首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MKM–OS anesthesia provides general anesthesia with minimum cardiovascular depression in experimental horses. The purpose of this study was to evaluate the effect of MKM–OS anesthesia in clinical cases. Sixty‐eight horses were anesthetized with MKM–OS anesthesia for selective or emergency surgery. The horse physical status was categorized based upon the American Society of Anesthesiologists (ASA) classification scheme. Forty‐four horses were classified as ASA I or II (low‐risk; 30 soft tissue, eight ophthalmic, and six orthopedic surgeries) and 24 horses were classified as ASA III to V (high‐risk; 24 emergency colic surgeries). All horses were administered medetomidine (0.005 mg kg–1 IV) as premedication and anesthetized with ketamine (2.5 mg kg–1 IV) and midazolam (0.04 mg kg–1 IV). The horses were orotracheally intubated and connected to a large animal breathing circuit that delivered oxygen‐sevoflurane and administered the midazolam (0.8 mg mL–1)‐ketamine (40 mg mL–1)‐medetomidine (0.05 mg mL–1) drug combination at a rate of 0.025 mL kg–1 hour–1. Surgical anesthesia was maintained by controlling the dial setting of the sevoflurane vaporizer and achieved by delivering 1.6–1.8% of end‐tidal sevoflurane concentration. All horses were mechanically ventilated during anesthesia. Hypercapnia and hypoxia were not sufficiently improved in high‐risk horses (PaCO2; low‐risk 45–53 mm Hg versus high‐risk 56–60 mm Hg, p < 0.01: PaO2 low‐risk 248–388 mm Hg versus high‐risk 95–180 mm Hg, p < 0.01). Heart rate was significantly higher in high‐risk horses (low‐risk 37–42 bpm versus high‐risk 44–73 bpm, p < 0.01). Dobutamine infusion was required in five low‐risk (11%) and 17 high‐risk horses (68%) to maintain mean arterial blood pressure >70 mm Hg. Eleven high‐risk horses died during the perioperative period (three euthanized during surgery, two died during recovery, six died after recovery). The quality of recovery was good in low‐risk horses and good to satisfactory in high‐risk horses. MKM–OS anesthesia provided excellent surgical anesthesia with minimal to mild cardiovascular depression in low risk‐horses and mild to moderate cardiovascular depression in high risk‐horses. The possibility of preserve cardiovascular function could be the advantage of MKM–OS anesthesia in high‐risk horses.  相似文献   

2.
ObjectiveTo compare the efficacy of a medetomidine constant rate infusion (CRI) with a detomidine CRI for standing sedation in horses undergoing high dose rate brachytherapy.Study designRandomized, controlled, crossover, blinded clinical trial.AnimalsA total of 50 horses with owner consent, excluding stallions.MethodsEach horse was sedated with intravenous acepromazine (0.02 mg kg–1), followed by an α2-adrenoceptor agonist 30 minutes later and then by butorphanol (0.1 mg kg–1) 5 minutes later. A CRI of the same α2-adrenoceptor agonist was started 10 minutes after butorphanol administration and maintained for the treatment duration. Treatments were given 1 week apart. Each horse was sedated with detomidine (bolus dose, 10 μg kg–1; CRI, 6 μg kg–1 hour–1) or medetomidine (bolus dose, 5 μg kg–1; CRI, 3.5 μg kg–1 hour–1). If sedation was inadequate, a quarter of the initial bolus of the α2-adrenoceptor agonist was administered. Heart rate (HR) was measured via electrocardiography, and sedation and behaviour evaluated using a previously published scale. Between treatments, behaviour scores were compared using a Wilcoxon signed-rank test, frequencies of arrhythmias with chi-square tests, and HR with two-tailed paired t tests. A p value <0.05 indicated statistical significance.ResultsTotal treatment time for medetomidine was longer than that for detomidine (p = 0.04), and ear movements during medetomidine sedation were more numerous than those during detomidine sedation (p = 0.03), suggesting there may be a subtle difference in the depth of sedation. No significant differences in HR were found between treatments (p ≥ 0.09). Several horses had arrhythmias, with no difference in their frequency between the two infusions.Conclusions and clinical relevanceMedetomidine at this dose rate may produce less sedation than detomidine. Further studies are required to evaluate any clinical advantages to either drug, or whether a different CRI may be more appropriate.  相似文献   

