首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
小麦不同品种吸收钾离子的动力学研究   总被引:14,自引:2,他引:14  
小麦不同品种吸收钾离子(K+)的动力学参数不同。米氏常数(Km)以绵阳11最大,红矮1最小;最大吸收速率(1max)繁6最高,红芒22最低。供试小麦各品种吸收K+的补偿点(Cmin)3.44.mol/L,远低于一般土壤溶液中的K+浓度,说明土壤溶液中K+浓度与小麦吸收K+的需要相适应。此外,硝酸根(NO3)、吲哚乙酸(IAA)和稀土显著促进小麦吸收K+;但铵离子(NH4+)显著抑制K+吸收;尿素对小麦吸收K+无显著影响。动力学参数的测定表明,NH4+抑制K+吸收的原因是提高了小麦吸收K+的Km;而NO3和稀土产生促进作用的原因分别是吸收K+的Imax增加和Km减少。IAA能促进H+分泌,导致小麦吸收K+的速率提高。  相似文献   

2.
The influence of three potassium:rubidium (K:Rb) ratios (6:0, 5:1, and 4:2) on the xylematic transport of solutes in cucumber plants cv. Medusa supplied with both nitrate (NO3 ) (60%) and ammonium (NH4 +) (40%) was studied in greenhouse conditions. In the xylem sap of plants grown with a K:Rb ratio of 4:2, there was an increase in the transport of NO3 , phosphate (H2PO4 ), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), manganese (Mn) and boron (B) while that of organic‐N, organic‐P, K+, zinc (Zn), organic acids, and carbohydrates decreased, if compared with the sap of the plants supplied with K alone. The translocation of NO3 , H2PO4 , Ca2+, Mg2+, and Mn was enhanced and that of K+ and organic acids decreased when the plants were supplied with a K:Rb ratio of 5:1. The K:Rb ratio detected in the xylem sap was the same K:Rb ratio as in the solutions. However, in the cucumber plant substituting 33% of total K by Rb resulted in an alteration in the transport of solutes, probably due to a competition between Rb and K rather than between the latter two and NH4 +.  相似文献   

3.
通过水培试验研究了不同铵硝比的氮素营养和磷素营养对菠菜生长、氮素吸收及硝酸还原酶活性(NRA)和谷氨酰胺合成酶活性(GSA)的影响。结果表明:在供磷水平相同时,菠菜的生物量随着铵硝比的降低而降低,但铵硝比为25:75与0:100两个处理之间没有显著差异;在铵硝比相同时,随着营养液中磷含量的增加,菠菜的生物量随之增加。菠菜茎叶中硝酸盐的含量随着铵硝比和磷水平的降低而升高。不同铵硝比处理,菠菜含氮量没有明显差异,随着磷水平的提高,菠菜植株含氮量有升高的趋势,但各处理之间差异不显著;受到生物量显著差异的影响,菠菜植株中氮素累积量随着铵硝比的降低和磷素水平的增加而增加。在铵硝混合营养条件下,缺磷会显著抑制菠菜对铵态氮和硝态氮的吸收,且磷索缺乏对菠菜吸收硝态氮的抑制作用要大于对铵态氮吸收的抑制作用。铵硝比相同时,随着营养液中磷索供应量的增加,菠菜茎叶中NRA显著增加;但是营养液中铵硝比较高时,会显著抑制菠菜茎叶中NRA,而铵硝比较低时,则有利于提高菠菜的NRA。缺磷会严重抑制GSA;在磷素水平相同时,随着营养液中铵比例的增加,菠菜茎叶中GSA显著增加。为此,在一些硝酸盐含量较高的土壤上栽培蔬菜时,可以采取增施适量磷肥的方法,以降低叶菜的硝酸盐含量。  相似文献   

