are promising parents for enhancement of SPVD resistance and recovery. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
For a better understanding of the inheritance of seed yield traits in Quinoa (Chenopodium quinoa) Willd., a half-diallelic crossing experiment with six diverse but uniform breeding lines was conducted. True hybrid plants were detected by means of differences in panicle colour in 14 out of the 15 crosses performed. The agronomic performance of 14 F2 populations and six parental lines was evaluated in field trials on fertile clay soil. General and specific combining ability of the lines (GCA and SCA) were estimated. Highly significant differences in GCA effects were found between the lines for plant height at maturity, early flowering, early maturity, seed yield and thousand seed weight. Significant SCA effects were only found for plant height at maturity. However, SCA effects were rather small and accounted for 7% of the total variance. The finding of large GCA effects and low SCA effects suggests that best selection results could be expected from crosses between the agronomic best performing genotypes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
V. Lind 《Plant Breeding》2000,119(6):449-453
Two diallels were analysed for general combining ability (GCA) and specific combining ability (SCA) to study the resistance of crosses‐between wheat genotypes, advanced to the F5 generation, to Pseudocer‐cosporella herpotrichoides. The parents either carried the resistance‐gene Pch‐1 or had different levels of quantitative resistance, one genotype was susceptible. At medium milk‐ripening, significant effects were‐found for GCA and SCA. GCA effects were the more important. Diallel crosses between genotypes, all carrying Pch‐1, revealed interactions‐of the gene with the genotypic background. Some combinations had a‐higher level of resistance than the best parent. In these populations'CH‐75417’ was involved as a parent. Both ‘CH‐75417’ and ‘F–210.13.4.42’ had significant GCA effects. Crosses between quantitatively resistant parents yielded populations that transgressed both parents. The increased resistance level was associated with ‘Cappelle‐Desprez’, distinguished by its high GCA. In some crosses SCA contributed significantly to an increase in resistance level. Selection for resistance within the best advanced populations is recommended since it‐takes advantage of additive gene action and the high heritability estimates based on ELISA values in plant progenies.  相似文献   

6.
Combining ability analysis for harvest index in winter wheat   总被引:1,自引:0,他引:1  
Summary Cereal breeders have used harvest index (HI) as a selection criterion in segregating generations to identify physiologically superior lines with improved partitioning of total assimilate into grain. Information on combining ability for HI of the hard red winter wheat (Triticum aestivum L.) cultivars of the Southern Great Plains is not available. A study was undertaken to examine HI of seven genetically diverse winter wheat parents, evaluate their general combining ability (GCA) and specific combining ability (SCA) effects, and study correlations of HI with several agronomic traits. The seven parents were crossed in a half-diallel mating design to produce 21 crosses. The F1's, their F2 progenies, and the parents were evaluated in replicated field tests at Stillwater and at Lahoma, OK. The combining ability analysis was performed using Griffing's Method 4, Model 1. The results showed significant variation among parents for HI. The GCA and the SCA effects were mostly inconsistent between generations and between environments. However, parents with consistently high HI and positive GCA estimates were identified. The progeny with high HI mostly resulted from parents with high GCA estimates. The correlations between HI and agronomic traits indicated that improvement in HI should also result in high grain yield, early maturity, and short plant height.  相似文献   

7.
Fusarium head blight (FHB) caused by Fusarium spp. is one of the most important fungal diseases of wheat (Triticum aestivum L.) in regions with wet climatic conditions. Improvement of the FHB resistance by developing new varieties requires sound knowledge on the inheritance of resistance. An 8 × 8 diallel analysis was performed to estimate general (GCA) and specific (SCA) combining ability of resistance to FHB. The F1s and parental lines were evaluated under artificial inoculation at the experimental field of IFA-Tulln, Austria during 2001 and 2002. Disease severity was evaluated by repeated scoring of the percentage of infected spikelets and calculating an area under the disease progress curve (AUDPC). The analysis of combining ability across two years showed highly significant GCA and non-significant SCA effects indicating the importance of additive genetic components in controlling FHB resistance. The significant GCA-by-year interaction presented the role of environmental factors in influencing the FHB reaction of wheat lines. The comparison of the crosses with low FHB infection and GCA effects of their parents showed that such crosses involved at least one parent with high or average negative GCA effect. The results revealed that it is feasible to use highly or moderately resistant genotypes and conventional breeding methods to achieve genetic improvement of FHB resistance in spring wheat.  相似文献   

