首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genomic fragments of two open reading frames (ORFs) 1 and 2 of German and Canadian PAV isolates of Barley yellow dwarf virus (BYDV-PAV) were sequenced. Sequences only slightly differed from previously published sequences of this virus. Two polyclonal antisera against proteins encoded by ORFs 1 and 2 of a German ASL-1 isolate were developed using recombinant antigens expressed in E. coli as a fusion either to His6− or thioredoxin-tags. In Western blot analysis with total protein extracts from BYDV infected plants, antisera efficiently recognized the 99 kDa fusion protein expressed from ORF1 and ORF2 (P1–P2 protein). Later in infection the P1–P2 protein disappeared and two smaller proteins, revealing sizes of 39 and 60 kDa, could be detected.  相似文献   

2.
Actinidia chinensis and A. deliciosa plants from China, showing a range of symptoms, including vein clearing, interveinal mottling, mosaics and chlorotic ring spots, were found to contain ~300 nm rod-shaped virus particles. The virus was mechanically transmitted to several herbaceous indicators causing systemic infections in Nicotiana benthamiana, N. clevelandii, and N. occidentalis, and local lesions in Chenopodium quinoa. Systemically- infected leaves reacted with a Tobacco mosaic virus polyclonal antibody in indirect ELISA. PCR using generic and specific Tobamovirus primers produced a 1,526 bp sequence spanning the coat protein (CP), movement protein (MP), and partial RNA replicase genes which showed a maximum nucleotide identity (88%) with Turnip vein clearing virus and Penstemon ringspot virus. However, when the CP sequence alone was considered the highest CP sequence identity (96% nt and 98% aa) was to Ribgrass mosaic virus strain Kons 1105. The morphological, transmission, serological and molecular properties indicate that the virus is a member of subgroup 3 of the genus Tobamovirus.  相似文献   

3.
Serial passage experiments (SPE) of a Barley yellow dwarf virus-PAV (BYDV-PAV) isolate were performed on Zhong ZH and TC14 wheat lines to evaluate the durability of their resistance to BYDV. At different passage numbers (from the 2nd to the 114th), biological properties of the produced isolates were recorded either by monitoring infection percentages and virus titers of the first 3 weeks of viral infection or by measuring their impact on yield components. Statistical analyses using the area under pathogen progress curves and the area under concentration progress curves demonstrated that these two resistant lines induce, after only a few passages, a selection of variant(s) with significantly modified infection abilities. Isolates resulting from SPE performed on these lines induced important decreases of yield components. These results indicate that the use of Zhong ZH and TC14 lines in BYDV-resistant breeding programmes should be approached with caution.  相似文献   

4.
5.
Barley yellow dwarf (BYD) is one of the main viral diseases of small-grain cereals. This disease, reported on numerous plant species of the Poaceae family, is caused by a complex of eight viral species including the species Barley Yellow Dwarf Virus-PAV (BYDV-PAV), frequently found in western Europe. Resistance sources against BYDV-PAV are scarce and only identified in perennial Triticineae. Some BYDV-resistant wheat lines have been obtained by introgressing these resistances into bread wheat germplasms. Genetic and biological characterization of the resulting lines has been undertaken. However, little information on the resistant behaviour of these lines during the early stages of the infection process is available. To evaluate the resistance of two genetically distinct resistant lines (Zhong ZH and TC14), 1740 young plantlets, belonging to susceptible reference hosts (barley cv. Express and wheat cv. Sunstar), Zhong ZH or TC14 wheat lines, were inoculated in controlled conditions with French BYDV-PAV isolates. The infection process was monitored during the first 21 days after inoculation (DAI) using a semi-quantitative ELISA. A standardized protocol including five successive samplings of leaves from all inoculated plants and the collection of plant roots at the end of the monitored period was carried out. This protocol enabled an assessment of the infection percentage and the evolution of the viral load in plants from the 7th DAI to the 21st DAI. Statistical analyses of the BYDV infection kinetics using raw ELISA data, a model of the time-dependent variation of the percentage of infected plants and the area under concentration progress curves (AUCPC) demonstrated that Zhong ZH and TC14 lines (1) reduce the development rate of the BYD disease during the first days of infection, (2) decrease the infection efficiency of BYDV-PAV isolates, in the leaves, from 98.7% for susceptible plant genotypes to 81.9% and 71.7% for Zhong ZH and TC14, respectively, (3) reduce the virus load in the leaves of infected plants and (4) are not spared from BYDV infection, as 95.1% of Zhong ZH and 90.2% of TC14 inoculated plants accumulated viral particles in roots and/or in leaves at 21 DAI. These results confirm the BYDV-partial resistant behaviour of both Zhong ZH and TC14 lines. The development rate of the disease was the single parameter that allowed the distinction between the two resistant sources present in the tested lines.  相似文献   