4.
ABSTRACT

Plant nitrogen (N)-acquisition strategy affects soil N availability, community structure, and vegetation productivity. Cultivated grasslands are widely established to improve degraded pastures, but little information is available to evaluate the link between N uptake preference and forage crop biomass. Here an in-situ 15N labeling experiment was conducted in the four cultivated grasslands of Inner Mongolia, including two dicots (Medicago sativa and Brassica campestris) and two monocots (Bromus inermis and Leymus chinensis). Plant N uptake rate, shoot- and root biomass, and concentrations of soil inorganic-N and microbial biomass-N were measured. The results showed that the root/shoot ratios of the dicots were 2.6 to 16.4 fold those of the monocots. The shoot N concentrations of the dicots or legumes were 40.6% to 165% higher than those of the monocots or non-legumes. The four forage crops in the cultivated grassland preferred to uptake more NO3?-N than NH4+-N regardless of growth stages, and the NH4+/NO3? uptake ratios were significantly lower in the non-legumes than in the legumes (p < 0.05). Significant differences in the NH4+-N rather than NO3?-N uptake rate were observed among the four forages, related to plant functional types and growth stages. The NH4+ uptake rate in the perennial forages exponentially decreased with the increases in shoot-, root biomass, and root/shoot ratio. Also, the plant NH4+/NO3? uptake ratio was positively correlated with soil NH4+/NO3? ratio. Our results suggest that the major forage crops prefer to absorb soil NO3?-N, depending on soil inorganic N composition and belowground C allocation. The preferential uptake of NO3?-N by forages indicates that nitrate-N fertilizer could have a higher promotion on productivity than ammonium-N fertilizer in the semi-arid cultivated grassland.  相似文献   

5.
ABSTRACT

Understanding the potential of clinoptilolite (CLI) for adsorption of NH4+ and K+, providing appropriate fertilizer formula, and evaluation of the produced zeolitic nutrient sources (ZNSs) to meet the plant need are the main objectives of this study. Three ZNSs (NH4+-saturated, K+-saturated and dual-purpose NH4+-K+ saturated CLI) were produced, assessed, and compared with commercial N and K fertilizers (CFs) on corn growth in a greenhouse. The results indicated that CLI can potentially adsorb both NH4+ and K+ to the maximum values of 25.00 mg-NH4+ g?1 and 47.61 mg-K g?1, respectively, and chemisorptions mainly followed the process of adsorption. Saturation of zeolite by NH4+ and K+ occurred after 10 and 15 d which lead to ZNSs with 2% and 5% of N and K, respectively. NH4+-K+ saturated CLI contained 1% N and 1% K. The greenhouse experiment showed no significant difference between ZNSs and CFs on plant growth. However, the application of both N and K in the form of zeolitic sources significantly increased the uptake of N by the plant. The highest uptake of K (2.05 g pot?1) occurred in plants supplied with both natural zeolite and CFs. The present results may benefit the future utilization of ZNSs in environmental friendly farming practices.  相似文献   

6.
Agricultural systems that receive high amounts of inorganic nitrogen (N) fertilizer in the form of either ammonium (NH4+), nitrate (NO3) or a combination thereof are expected to differ in soil N transformation rates and fates of NH4+ and NO3. Using 15N tracer techniques this study examines how crop plants and soil microbes vary in their ability to take up and compete for fertilizer N on a short time scale (hours to days). Single plants of barley (Hordeum vulgare L. cv. Morex) were grown on two agricultural soils in microcosms which received either NH4+, NO3 or NH4NO3. Within each fertilizer treatment traces of 15NH4+ and 15NO3 were added separately. During 8 days of fertilization the fate of fertilizer 15N into plants, microbial biomass and inorganic soil N pools as well as changes in gross N transformation rates were investigated. One week after fertilization 45-80% of initially applied 15N was recovered in crop plants compared to only 1-10% in soil microbes, proving that plants were the strongest competitors for fertilizer N. In terms of N uptake soil microbes out-competed plants only during the first 4 h of N application independent of soil and fertilizer N form. Within one day microbial N uptake declined substantially, probably due to carbon limitation. In both soils, plants and soil microbes took up more NO3 than NH4+ independent of initially applied N form. Surprisingly, no inhibitory effect of NH4+ on the uptake and assimilation of nitrate in both, plants and microbes, was observed, probably because fast nitrification rates led to a swift depletion of the ammonium pool. Compared to plant and microbial NH4+ uptake rates, gross nitrification rates were 3-75-fold higher, indicating that nitrifiers were the strongest competitors for NH4+ in both soils. The rapid conversion of NH4+ to NO3 and preferential use of NO3 by soil microbes suggest that in agricultural systems with high inorganic N fertilizer inputs the soil microbial community could adapt to high concentrations of NO3 and shift towards enhanced reliance on NO3 for their N supply.  相似文献   