8.
Eight-parental diallel cross and SSR molecular markers were used to determine the combining ability of common wheat lines grown under well-watered (WW) and water-stress (WS) conditions. Analysis of variance of yield indicated highly significant differences among the progenies. General combining ability (GCA) determined most of the differences among the crosses. Specific combing ability (SCA) was also significant but less important. The estimates of GCA effects indicated that one line was the best general combiner for grain yield under drought. Neis genetic distance, measured using SSR markers, differed from 0.20 to 0.48 among the eight genotypes. The correlation of Neis genetic distance with SCA for grain yield and heterosis ranged from 0.4 to 0.5. These results indicate that the level of SCA and heterosis depends on the level of genetic diversity between the wheat genotypes examined. Microsatellite markers were effective in predicting the mean and the variance of SCA in various cultivars combinations. However, selection of crosses solely on microsatellite data would miss superior combinations.  相似文献   

9.
Approaches are needed to broaden the genetic base and improve earliness and yield potential of large-seeded beans under sustainable cropping systems. The objective of this research was to develop adapted dwarf bean populations having a commercial seed quality and yield suitable for the production in the South of Europe. The original base populations were produced from crosses between genotypes within each Mesoamerica, Nueva Granada and Peru races, and between Peru and Nueva Granada, and Mesoamerica and Nueva Granada races. Visual mass selection for plant performance was practised in the F2 and F3 generations. In the F4 and F5, single plants were harvested under two cropping systems (sole cropping and intercropping with maize). From F4, selection was based on precocity, combined with seed yield and seed commercial type. The F4:7 selected lines from each original population were compared with their parents and five checks at four environments and two cropping systems. Differences among environments, populations, parents and checks were observed for all traits. Under intercropping with maize, there was a 50% reduction in seed yield. Yield of parents and checks belonging to Andean South American races, intraracial (Nueva Granada × Nueva Granada) and interracial (Nueva Granada × Peru) populations, was higher than that of those of Middle American origin. Intraracial crosses within large-seeded Andean South American (Peru race) and Middle American gene pools (Mesoamerica race) did not produce lines yielding more than the highest yielding parent. Only two large-seeded lines selected from crosses between small- and large-seeded gene pools out-yielded the best parent and check cultivar.  相似文献   

10.
Summary To satisfy farmer and consumer preferences, breeding efforts to increase yield potential in common bean must take into account the interrelated effects of growth habit, seed size, maturity, and gene pool on yield expression in segregating populations. To examine the relationships among these traits, a genetic study was conducted to determine the effect of growth habit on yield and seed size in crosses among five bean lines from diverse gene pools. Two parental bean lines had determinate, type I growth habits and large seed size typical of the Neuva Granada-Andean gene pool. Two other lines were tropical Mesoamerican types with type II growth habits and small seed size; and the fifth line, G13625, a landrace of the Jalisco gene pool from the Mexican highlands, had a type IV climbing growth habit and medium seed size. Individual F2 plants from each cross and parental lines were evaluated for growth habit and yield component traits under high input field conditions. The following season, the evaluations were repeated on random F3 plants. Of the five parental lines, only G13625 showed significant GCA effects for yield in both the F2 and F3 generations. Improved yielding ability of G13625 progeny was associated with an increased expression of climbing bean growth habit traits: guide length, climbing ability, node number on main stem, and plant height. Crosses between Andean x Mesoamerican and Andean x Jalisco genotypes, as well between growth habit type I (Andean x Andean) and between type II (Mesoamerican x Mesoamerican) had very low parent-offspring heritability values for yield. Yield heritability was only significant for crosses between Mesomerican x Jalisco gene pools. An apparent simple genetic control of growth habit modification towards semi-climbing and climbing types is proposed as the major reason for increased yields in these crosses. No genetic linkage between genes controlling growth habit and seed size was detected which might restrict the development of high yielding large-seeded type II lines.  相似文献   

