共查询到16条相似文献,搜索用时 67 毫秒
1.
为了解决联合收获机-运输车协同作业时,运输车粮箱装载不均匀,导致粮箱装载利用率低的问题,提出了一种基于三维点云的动态均匀装载方法。该方法利用相机获取运输车粮箱内装载物的三维点云作为状态反馈信息,建立装载均匀性评估方式,以最均匀装载状态为目标,通过实时调整卸料装载点位置,使粮箱保持在均匀的装载状态。针对装载物相互遮挡对相机形成视觉盲区的问题,通过建立装载物的堆体模型和相机的遮挡模型,以最小期望误差为目标对盲区内装载物高度进行估计,并据此进行点云填充,从而得到能完整反映粮箱装载状态的三维点云。在搭建平台进行的实验中,对粮箱装载过程中可能出现的轻载、中载和重载3种装载状态进行测量,并对盲区点云位置进行估计,其盲区估计的平均误差低于5 cm。仿真结果表明,动态均匀装载方法能在有限装载周期内,将粮箱从任意的初始装载状态装载为均匀状态。单次装载量的平均高度增量为2 cm、粮箱的初始装载状态为空载时,装载物的最大高度方差为1 cm2。单因素仿真结果表明,稳定状态下的装载物高度方差与单次装载量正相关。 相似文献
2.
基于三维激光点云的靶标叶面积密度计算方法 总被引:2,自引:0,他引:2
为向变量喷雾系统施药量的计算提供数据基础,提出了靶标喷施区域叶面积密度参数的计算方法。靶标三维点云数据由二维激光雷达传感器沿果树行直线运动间接获取。在假设各喷施子区域内叶片面积变化相对较小的条件下,基于Matlab曲线拟合工具箱cftool分析并验证了点云数与叶片数之间存在函数关系。曲线拟合结果表明,利用高斯函数、多项式函数与指数函数拟合点云数与叶片数,决定系数分别为0.925 7、0.931 0与0.936 4,指数函数拟合效果最好。相对误差分析结果表明,基于3种拟合函数,枝叶茂密区域相对误差最小为11.46%,枝叶中等茂密区域相对误差最小为11.05%,枝叶稀疏区域相对误差最小为35.50%。基于确定的点云数与叶片数间的函数方程,经系数变换后可计算出叶面积密度参数。 相似文献
3.
基于三维激光扫描点云的树冠体积计算方法 总被引:7,自引:0,他引:7
针对树冠形状不规则,树冠体积难以测量和计算的问题,提出一种基于三维激光扫描点云的树冠体积计算方法——体元模拟法,即以固定大小的体元模拟不规则的树冠形状.首先将树冠沿树高方向以k为步长进行等距离分段,把每一段树冠的点投影到垂直于树高方向的平面上,再对该平面划分成大小为k×k的像元,根据投影到各个像元内点的数量,判断该像元的有效性,统计有效像元的数量T,则树冠体积为T个k×k×k的体元之和.经试验,当体元边长等于冠径的1/10时,计算的树冠体积达到稳定.该算法对于任何树种不用考虑树冠的形状,减少了人为判别导致的差异,适用于三维激光扫描树木树冠体积的计算. 相似文献
4.
基于三维激光点云数据的树冠体积估算研究 总被引:2,自引:0,他引:2
树冠体积是预估树木生物量的重要参数之一。为了实现对树木冠体体积无损高精度量测,随机抽取了6个树种、共计30棵树木的三维激光点云数据作为数据源,对树冠体积的求算方法进行研究。首先,对三维激光点云数据进行匹配、拼接、去噪及压缩等处理,提取冠体点云数据;其次,提取每一棵样木树冠的边缘特征点;最后,应用不规则三角网TIN的原理算法计算冠体体积。本文所提取的边缘特征点能够最大限度地维持树冠冠体的整体不变形,还能够继续去除部分冗余数据,缩短了不规则三角网TIN的构建时间,提高了计算效率;此外,树种包含有针叶树和阔叶树,在冠形上既有针叶树所特有的冠体体态特征,又有阔叶树的冠体体态特征,其研究结果具有一定的代表性。本文采用的方法与已有文献计算结果对比表明:均方根误差为0.832,平均绝对误差为0.49,平均相对误差为1.75%,可看出二者之间差异较小;同时在30个样木中随机抽取5个样木的人工测量结果与本研究相比较,取得的精度相对较好。采用本研究所得结果精度较高,能够满足生产需求。 相似文献
5.