7.
不同铵硝配比对弱光下白菜氮素吸收及相关酶的影响   总被引:2,自引:0,他引:2  
以黑色遮阳网覆盖模仿弱光环境, 使光照强度为自然光的20%左右, 以自然光照为对照, 采用精确控制水培溶液氮素营养, 研究NH4+-N/NO3--N 比例分别为0/100、25/75、50/50、75/25、100/0 对弱光下白菜氮代谢及硝酸还原酶和谷氨酰胺合成酶活性的影响。结果表明, 弱光下, 白菜的鲜重及叶片总氮量以NH4+-N/NO3--N 比为25/75 时最大, NH4+-N/NO3--N 比为100/0 时最低。随弱光处理的进行, 白菜叶片中硝酸还原酶活性及谷氨酰胺合成酶活性均呈下降趋势, 但NH4+-N/NO3--N 比为25/75 时, 可维持叶片内较高的硝酸还原酶活性及谷氨酰胺合成酶活性。试验表明, NH4+-N/NO3--N 比25/75 是白菜在弱光下生长的较适宜氮素形态配比。  相似文献   

8.
A study was conducted at two experimental tree plantations in the Pacific Northwest to assess the roles of bacteria and fungi in nitrogen (N) cycling. Soils from red alder (Alnus rubra) and Douglas-fir (Pseudotsuga menziesii) plots in low- (H.J. Andrews) and high- (Cascade Head) productivity stands were sampled in 2005 and 2006. Fungal:bacterial ratios were determined using phospholipid fatty acid (PLFA) profiles and quantitative (Q)-PCR. Ratios from these two molecular methods were highly correlated and showed that microbial biomass varied significantly between the two experimental sites and to a lesser extent between tree types with fungal:bacterial biomass ratios lower in more N-rich plots. 15N isotope dilution experiments, with ammonium (NH4+) and nitrate (NO3?), were paired with antibiotics that blocked bacterial (bronopol) and fungal (cycloheximide) protein synthesis. This modified isotope dilution technique was used to determine the relative contribution of bacteria and fungi to net N mineralization and gross rates of ammonification and nitrification. When bacterial protein synthesis was blocked NH4+ consumption and nitrification rates decreased in all treatments except for NH4+ consumption in the Douglas-fir plots at H.J. Andrews, suggesting that prokaryotic nitrifiers are a major sink for mineral NH4+ in forest soils with higher N availability. Cycloheximide consistently increased NH4+ consumption, however the trend was not statistically significant. Both antibiotics additions also significantly increased gross ammonification, which may have been due to continued activity of extra- and intracellular enzymes involved in producing NH4+ combined with the inhibition of NH4+ assimilation into proteins. The implication of this result is that microorganisms are likely a major sink for soil dissolved organic N (DON) in soils.  相似文献   