3.
This study assessed the intraoperative analgesic effects of intravenous lidocaine administered by a constant rate infusion (CRI) in surgical canine patients. A prospective, blinded, randomized study was designed with 2 treatment groups: A (lidocaine) and B (placebo), involving 41 dogs. All patients were premedicated with acepromazine and buprenorphine, induced with propofol and midazolam; anesthesia was maintained with isoflurane in oxygen. Group A received 2 mg/kg IV lidocaine immediately after induction, followed within 5 min by a CRI at 50 μg/kg/min. Group B received an equivalent volume of saline instead of lidocaine. Changes in heart rate and blood pressure during maintenance were treated by increasing CRI. Fentanyl was used as a supplemental analgesic when intraoperative nociceptive response was not controlled with the maximum dose of lidocaine infusion. There was a significantly lower use of supplemental intraoperative analgesia in the lidocaine than in the placebo group. Group B dogs had almost twice as high a risk of intraoperative nociceptive response as group A dogs.  相似文献   

4.
5.
6.
To investigate an adequate infusion rate of propofol for total intravenous anesthesia (TIVA) in horses, the minimum infusion rate (MIR) comparable to the minimum alveolar anesthetic concentration (MAC) of inhalation anesthetic was determined under constant ventilation condition by intermittent positive pressure ventilation (IPPV). In addition, arterial propofol concentration was measured to determine the concentration corresponding to the MIR (concentration preventing reaction to stimulus in 50% of population, Cp(50)). Further, 95% effective dose (ED(95)) was estimated as infusion rate for acquiring adequate anesthetic depth. Anesthetic depth was judged by the gross purposeful movement response to painful stimulus. MIR and Cp(50) were 0.10 +/- 0.02 mg/kg/min and 5.3 +/- 1.4 microg/ml, respectively. ED(95) was estimated as 0.14 mg/kg/min (1.4MIR).  相似文献   

7.
Dexmedetomidine, the most selective α2‐adrenoceptor agonist in clinical use, is increasingly being used in both conscious and anaesthetized horses; however, the pharmacokinetics and sedative effects of this drug administered alone as an infusion are not previously described in horses. Seven horses received an infusion of 8 μg dexmedetomidine/kg/h for 150 min, venous blood samples were collected, and dexmedetomidine concentrations were assayed using liquid chromatography‐mass spectrometry (LC/MS) and analyzed using noncompartmental pharmacokinetic analysis. Sedation was scored as the distance from the lower lip of the horse to the ground measured in centimetre. The harmonic mean (SD) plasma elimination half‐life (Lambda z half‐life) for dexmedetomidine was 20.9 (5.1) min, clearance (Cl) was 0.3 (0.20) L/min/kg, and volume of distribution at steady‐state (Vdss) was 13.7 (7.9) L/kg. There was a considerable individual variation in the concentration of dexmedetomidine vs. time profile. The level of sedation covaried with the plasma concentration of dexmedetomidine. This implies that for clinical use of dexmedetomidine constant rate infusion in conscious horses, infusion rates can be easily adjusted to effect, and this is preferable to an infusion at a predetermined value.  相似文献   