6.
7.
Common reed (Phragmites communis Trin.), a perennial grass, is a widespread weed in the Trakya region of Turkey. Reed leaf samples were collected in 2004 and 2005, and tested for the presence of theMaize dwarf mosaic virus (MDMV),Sugarcane mosaic virus (SCMV),Barley yellow dwarf virus-PAV (BYDV-PAV),Cereal yellow dwarf virus-RPV (CYDV-RPV) andWheat dwarf virus (WDV) by DAS-ELISA, PTA-ELISA and Western blot analysis. MDMV was identified in five out of sixP. communis samples that exhibited characteristic virus-like symptoms in 2004. The remaining sample was co-infected with MDMV and BYDV-PAV. Transmission electron microscopy confirmed the presence of flexuous rod-shaped virus particles in four samples that reacted positively for MDMV in ELISA. In 2005, ELISA revealed that nine out of 234 samples that were collected in two different locations were infected with MDMV, nine with SCMV, and three with BYDV-PAV. No sample contained CYDV-RPV, JGMV and WDV. Our results confirm that the common reed is a host of BYDV-PAV and indicate, for the first time, that it is also a natural host of MDMV and SCMV.P. communis most likely acts as a reservoir of these three viruses in the Trakya region in Turkey. http//www.phytoparasitica.org posting Sept. 13, 2006.  相似文献   

8.
9.
Interactions between Barley yellow dwarf virus (BYDV) and Fusarium species causing Fusarium head blight (FHB) in winter wheat cvs Agent (susceptible to FHB) and Petrus (moderately resistant to FHB) were studied over three years (2001–2003) in outdoor pot experiments. FHB developed more rapidly in cv. Agent than in cv. Petrus. The spread of FHB was greater in BYDV-infected plants than in BYDV-free plants. Thousand grain weight (TGW) was reduced more in Fusarium-infected heads of cv. Agent than in cv. Petrus. A highly significant negative correlation was found between disease index and TGW in cv. Agent (r = −0.916), while in cv. Petrus the correlation was less significant (r = −0.765). Virus infection reduced TGW in cv. Petrus more than in cv. Agent. In plants with both infections, TGW reductions in cv. Petrus corresponded to those of BYDV infection, and in cv. Agent TGW was more diminished than in BYDV infection. Effects of different treatments determined over three years on ergosterol contents in grain were generally similar to effects on disease indices. Grain weight per ear and ear weight of the different treatments of both cultivars largely corresponded with the TGW results. Deoxynivalenol (DON) content in grain of cv. Agent infected with Fusarium spp. was 11–25 times higher compared to the corresponding treatments in cv. Petrus. The DON content in grain of plants of the two cultivars infected with both pathogens was higher than that of plants infected only with Fusarium over the three years.  相似文献   

10.
Severe mosaic with leaf malformation and green vein banding was observed on yam bean in West and Central Java, Indonesia. Virions of the causal virus were flexuous filaments, about 700 nm in length, with a coat protein of 30 kDa. The virus was transmitted by mechanical inoculation and by aphids in a nonpersistent manner. The nucleotide sequence of the coat protein gene had the highest identity with that of Bean common mosaic virus (BCMV, genus Potyvirus) isolate VN/BB2-5. Based on demarcation criteria, including the genome sequence and host range, we tentatively designate this isolate as BCMV-IYbn (Indonesian yam bean). The nucleotide sequence reported is available in the DDBJ/EMBL/GenBank databases under accession number AB289438.  相似文献   

11.
12.
The same mutant allele of eukaryotic initiation factor 4E (eIF4E) that confers resistance to Pea seed-borne mosaic virus (sbm-1) and the white lupine strain of Bean yellow mosaic virus (wlv) also confers resistance to Clover yellow vein virus (ClYVV) in pea. The eIF4E genes from several pea lines were isolated and sequenced. Analysis of the eIF4E amino acid sequences from several resistant lines revealed that some lines, including PI 378159, have the same sequence as reported for sbm-1 and wlv. When eIF4E from a susceptible pea line was expressed from a ClYVV vector after mechanical inoculation of resistant PI 378159, the virus caused systemic infection, similar to its effects in susceptible line PI 250438. The resistance to ClYVV in line PI 378159 was characterized through a cross with PI 193835, which reportedly carries cyv-2. Mechanical inoculation of the F1 progeny with ClYVV resulted in no infection, indicating that the resistance gene in PI 378159 is identical to cyv-2 in PI 193835. Furthermore, particle bombardment of pea line PI 193835 with infectious cDNA of ClYVV (pClYVV/C3-S65T) resulted in the same resistance mode as that described for PI 378159. These results demonstrate that the resistance to ClYVV conferred by cyv-2 is mediated by eIF4E and that cyv-2 is identical to sbm-1 and wlv.  相似文献   

13.
A virus that caused a distinct yellow mosaic was isolated in Okayama, Japan from Chinese cabbage (Brassica rapa L., Pekinensis group). The virus, with spherical particles ca. 28 nm in diameter, was mechanically transmissible only to cruciferous species. From the host range, characteristic morphology of virus particles, serology and sequence analysis of coat protein gene, the causal virus was identified as Turnip yellow mosaic virus (TYMV). Seed transmission of TYMV at 0–2.2% in Chinese cabbage was confirmed. This report is the first of TYMV from Chinese cabbage and in Japan. The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases as accessions AB358971 and AB358972.  相似文献   