9.
Solution pH, temperature, nitrate (NO3 )/yammonium (NH4 +) ratios, and inhibitors effects on the NO3 and NH4 + uptake rates of coffee (Coffea arabica L.) roots were investigated in short‐term solution culture. At intermediate pH values (4.25 to 5.75) typical of coffee soils, NH4 + and NO3 uptake rates were similar and nearly independent of pH. Nitrate uptake varied more with temperature than did ammonium. Nitrate uptake increased from 0.05 to 1.01 μmol g‐1 FWh‐1 between 4 and 16°C, and increased three‐fold between 16 to 22°C. Between 4 to 22°C, NH4 + uptake rate increased more gradually from 1.00 to 3.25 μmol g‐1 FW h‐1. In the 22–40°C temperature range, NH4 + and NO3 uptake rates were similar (averaging 3.65 and 3.56 umol g‐1 FW h‐1, respectively). At concentrations ranging from 0.5 to 3 mM, NO3 did not influence NH4 + uptake rate. However, NO3 uptake was significantly reduced when NH4 + was present at 3 mM concentration. Most importantly, total uptake (NO3 +NH4 +) at any NO3 /NH4 + ratio was higher than that of plants fed solely with either NH4 + or NO4 . Anaerobic conditions reduced NO3 and NH4 + uptake rate by 50 and 30%, respectively, whereas dinitrophenol almost completely inhibited both NH4 + and NO3 uptake. These results suggest that Arabica coffee is well adapted to acidic soil conditions and can utilize the seasonally prevalent forms of inorganic N. These observations can help optimizing coffee N nutrition by recommending cultural practices maintaining roots in the temperature range optimum for both NH4 + and NO3 uptake, and by advising N fertilization resulting in a balanced soil inorganic N availability.  相似文献   

10.
陈沂岭  赵学强  张玲玉  沈仁芳 《土壤》2019,51(2):243-250
NH_4~+和NO_3~–是对植物有效的两种主要无机氮源。水稻一般被认为是偏好NH_4~+的植物,但是在NO_3~–条件下,水稻也能良好地生长。大多数关于水稻铵硝营养的报道是在pH 6.0左右的水培条件下开展的,但是对于酸性条件下水稻铵硝营养研究很少。随着土壤酸化的加重及一些边际酸性土壤被用作水稻种植,研究酸性条件下水稻的铵硝营养具有重要意义。本文采用水培试验,在pH 5.0的条件下,通过添加和不添加pH缓冲剂MES(2-(N-吗啡啉)乙磺酸),研究了NH_4~+和NO_3~–对水稻生长、氮效率和矿质养分(N、P、K、Ca、Mg、Fe、Zn、Cu、Mn)吸收的影响。结果表明,在不添加MES的条件下,水稻地上部生长(株高、叶绿素含量、干重)在NH_4~+和NO_3~–之间没有显著差异,而添加MES后,NH_4~+处理的水稻地上部生长优于NO_3~–。不管是否添加MES,NO_3~–处理的水稻地下部生长(根长、根表面积和根物质量)优于NH_4~+。水稻含氮量和氮利用效率在不同NH_4~+和NO_3~–处理之间没有显著差异,但是NH_4~+处理的水稻氮吸收效率高于NO_3~–。与NO_3~–相比,NH_4~+增加了水稻地上部P和Fe含量,而降低了水稻地上部Ca、Mg、Zn、Cu和Mn含量,对K含量影响较小。上述结果表明,NH_4~+有利于改善水稻地上部生长,提高氮吸收效率、地上部P和Fe含量,而NO_3~–则有利于水稻发根,提高地上部Ca、Mg、Zn、Cu和Mn含量。  相似文献   

11.
Lineal extension of Gaeumannomyces graminis var. tritici hyphae along roots of intact wheat plants growing in soils was measured. Hyphal growth rates were lower in soils treated with NH4+-N than with NO3?-N. In a soil that is suppressive to the take-all disease, the controlling influence of NH4+-N was eliminated by soil fumigation (methyl bromide), and reintroduced to fumigated soil by additions of 1% nonsterile soil. Effects of fumigation on hyphal growth were absent in a nonsuppressive soil, and in NO3?-treatments of the suppressive soil. When inocula of selected groups of wheat rhizoplane microflora were reintroduced into a fumigated or a soil-reinoculated soil via a root-food base, the Pseudomonas spp. consistently appeared more suppressive in NH4+-N treatments than the general bacterial flora, Bacillus spp. spores, streptomycetes, and fungi.  相似文献   