8.
This clinical study analysed the anaesthetic sparing effect of a medetomidine constant rate infusion (CRI) during isoflurane anaesthesia in horses. Forty healthy horses undergoing different types of orthopaedic and soft tissue surgeries were studied in a randomized trial. Orthopaedic surgeries were primarily arthroscopies and splint bone extractions. Soft tissue surgeries were principally castrations with one ovariectomy. All horses received 0.03 mg kg?1 acepromazine IM 1 hour prior to sedation. Group A (11 orthopaedic and nine soft tissue surgeries), was sedated with 1.1 mg kg?1 xylazine IV, group B (13 orthopaedic and seven soft tissue surgeries) with 7 µg kg?1 medetomidine IV. Anaesthesia was induced in both groups with 2.2 mg kg?1 ketamine and diazepam 0.02 mg kg?1 IV. Maintenance of anaesthesia was with isoflurane (ISO) in 100% oxygen, depth of anaesthesia was always adjusted by the first author. Group B received an additional CRI of 3.5 µg kg?1 hour?1 medetomidine. Respiratory rate (RR), heart rate (HR), mean arterial blood pressure (MAP), Fe ′ISO and Fe ′CO2 were monitored with a methane insensitive monitor (Cardiocap 5, Ohmeda, Anandic, Diessenhofen) and noted every 5 minutes. Arterial blood was withdrawn for gas analysis (PaO2, PaCO2) 5 minutes after the induction of anaesthesia and every 30 minutes thereafter. Dobutamine (DOB) was given as a CRI to maintain mean arterial blood pressure above 70 mm Hg. Data were averaged over time (sum of measurements/number of measurements) and tested for differences between groups by unpaired t‐tests. There were no significant differences between the groups in terms of body mass (group A, 508 ± 73.7 kg; group B, 529.25 ± 78.4 kg) or duration of anaesthesia (group A, 125.5 ± 36 minutes; group B, 121.5 ± 48.4 minutes). The mean Fe ′ISO required to maintain a surgical plane of anaesthesia was significantly higher in group A (1.33 ± 0.13%) than in group B (1.07 ± 0.19%; p = 2.78 × 10?5). Heart rate was different between the two groups (group A, 42.2 ± 8.3; group B, 32.6 ± 3.5; p = 8.8 × 10?5). Dobutamine requirements were higher in group A (group A, 0.72 ± 0.24 μg kg?1 minute?1; group B, 0.53 ± 0.23 μg kg?1 minute?1; p = 0.023). Respiratory rate, Fe ′CO2, PaO2, PaCO2 were not different between the groups. Adjustment of anaesthetic depth subjectively was easier with the medetomidine infusion and isoflurane (group B) than with isoflurane as a sole agent (group A). In group A 12 horses and in group B five horses showed purposeful movements on 27 (A) and 12 (B) occasions. They were given thiopental (group A, 0.0114 mg kg?1 minute?1; group B, 0.0023 mg kg?1 minute?1). In group A, a further 17 horses were given ketamine to deepen anaesthesia (52 occasions, 0.00426 mg kg?1 minute?1) whereas in group B only nine horses needed ketamine (34 occasions, 0.00179 mg kg?1 minute?1). An infusion of 3.5 µg kg?1 MED during ISO anaesthesia resulted in a significantly reduced ISO requirement.  相似文献   

9.
10.
OBJECTIVE: To compare cardiopulmonary responses during anesthesia maintained with halothane and responses during anesthesia maintained by use of a total intravenous anesthetic (TIVA) regimen in horses. ANIMALS: 7 healthy adult horses (1 female, 6 geldings). PROCEDURE: Each horse was anesthetized twice. Romifidine was administered IV, and anesthesia was induced by IV administration of ketamine. Anesthesia was maintained for 75 minutes by administration of halothane (HA) or IV infusion of romifidine, guaifenesin, and ketamine (TIVA). The order for TIVA or HA was randomized. Cardiopulmonary variables were measured 40, 60, and 75 minutes after the start of HA orTIVA. RESULTS: Systolic, diastolic, and mean carotid arterial pressures, velocity time integral, and peak acceleration of aortic blood flow were greater, and systolic, diastolic, and mean pulmonary arterial pressure were lower at all time points for TIVA than for HA. Pre-ejection period was shorter and ejection time was longer for TIVA than for HA. Heart rate was greater for HA at 60 minutes. Minute ventilation and alveolar ventilation were greater and inspiratory time was longer for TIVA than for HA at 75 minutes. The PaCO2 was higher at 60 and 75 minutes for HA than forTIVA. CONCLUSIONS AND CLINICAL RELEVANCE: Horses receiving a constant-rate infusion of romifidine, guaifenesin, and ketamine maintained higher arterial blood pressures than when they were administered HA. There was some indication that left ventricular function may be better during TIVA, but influences of preload and afterload on measured variables could account for some of these differences.  相似文献   