14.
The complete nucleotide sequences of RNAs 1 and 2 of Rice stripe necrosis virus (RSNV) were determined and compared to the corresponding genomes of all sequenced, rod-shaped plant viruses. The genome organisation of RSNV RNA1 and RNA2 is nearly identical to that of Beet necrotic yellow vein virus (BNYVV) and Beet soil-borne mosaic virus (BSBMV), definitive species of the genus Benyvirus. As demonstrated for BNYVV and BSBMV, the RNA1 of RSNV also encodes a single ORF with putative replicase-associated motifs, which distinguishes benyviruses from all other viruses possessing rod-shaped particles. As described for BNYVV, RNSV RNA-2 also contains six ORFs: the capsid protein gene, the read-through protein gene, a triple gene block gene that codes for three different proteins, and a 17 kDa cysteine-rich protein. RNAs 3 and 4 (or 5 in the case of BNYVV), identified in natural infections of BNYVV and BSBMV, were not detected in any of the 44 RSNV cDNA clones obtained in this investigation. Nevertheless, phylogenetic and amino comparative acid sequence analyses demonstrated that RSNV is more closely related to BNYVV and BSBMV than to any other rod-shaped plant virus characterised to date.  相似文献   

15.
Alstroemeria plants were surveyed for viruses in Japan from 2002 to 2004. Seventy-two Alstroemeria plants were collected from Aichi, Nagano, and Hokkaido prefectures and 54.2% were infected with some species of virus. The predominant virus was Alstroemeria mosaic virus, followed by Tomato spotted wilt virus, Youcai mosaic virus (YoMV), Cucumber mosaic virus (CMV), Alstroemeria virus X and Broad bean wilt virus-2 (BBWV-2). On the basis of nucleotide sequence of the coat protein genes, all four CMV isolates belong to subgroup IA. CMV isolates induced mosaic and/or necrosis on Alstroemeria. YoMV and BBWV-2 were newly identified by traits such as host range, particle morphology, and nucleotide sequence as viruses infecting Alstroemeria. A BBWV-2 isolate also induced mosaic symptoms on Alstroemeria seedlings.  相似文献   

16.
17.
A monogenic recessive resistance to Rice yellow mottle virus (RYMV) found in the Oryza sativa indica cultivar Gigante and in a few Oryza glaberrima cultivars provided a higher level of resistance than either a polygenic partial resistance found in some japonica cultivars which delayed symptom expression or transgenic resistances which were partial and temporary. This high resistance was overcome by several isolates, but the percentage of such virulent isolates in the fields was low. There was no relationship between the virulence of an isolate towards the high resistance and its aggressiveness in other cultivars. Isolates with either of the two components of pathogenicity – virulence and aggressiveness – were found in each strain and in all regions of Africa, in both wild and cultivated grass species. There was no loss of fitness of resistance-breaking (RB) isolates as they were not counter-selected, impaired or outperformed after serial passages in susceptible cultivars, even in mixture with avirulent quasi-isogenic wild type isolates. Resistance breaking was highly dependent on the amount of virus inoculated and on the mode of transmission. Implications of these results for the durability of the resistances to RYMV and for the development of integrated disease management strategies are discussed.  相似文献   

18.
Cucumber mosaic virus (CMV) was isolated from a mosaic diseased plant of Eucharis grandiflora. The virus caused mosaic symptoms on leaves and slight distortion of flower petals in E. grandiflora by either mechanical or aphid inoculation. The virus was identified as a strain of CMV subgroup I from its biological and serological characteristics.  相似文献   

19.
Pepper mottle virus, genus Potyvirus, was first identified in Japan based on particle morphology, host range, aphid transmission, and molecular classification using the nucleotide sequence of the coat protein gene and 3-untranslated region.  相似文献   

20.
Vector efficiency of 44 clonal lines (clones) of Sitobion avenae belonging to 31 different genotypes (distinct patterns for five microsatellite loci) originating from Western France was evaluated by transmitting the isolate PAV4 of BYDV-PAV to barley seedlings. Variation in transmission rates from 3.7% to 92.5% was observed, with significant effects of the aphid clone, of the plant species on which clones were collected, and of the reproductive mode of the clones. When genotypes are considered instead of clones, a continuum in transmission rates was observed. A subset of S. avenae clones was tested for transmission of one (10 clones) and 13 (4 clones) other BYDV-PAV isolates, and a clear clone effect modulated by an isolate effect was observed. Crosses were made between clones with different vectoring phenotypes and their F1 progeny were tested for PAV4 transmission. The narrow sense heritability of the PAV transmission character was rather high in the F1 families (h2=0.5) and the segregation analyses suggested an oligo/polygenic determinism of this character. The possibility of generating new transmission variants by sexual reproduction and its consequences on transmission mechanism studies and on BYD epidemics are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号