12.
The contribution of bacteria and fungi to NH4+ and organic N (Norg) oxidation was determined in a grassland soil (pH 6.3) by using the general bacterial inhibitor streptomycin or the fungal inhibitor cycloheximide in a laboratory incubation study at 20°C. Each inhibitor was applied at a rate of 3 mg g?1 oven‐dry soil. The size and enrichment of the mineral N pools from differentially (NH415NO3 and 15NH4NO3) and doubly labelled (15NH415NO3) NH4NO3 were measured at 3, 6, 12, 24, 48, 72, 96 and 120 hours after N addition. Labelled N was applied to each treatment, to supply NH4+‐N and NO3?‐N at 3.15 μmol N g?1 oven‐dry soil. The N treatments were enriched to 60 atom % excess in 15N and acetate was added at 100 μmol C g?1 oven‐dry soil, to provide a readily available carbon source. The oxidation rates of NH4+ and Norg were analysed separately for each inhibitor treatment with a 15N tracing model. In the absence of inhibitors, the rates of NH4+ oxidation and organic N oxidation were 0.0045 μmol N g?1 hour?1 and 0.0023 μmol N g?1 hour?1, respectively. Streptomycin had no effect on nitrification but cycloheximide inhibited the oxidation of NH4+ by 89% and the oxidation of organic N by more than 30%. The current study provides evidence to suggest that nitrification in grassland soil is carried out by fungi and that they can simultaneously oxidize NH4+ and organic N.  相似文献   

13.
This paper focuses on the short-term reaction of fine root and mycorrhiza on changes in soil solution chemistry following application of MgSO4 (Kieserite) and (NH4)2SO4 (ammonium sulfate). The experiments were conducted within the ARINUS Experimental Watershed Area near Schluchsee in the Black Forest (SW Germany). Yellowing of the older needles as related to Mg deficiency was the typical symptom observed within this 45 yr old Norway spruce stand. On the N treated plot the relative mycorrhiza frequency declined and the percentage of nonmycorrhizal root tips increased, whereas in the Mg fertilized plot these parameters did not differ from the control. The observed changes cannot be caused by Al, because elevated concentrations of potentially toxic Al species and extremely low Ca/A1 molar ratios appeared in the soil solution of both treatments and did not result in reduced growth of long roots as reported from solution culture experiments. Moreover, the Al content of fine roots did not increase. Therefore, it is concluded that the thresholds for Al toxicity derived from solution culture experiments with nonmycorrhizal seedlings cannot be transferred to forest stands. A direct toxic effect of elevated NH4 + concentrations on mycorrhiza is unlikely, but cannot be excluded. Enhanced root growth due to a higher uptake of NH4 + from soil solution may provide a more plausible explanation for the observed increase in the percentage of nonmycorrhizal root tips after N application. Even though the N content of fine roots did not increase, the diminished K content gives some indirect indication for NH4 + uptake by the roots. This is also consistent with reduced Mg content due to NH 4 + /Mg2+ antagonism. On the MgSO4 treated plot, Mg contents of the fine roots increased thus reflecting Mg uptake by the deficient stand.  相似文献   

14.
Soil chemical properties affecting NH4+ sorption in forest soils   总被引:2,自引:0,他引:2  
Fourteen European forest soils from the boreal to the mediterranean climate on different parent materials were investigated with respect to their ability to store NH4+ in exchangeable form, using sorption isotherms. Distribution coefficients for NH4+ sorption per unit weight of soil were in the range of 0.02 to 0.77. NH4+ sorption coefficients were usually highest in the forest floor of a given soil. NH4+ sorption behaviour of mineral soil horizons was correlated to soil parameters that are determined during routine soil analysis. A combination of CEC and base saturation explained up to 95% of the variability Of NH4+ sorption. In the forest floors, variability in NH4+ sorption could not be explained quantitatively from independent soil parameters. The affinity of the sorption sites for NH4+ was the most important factor for explanation of the variability in NH4+ sorption in the forest floors but was of low importance in mineral soil horizons. As NH4+ exchanges predominantly base cations, susceptibility of NH4+ to transport through the soil profile increases with Iowbase saturation of a soil as well as with low CEC values.  相似文献   