基于三维点云的苹果树冠层点-叶模型重建方法 总被引:1,自引:0,他引:1
为了快速重建苹果树冠层结构三维模型,以纺锤体苹果树冠层为研究对象,利用地面三维激光扫描仪获取冠层三维点云,提出了苹果树冠层点-叶模型重建方法。首先,提出了苹果树冠层叶基自动提取方法,可获取苹果树冠层生长期和叶幕稳定期的叶基,与手工提取的叶基对比分析表明,两种方法重合度较高、误差较小,两种方法的平均欧氏距离为1.41mm;其次,提出了基于冠层体素化的叶基提取方法,构建了苹果树冠层点模型,并在叶基上拼接叶片模板,构建出苹果树冠层点-叶模型;最后,利用VegeSTAR光模型计算光截获进行验证分析,与常规数字化仪测得数据相比,本文方法提高了苹果树冠层三维结构重建效率。 相似文献
6.
针对地面三维激光扫描仪在室外环境下获取果树冠层三维点云信息的复杂性,以及三维点云的颜色和真实颜色存在较大色差问题,提出了一种三维点云颜色矫正方法。通过计算Pearson系数和Spearman相关系数,确定扫描点的 R、G、B 分别与太阳辐射值、TCCR24标准颜色测试板与地面夹角 θ 、TCCR24标准颜色测试板不同色块颜色、扫描质量、光线方向变量之间均存在相关关系。利用统计学方法,在置信度为95%时,建立 R、G、B 分量的双重筛选逐步回归模型。利用建立的回归模型,矫正三维点云颜色。采用该方法对室外果树冠层三维点云进行颜色矫正实验,结果表明,利用建立的颜色矫正回归模型,三维点云颜色 R、G、B 与真实颜色 R、G、B 的相关度由矫正前的低于0.69提高到0.90以上,颜色矫正后的标准差明显由矫正前的高于50%降到低于13%。该方法可为地面三维扫描仪获取较准确的三维点云的彩色信息提供理论依据。 相似文献
7.
Kinect获取植物三维点云数据的去噪方法 总被引:4,自引:0,他引:4
为解决Kinect获取的玉米三维点云数据噪声影响三维重建精度的问题,根据Kinect所获取的点云数据特点,采用多帧数据融合的方法获取更完整的三维点云数据并对点云数据进行初步平滑;通过对Kinect所获数据噪声进行分析,提出了一种基于密度分析和深度数据双边滤波的方法,分别对离群点噪声和内部高频噪声进行处理。以Kinect获取的玉米及茄子的三维点云数据进行去噪实验,所用去噪时间仅为传统双边滤波去噪时间的2.71%和1.78%,并且能够达到很好的去噪效果。结果表明,所提方法能够方便、快捷地去除不同尺度的噪声,同时保留边缘数据的完整性,获得良好的植物三维点云数据。 相似文献
8.
针对传统采棉机器人因单一视角和二维图像信息带来的视觉感知局限问题,本文提出了一种多视角三维点云配准方法,以增强采棉机器人实时三维视觉感知能力。采用4台固定位姿的Realsense D435型深度相机,从不同视角获取棉花点云数据。通过AprilTags算法标定出深度相机RGB成像模块与Tag标签的相对位姿,并基于深度相机中RGB成像模块与立体成像模块坐标系间的转换关系,解算出各个相机间点云坐标的对应变换,进而实现点云间的融合配准。结果表明,本文配准方法的全局配准平均距离误差为0.93cm,平均配准时间为0.025s,表现出较高的配准精度和效率。同时,为满足采棉机器人感知的实时性要求,本文对算法中点云获取、背景滤波和融合配准等步骤进行了效率分析及优化,最终整体算法运行速度达到29.85f/s,满足采棉机器人感知系统实时性需求。 相似文献
9.
基于三维点云的叶面积估算方法 总被引:2,自引:0,他引:2
为实现低成本无损精确测定叶片面积,基于运动恢复结构算法获取点云,提出了一种融合叶片点云分割、表面重建及叶片面积无损估测等过程的植物叶片面积提取方法。首先,基于运动结构恢复算法,以智能手机获取的可见光图像重建植物的三维点云;其次,为了还原叶片表面形状,基于HSV颜色空间,使用阈值分割法去除叶片点云的噪点;使用K-means聚类算法对点云的三维坐标矩阵进行分类,实现单片叶片点云的分割;基于滚球算法重建叶片的表面网格模型;最后,通过计算网格面积求得叶片面积。与常规叶面积测定方法进行了对比,本文方法的计算结果与扫描叶片法测定值相比平均误差为1.21cm2,误差占叶片面积的平均百分比为4.67%;与叶形纸称量法测定值相比平均误差为1.41cm2,误差占叶片面积的平均百分比为6.05%。结果表明,本文方法成本低、精确度高,可满足植物叶片面积无损精确测定的需求。 相似文献
10.