11.
Summary The everbearing progeny from crosses between three short-day and four everbearing genotypes were assessed for early fruit yield and stolon production. General combining ability (GCA) was found to be important for fruit yield but specific combining ability (SCA) was more important for stolon production. The results suggested that it should be possible to combine early fruiting and adequate stolon production in an everbearing genotype. The breeding strategy necessary to achieve this aim is discussed.  相似文献   

12.
O. P. Yadav 《Euphytica》1994,78(1-2):77-80
Summary The threshing percentage (TH%) has been suggested as a selection criterion to identify the pearl millet (Pennisetum glaucum (L.) R.Br.) lines with improved ability to fill and set grains under water limiting conditions. In this study, eight genetically diverse pearl millet inbreds and their 28 crosses produced by half diallel crossing design were used to examine range in TH%, to evaluate general combining ability (GCA) of parents and specific combining ability (SCA) effects of crosses. The results showed significant variation among parental lines for TH%. The inbreds differed for their GCA effects and crosses for their SCA effects. Parents with high TH% and positive GCA effects were identified. The results of the study revealed that both additive and dominance components, with the preponderance of later, were important in the inheritance of TH%. Heritability in narrow sense was moderate (55%) indicating that selection for high TH% might be effective.  相似文献   

13.
Wheat breeders in South Asia are attempting to develop wheat (Triticum aestivum L.) cultivars resistant to Helminthosporium leaf blight (HLB), which occurs mainly as a complex of spot blotch caused by Cochliobolus sativus (Ito & Kuribayashi) Drechs. ex Dastur, and tan spot caused by Pyrenophora tritici-repentis (Died.) Drechs. Information on the combining ability for HLB resistance in wheat cultivars of South Asia is not available. This study was undertaken to examine the resistance to HLB in nine genetically diverse wheat parents, and to evaluate their general combining ability (GCA) and specific combining ability (SCA) effects toward determining the genetic basis of disease resistance. Nine parents were crossed in a half-diallel mating design to produce 36 populations. The F1 and F2 progenies, and the parents were evaluated in replicated field tests at Rampur, Nepal. Multiple disease scores were recorded, and area under the disease progress curve (AUDPC) was calculated to measure disease severity over time. The combining ability analysis was performed using Griffing's Method 2, Model 1. The parents chosen showed wide variation for resistance to HLB. They and the F1 and F2 progenies differed significantly for AUDPC. GCA and SCA effects were significant in both generations suggesting that additive as well as non-additive genetic mechanisms were involved in the expression of resistance in these parents. Wheat genotypes 'SW89-5422', 'G 162', 'NL 781'and 'Chirya 7' had significantly negative GCA effects for AUDPC in both F1 and F2 generations, suggesting their prime suitability for use in wheat breeding programs to improve resistance to HLB. The estimate of narrow-sense heritability was 0.77 in both generations suggesting that selection for HLB resistance should be effective in these crosses. The results indicate a predominance of additive gene action in the inheritance of HLB resistance in spring wheat.  相似文献   