15.
Plant nitrogen (N) uptake, growth, and N use efficiency may be affected by N form (NO3 or NH4 +) available to the root. The objectives of this study were to determine the effect of mixed N form on dry matter production and partitioning, N uptake, and biomass N use efficiency defined as total dry matter produced per unit plant N (NUE1) in U.S. and tropical grain sorghums [Sorghum bicolor (L.) Moench]. The U.S. derived genotype CK 60 and three tropical genotypes, Malisor‐7, M 35–1, and S 34, were evaluated in a greenhouse trial using three nutrient solutions differing in their NO3 /NH4 + ratio (100/0, 75/25, 50/50). Shoot and root biomass, N accumulation, and NUE, were determined at 10‐leaf and boot stages. Averaged over all genotypes, shoot and root biomass decreased when NH4 + concentration was increased in the solution. Shoot biomass was reduced by 11% for 75/25 and 26% for 50/50 ratios, as compared to 100/0 NO3 /NH4 +. Similarly, root biomass reduction was about 34% and 45% for the same ratios, respectively. Increasing NH4 + concentration also altered biomass partitioning between shoot and root as indicated by decreasing root/shoot ratio. Total plant N content and NUE1 were also reduced by mixed N source. Marked genotypic variability was found for tolerance to higher rates of NH4 +. The tropical line M 35–1 was well adapted to either NO3 as a sole source, or to an N source containing high amounts of NH4 +. Such a characteristic may exist in some exotic lines and may be used to improve genotypes which do not do well in excessively wet soil conditions where N uptake can be reduced.  相似文献   

16.
The effects of cations on desorption of phosphate previously added to soil were studied by mixing phosphated soil with solutions of chloride salts at a range of solutionitoil ratios and for periods which ranged from 1 to 96 h. Phosphate desorbed was then related to the experimental variables by a pair of simultaneous equations. In calcium chloride, the rate of desorption of phosphate was inversely proportional to the calcium concentration. Desorption was faster in 0.01 M magnesium chloride than in 0:01 M calcium chloride, and faster in 0.03 M sodium chloride than in either magnesium or calcium chloride. Addition of a further supply of the cation on an exchange resin increased the rate for both sodium and magnesium but decreased it for calcium. A range of monovalent cations formed a sequence from fastest to slowest of: Li+ > Na+ > NH4?> K +, Rb + > Cs +. The identity and concentration of the cations had a large effect on the concentration of phosphate when the solution: soil ratio was small. There were also large effects in the amount of phosphate desorbed when the solution: soil ratio was large and the concentration of phosphate approached zero. This suggested that the escaping tendency of the phosphate was decreased when the cations which balanced the negative charge on the adsorbed phosphate were close to the surface.  相似文献   