基于三维点云的苹果树叶片三维重建研究 总被引:2,自引:0,他引:2
叶片是果树冠层的重要组成部分,对其进行三维重建研究不仅可以对叶片形态特征进行分析,还能为冠层光照分布计算以及果树整形修剪提供理论基础。三维激光扫描仪以非接触、高效、快速获取数据的优势被大量应用于三维空间信息采集工作中。本文提出一种基于三维点云的苹果树叶片结构形态三维重建方法。首先针对叶片的形态特点选择合适的三维激光扫描仪获取苹果叶片三维点云;基于包围盒法搜索K邻域,计算点云中点与其邻域点的平均距离,并设定距离阈值作为判定中心点是否为离散点的依据,进而确定离散点并去除;利用最小二乘原理实现点云局部曲面拟合以及法向量、曲率的计算,提取叶片边界点;对于非边界点部分,根据中心点法向量与其邻域法向量的关系,对点进行不同程度的精简;最后对处理后的叶片点云完成三维重建。结果表明,构建的叶片模型能够较好的保留叶片的三维形态特征,可以为果树冠层重建和光照分布计算提供基础。 相似文献
11.
基于点云的谷粒高通量表型信息自动提取技术 总被引:1,自引:0,他引:1
在进行水稻的数字化考种、表型与基因关联分析和数字农业仿真模拟时,需要大量的谷粒表型信息作数据支撑。本文提出了一种基于三维点云的谷粒高通量表型信息自动提取方法,能同时自动获取谷粒的三维模型和40个表型参数,实现谷粒形状的定量和定性描述。首先,通过对谷粒点云数据进行聚类分析,完成谷粒点云的分类;其次,实现谷粒的三维重建,对谷粒离散点云进行柱面构网,获取谷粒点云的三维模型数据;最后,根据不同表型参数的特点,实现了谷粒的三维表面积和体积、长、宽、高、3个主成分剖面的周长和面积等11个基本参数与长宽比、长高比和体积比等11个衍生参数以及18个形状因子的自动提取。利用Handyscan 700型手持式激光扫描仪获取的谷粒高精度点云数据进行实验,成功实现了谷粒表型参数的自动提取,测量结果可达毫米级。基于主成分方法分析了各表型参数的权重。以游标卡尺测量值和Geomagic Studio测量值作为真值,长、宽、高的平均相对误差为1.14%、1.15%和1.62%,体积和表面积的相对误差为零,3个主成分剖面面积的平均相对误差为1.82%、2.12%和2.43%。本文方法与人工测量方法及软件测量方法相比,精度相当,且具有批量、自动、人工干预少(仅数据采集阶段需要人工操作)以及效率高的特点。 相似文献
12.
樱桃树的栽培密度影响其冠层的光照分布,通过研究群体樱桃树的三维结构,可分析不同栽植密度下温室甜樱桃树冠层光照分布规律,指导樱桃树的科学种植,进而提高甜樱桃产量和品质。高质量的点云数据是构建群体樱桃树三维结构的基础,而点云去噪和点云配准是点云数据预处理的关键环节。本文提出一种基于三维点云的群体樱桃树去噪和配准方法,搭建群体樱桃树三维信息采集平台,使用2台固定的DK深度相机获取群体樱桃树彩色点云数据;提出基于颜色区域生长的二分类方法,设置颜色阈值分割点云并进行二分类处理,可有效去除彩色点云数据中的异常无效点,并设置点云离散度和RGB值,作为点云去噪评价标准;结合人工标记法和双相机位姿矩阵,提出基于颜色特征改进的ICP方法,解决传统ICP配准算法多依赖初始位姿且配准速度较慢的问题。该方法通过对点云粗配准,得到较好的初始位姿,使用SIFT算法提取颜色特征点,将颜色特征与ICP算法结合进行点云精配准,然后使用PCL中随机采样一致性算法,去除错误匹配点,有效减少配准时间,提高配准精度。以夏季和冬季的群体樱桃树20组点云数据为实验对象,对比分析ICP算法、NDT算法、SAC-IA算法和本文配准方法的配准精度和配准时间,结果表明,本文配准方法平均耗时分别为5.01、4.30s,均方根误差分别为2.316、2.100cm,有效减少了配准时间和配准误差,验证了本文算法的有效性和普适性。 相似文献
13.