14.
The combining abilities for physical-quality traits in peanut were examined to understand the type of gene action governing these traits, and to identify peanut genotypes suitable for use as parents in breeding for quality improvement. The F1 hybrids including reciprocals from a six-parent diallel cross along with the parents were evaluated in a randomised complete block design. Data were recorded on five quality traits in peanut viz., shelling outturn, 100-pod weight, 100-seed weight, Count and proportion of sound mature seeds. Substantial genetic variability was observed among the hybrids for the traits studied. Diallel analysis indicated that expression of majority of the quality traits is regulated predominantly by additive gene action suggesting possibility of early-generation selection, while non-additive gene action also plays an equally important role in the control of seed size. Significant reciprocal effect for all the traits denoted role of maternal parent in the expression of quality traits and importance of parental selection in quality breeding. Genotypes ICGV 86564 and TPG 41 were good combiners for seed size, while J 11 was a good combiner for improvement of shelling outturn and proportion of mature seeds. Association between general combining ability (GCA) effects and mean performance suggested that the performance per se of the genotype should be a good indicator of its ability to transmit the desirable quality attributes to its progenies. Though performance of crosses was found to be independent of parental GCA status, it is evident that at least one of the parents used in hybridisation should have large pods and seeds for obtaining better segregants.  相似文献   

15.
Summary To study the mode of inheritance of W, RGR, NAR, LAR, SLA and LWR, the growth of 15 tomato genotypes and 104 of their F1's was analyzed. The plants were grown at a 19°C day temperature and a 10°C night temperature under a light intensity of 24 Wm-2 visible radiation and a daylength of 8 hours. Combining ability analyses of variance revealed highly significant differences in GCA values between parents for all characters studied and significant SCA values for some of the characters. GCA values for NAR and LAR, and for NAR and SLA were strongly negatively correlated. A strong positive correlation existed between GCA values for LAR and SLA. The possibilities for improving growth under low energy conditions by using growth characters in breeding are discussed.Abbreviations W dry weight of the plant - RGR relative growth rate - NAR net assimilation rate - LAR leaf area ratio - SLA specific leaf area - LWR leaf weight ratio - MANOVA multivariate analysis of variance - GCA general combining ability - SCA specific combining ability  相似文献   

16.
M. Maris 《Euphytica》1989,41(1-2):163-182
Summary The main aim of the experiment was to study the behaviour of seven long-day adapted clones of Solanum tuberosum ssp. andigena (A) and three varieties of S. tuberosum ssp. tuberosum (T) in an incomplete diallel cross. The four groups of crosses, TxT, TxA, AxT and AxA, held 2, 12, 20 and 21 populations, respectively. Eleven of the intersubspecific crosses were exact reciprocals. Thirty random clones per population were grown as second clonal generation in an incomplete block design with four replications in plots of two plants per clone in 1980, the parents included in many plots. Data were recorded on ten characters.The results showed that group TxA gave the highest tuber yield and AxT the second highest. The F-values indicated highly significant genotypic effects for all characters in all populations. The mean genotypic coefficients of variation (GCV), were the highest for group AxA for all characters. The ANOVA, based on population means showed significant mean squares for general combining abilities (GCA) and for differences of reciprocalls for all characters; the specific combining ability (SCA) mean squares were significant only for date of emergence, plant height and haulm type. Almost all GCA effects of the parents were significant positive or negative. Several populations showed also significant SCA effects. The correlations between the GCA effects and the parental values were of about the same magnitude as the heritabilities; those between the population means and the midparental values were slightly lower.Compared to the midparental values, most populations showed significant positive heterosis for date of emergence, haulm type, number of tubers and under water weight; all populations had significant negative heterosis for mean tuber weight and nearly all for plant height and general impression. All populations from groups TxT and AxA had significant negative heterosis for tuber yield and so had 13 out of the 20 populations from group AxT, while seven of the 12 from group TxA showed significant positive and four significant negative heterosis. The average heterosis for tuber yield of group TxT was –11%, of TxA 3.4%, of AxT–9% and of AxA–18%. The highest mean tuber yields were obtained from crosses with a very high yielding A-parent as female, while the heterosis was negative. Though significant differences between the 11 reciprocals occurred for all characters, consistent differences occurred only for tuber yield. Averaged over the 11 crosses the TxA populations outyielded their exact reciprocals by 10.7%. For the highest tuber yields in A-T crosses, therefore, the tuberosum cytoplasm seems to be preferable. By contrast for a high male fertility the andigena cytoplasm is preferable.  相似文献   