17.
Displacement of NH4+ fixed in clay minerals by fertilizer 15NH4+ is seen as one mechanism of apparent added nitrogen interactions (ANI), which may cause errors in 15N tracer studies. Pot and incubation experiments were carried out for a study of displacement of fixed NH4+ by 15N‐labeled fertilizer (ammonium sulfate and urea). A typical ANI was observed when 15N‐labeled urea was applied to wheat grown on soils with different N reserves that resulted from their long‐term fertilization history: Plants took up more soil N when receiving fertilizer. Furthermore, an increased uptake of 15N‐labeled fertilizer, induced by increasing unlabeled soil nitrogen supply, was found. This ANI‐like effect was in the same order of magnitude as the observed ANI. All causes of apparent or real ANI can be excluded as explanation for this effect. Plant N uptake‐related processes beyond current concepts of ANI may be responsible. NH4+ fixation of fertilizer 15NH4+ in sterilized or non‐sterile, moist soil was immediate and strongly dependent on the rate of fertilizer added. But for the tested range of 20 to 160 mg 15NH4+‐N kg–1, the NH4+ fixation rate was low, accounting for only up to 1.3 % of fertilizer N added. For sterilized soil, no re‐mobilization of fixed 15NH4+ was observed, while in non‐sterile, biologically active soil, 50 % of the initially fixed 15NH4+ was released up to day 35. Re‐mobilization of 15NH4+ from the pool of fixed NH4+ started after complete nitrification of all extractable NH4+. Our results indicate that in most cases, experimental error from apparent ANI caused by displacement of fixed NH4+ in clay is unlikely. In addition to the low percentage of only 1.3 % of applied 15N, present in the pool of fixed NH4+ after 35 days, there were no indications for a real exchange (displacement) of fixed NH4+ by 15N.  相似文献   

18.
利用NO-3 N∶NH 4 N为 10 0∶0、5 0∶5 0和 0∶10 0三个硝铵配比的营养液对 12个不结球小白菜品种进行水培试验。结果表明 :不同的硝铵配比对不同品种小白菜的生物量、叶绿素SPAD值、硝酸盐积累量等有着显著的影响 ,同一氮源培养下不同的小白菜品种间也表现出显著的差异 ;12个小白菜品种叶绿素SPAD值随营养液中的NH 4 N比例的增加而升高 ,两者间存在着显著的正相关 ;单株生物量除亮白叶 1号和五月慢在全硝培养中生物量较其他两种配比大外 ,其他 10个品种均在 5 0∶5 0硝铵营养液中表现最好 ;供试的 12个小白菜品种中有 9个品种的硝酸盐积累量随着NH 4 N比例的增加而下降 ,表明适当地配施铵态氮较纯硝营养液能获得更好的产量、更高的叶绿素SPAD值和较低的硝酸盐积累量。  相似文献   

19.
The effect of acidic deposition on the soil under red pine forest in Chunchon, Korea was investigated. Precipitation, stream water, and soil solution chemistry were monitored at the watershed from 1997 to 1998. Acidity of the open-bulk precipitation was often neutralized by large amounts of ammonia (NH3) that might have originated from livestock farming and fertilization. Estimated elemental budget at the watershed showed a positive correlation between loss of base cations and proton (H+) production due to nitrogen transformation in soil (ΔH+ NT: ([NH4 +]in-[NH4 +]out)- ([NO3 ?]in-[NO3 ?]out)). When ΔH+ NT increased, concentrations of nitrate in soil solutions also increased. Consequently, pH values of soil solutions decreased, although ion exchange with base cations contributed to buffer reaction. Since acid buffering capacity of the red pine forest soil was small, it was concluded that the input of ammonium nitrogen enhanced nitrification in soil thus causing soil acidification represented by loss of base cations from the watershed.  相似文献   

20.
To understand the effect of the NH3 emissions from vehicles, the NH4 + bulk deposition and concentrations of gaseous NH3 and particulate NH4 + were measured at two sites in Saitama prefecture, Japan, one at the roadside of an arterial road (Kounosu), and the other in an agricultural area (Kisai). We observed that the NH4 + bulk deposition and NH3 concentration were significantly increased in Kounosu; the effect of NH3 emissions from vehicles was confirmed. NOx was a primary pollutant mainly emitted by vehicle exhaust in the vicinity of arterial roads, and the relationship between NO x and sum of gaseous NH3 and particulate NH4 + (T-NH4 +) was examined. The [T-NH4 +/NO x ] ratios in Kounosu ranged from 0.08 to 0.23 (average 0.15), and in Kisai they ranged from 0.16 to 0.67 (average 0.39). In Kounosu, the effect of vehicle exhaust was great, but seasonal variation was small. The contribution ratio of NH3 from vehicle emissions increased at low temperatures, while that from the non-vehicle emissions increased at high temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号