基于车载三维激光雷达的玉米点云数据滤波算法 总被引:4,自引:0,他引:4
为支持表型参数测量和数字植物相关研究,对车载三维激光雷达获取的玉米点云数据进行分析处理,提出了一种基于统计分析的两次滤波算法。以大喇叭口期的京农科728和农大84玉米为研究对象,使用VLP-16型三维激光雷达采集田间玉米点云数据;对点云数据进行直通滤波预处理,去除无关点后,进行第1次点云数据滤波处理,设置精确率和召回率阈值,选取参数组合;再对点云进行第2次滤波处理,确定精确率和召回率最优组合(110,0. 9)、(6,1. 2),边际组合(100,1. 0)、(6,1. 2)和(110,0. 8)、(5,0. 9),共3组参数组合;以3组验证集数据进行测试,结果表明:最优组合性能最优,可在京农科728和农大84玉米点云数据滤波中通用。 相似文献
14.
为解决整株盆栽金桔果实识别及总体计数问题,提出了基于三维点云配准的金桔果实识别方法。首先,使用RGB-D相机采集植物多角度点云数据并进行背景去除和去噪处理。然后采用随机采样一致性(Random sample consensus, RANSAC)算法进行圆柱拟合获得旋转中心轴参数,将点云绕中心轴旋转固定角度完成初配准,之后采用点到面的迭代最近点(Iterative closest point, ICP)算法完成精配准得到完整点云。最后,对点云进行欧氏聚类分割,采用随机采样一致性算法对聚类后点云进行球形分割,获得每个果实的三维空间位置并计数。本研究对9株盆栽金桔(共149个果实)进行识别,总计识别查全率为85.91%,查准率为79.01%,F1值为82.32%,果实数量预测值和真实值的决定系数为0.97,平均绝对百分比误差为16.02%。实验结果表明,本文方法不依赖颜色信息,能够有效识别整株植物中未成熟的青色果实,可为果实识别与产量估计等研究提供参考。 相似文献
15.
基于自适应半径滤波的农业导航激光点云去噪方法研究 总被引:1,自引:0,他引:1
针对点云数据去噪操作易损失点云细节信息问题,提出了动态半径滤波器,该方法可在保留场景细节信息的同时获得良好去噪效果。此外,提出基于深度卷积神经网络的种植模式判定器,该方法可实时识别当前种植模式,并读取相应的去噪参数。在苹果种植园、白杨树林和旱柳树林完成去噪试验,试验结果表明,本文方法能去除多尺度点云噪声,有效抑制稀疏离群点、目标周围的逸出值和密集噪声,单帧点云(6400点)去噪平均耗时为43.2ms。经自适应半径滤波去噪后,密度聚类的平均精确率为94.3%,平均召回率为78.9%,与原始数据相比,分别提升了40.4%、33.9%。自适应半径滤波具有较高的实时性、通用性和鲁棒性,能较明显地提升聚类效果,为点云后续处理奠定良好基础。 相似文献
16.
为了获取果实生长期的外形参数指标,监控果实发育状况,提出了一种基于局部点云的苹果外形指标估测方法。该方法可以通过局部点云数据估测苹果的体积、高度、直径等外形指标参数。利用椭球曲面方程构建苹果几何模型,并计算苹果几何模型的高度、直径、体积。使用Kinect V2相机从任意角度获取点云数据,采用直通滤波法去除点云数据的背景,用包围盒算法精简点云得到苹果局部点云数据后,采用粒子群算法将苹果局部点云数据与苹果模型进行空间匹配,并用遗传算法求解苹果最优匹配模型的参数,利用苹果最优匹配模型参数估测与其匹配的真实苹果的外形指标。实验采集了250个苹果顶部、侧面和底部的局部点云数据,使用本文方法分别估测了250个苹果在3个角度下的外形指标,并对估测值与真实值进行线性回归分析,各个指标的线性回归拟合度R~2均高于0. 7。其中,侧面拍摄时拟合效果最好,R2最高为0. 948。在各个角度下苹果体积估测的平均误差不大于16. 16 mL,高度估测的平均误差不大于2. 92 mm,直径估测的平均误差不大于2. 35 mm,估测结果的平均误差较小,在允许误差范围内。实验结果表明,基于局部点云的苹果外形指标估测方法具有较强的实用性。 相似文献