17.
Understanding genetic mechanisms controlling inheritance of disease resistance traits is essential in breeding investigations targeting development of resistant genotypes. Using North Carolina design II, 32 F1 hybrids were generated by crossing eight susceptible to four resistant parents and submitted for field evaluation. The analysis of general and specific combining ability (GCA and SCA) indicated involvement of additive and non‐additive gene action controlling inheritance of horizontal resistance to sheath rot of rice. High GCA/SCA ratio and high heritability estimates revealed additive effects and were more predominant than none additive ones. The level of dominance indicated dominant genes was more important than recessive genes. Estimates of GCA and SCA analysis suggested that crop improvement programmes should be directed towards selection of superior parents or good combiners, emphasizing on GCA. As far as source of resistance is concerned, most promising genotypes were Cyicaro, Yunertian and Yunkeng. The predominance of additive genetic effects together with the relevance of dominant genes suggested possibilities of improving the resistance by introgression of resistance genes through recurrent selection coupled with phenotypic selection.  相似文献   

18.
Summary Fusarium bulb rot is a serious tulip disease. Breeding for resistance may contribute considerably to a solution of the problem.It has been demonstrated that juvenile and adult bulbs of the same cultivars in Fusarium contaminated soil showed good agreement in degree of resistance.From an incomplete diallel cross of these cultivars second-year bulblets of 62 progenies were planted in both contaminated and non-contaminated soil. The percentages of non-diseased bulbs harvested provided a criterion for resistance. The analysis of combining ability for the degree of resistance revealed that both the mean square of GCA and that of SCA were significant. The relative magnitudes of the GCA and SCA mean squares suggest that resistance is governed primarily by additive gene action. The GCA of individual parents could be estimated and tested. In general it corresponded with their phenotypic behaviour.  相似文献   

19.
Summary Host plant genetics of N2 fixation in the cowpea (Vigna unguiculata (L.) Walp.) — Rhizobium symbiosis was investigated in the field with a mixed strain inoculum and in the greenhouse with a single strain inoculum. Five cowpea genotypes, including H-Brown Crowder and L-Bush Purple Hull, were used to generate populations for genetic studies. Diallel analysis for general combining ability (GCA), specific combining ability (SCA) and reciprocal effects was carried out for the N2 fixation variables nitrogenase activity, nodule number, nodule weight, and top dry weight, in the field study. Generation mean analysis and heritability estimates were performed on the greenhouse population which included P1 (H-Brown Crowder), P2 (L-Bush Purple Hull), F1, F1. F2, BC1, and BC2. Positive and significant correlations were observed between nitrogenase activity and both nodule weight and nodule number. Correlation coefficients between top dry weight and the other 3 variables were not significant. Estimates of SCA were highly significant for all variables except top dry weight, while those of GCA were significant only for nodule weight. Generation mean analysis revealed that additive gene action was more prominent than dominance and interallelic gene action for nodule number and nitrogenase activity, while the opposite was true for nodule weight and top dry weight. Narrow sense heritability estimates were moderately high for nodule number (0.55) and nitrogenase activity (0.62), and low for nodule weight (0.39) and top dry weight (0.17).Texas Agricultural Experiment Station Technical Article 20385. Research supported in part by a grant under USAID PASA AG/TAB 610-9-76 (USDA-CSRS-701-15-59).  相似文献   

20.
Summary Diallel crosses were made between 15 tomato genotypes with varying performance under a low energy regime. It appeared that differences between genotypes for 11 vegetative and generative plant characters are determined mainly by additive genetic variation. For breeding cultivars adapted to low energy conditions, crossing genotypes with a high GCA for weight of trusses and fruits (WTF) and genotypes with a high GCA for weight of vegetative plant parts (WVP) seems most promising. Complications may arise from the negative correlation between GCA values for WTF and WVP, and the strong positive correlation between GCA values for fruit number and WTF, causing small fruits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号