11.
The anesthetic and cardiopulmonary effects of midazolam, ketamine and medetomidine for total intravenous anesthesia (MKM-TIVA) were evaluated in 14 horses. Horses were administered medetomidine 5 microg/kg intravenously as pre-anesthetic medication and anesthetized with an intravenous injection of ketamine 2.5 mg/kg and midazolam 0.04 mg/kg followed by the infusion of MKM-drug combination (midazolam 0.8 mg/ml-ketamine 40 mg/ml-medetomidine 0.1 mg/ml). Nine stallions (3 thoroughbred and 6 draft horses) were castrated during infusion of MKM-drug combination. The average duration of anesthesia was 38 +/- 8 min and infusion rate of MKM-drug combination was 0.091 +/- 0.021 ml/kg/hr. Time to standing after discontinuing MKM-TIVA was 33 +/- 13 min. The quality of recovery from anesthesia was satisfactory in 3 horses and good in 6 horses. An additional 5 healthy thoroughbred horses were anesthetized with MKM- TIVA in order to assess cardiopulmonary effects. These 5 horses were anesthetized for 60 min and administered MKM-drug combination at 0.1 ml/kg/hr. Cardiac output and cardiac index decreased to 70-80%, stroke volume increased to 110% and systemic vascular resistance increased to 130% of baseline value. The partial pressure of arterial blood carbon dioxide was maintained at approximately 50 mmHg while the arterial partial pressure of oxygen pressure decreased to 50-60 mmHg. MKM-TIVA provides clinically acceptable general anesthesia with mild cardiopulmonary depression in horses. Inspired air should be supplemented with oxygen to prevent hypoxemia during MKM-TIVA.  相似文献   

12.
ObjectiveTo elaborate constant rate infusion (CRI) protocols for xylazine (X) and xylazine/butorphanol (XB) which will result in constant sedation and steady xylazine plasma concentrations.Study designBlinded randomized experimental study.AnimalsTen adult research horses.MethodsPart I: After normal height of head above ground (HHAG = 100%) was determined, a loading dose of xylazine (1 mg kg?1) with butorphanol (XB: 18 μg kg?1) or saline (X: equal volume) was given slowly intravenously (IV). Immediately afterwards, a CRI of butorphanol (XB: 25 μg kg?1 hour?1) or saline (X) was administered for 2 hours. The HHAG was used as a marker of depth of sedation. Sedation was maintained for 2 hours by additional boluses of xylazine (0.3 mg kg?1) whenever HHAG >50%. The dose of xylazine (mg kg?1 hour?1) required to maintain sedation was calculated for both groups. Part II: After the initial loading dose, the calculated xylazine infusion rates were administered in parallel to butorphanol (XB) or saline (X) and sedation evaluated. Xylazine plasma concentrations were measured by HPLC-MS-MS at time points 0, 5, 30, 45, 60, 90, and 120 minutes. Data were analyzed using paired t-test, Wilcoxon signed rank test and a 2-way anova for repeated measures (p < 0.05).ResultsThere was no significant difference in xylazine requirements (X: 0.69, XB: 0.65 mg kg?1 hour?1) between groups. With treatment X, a CRI leading to prolonged sedation was developed. With XB, five horses (part I: two, part II: three) fell down and during part II four horses appeared insufficiently sedated. Xylazine plasma concentrations were constant after 45 minutes in both groups.ConclusionXylazine bolus, followed by CRI, provided constant sedation. Additional butorphanol was ineffective in reducing xylazine requirements and increased ataxia and apparent early recovery from sedation in unstimulated horses.Clinical relevanceData were obtained on unstimulated healthy horses and extrapolation to clinical conditions requires caution.  相似文献   

13.
ObjectiveTo determine constant rate infusion (CRI) protocols for romifidine (R) and romifidine combined with butorphanol (RB) resulting in constant sedation and romifidine plasma concentrations.Study designBlinded randomized crossover study.AnimalsTen adult research horses.MethodsPart I: After determining normal height of head above ground (HHAG = 100%), loading doses of romifidine (80 μg kg?1) with butorphanol (RB: 18 μg kg?1) or saline (R) were given intravenously (IV). Immediately afterwards, a butorphanol (RB: 25 μg kg?1 hour?1) or saline (R) CRI was administered for 2 hours. The HHAG was used as marker of sedation depth. Sedation was maintained for 2 hours by additional romifidine (20 μg kg?1) whenever HHAG > 50%. The dose rate of romifidine (μg kg?1 hour?1) required to maintain sedation was calculated for both treatments. Part II: After loading doses, the romifidine CRIs derived from part I were administered in parallel to butorphanol (RB) or saline (R). Sedation and ataxia were evaluated periodically. Romifidine plasma concentrations were measured by HPLC-MS-MS at 0, 5, 10, 15, 30, 45, 60, 90, 105, and 120 minutes. Data were analyzed using paired t-test, Fisher's exact test, Wilcoxon signed rank test, and two-way anova for repeated measures (p < 0.05).ResultsThere was no significant difference in romifidine requirements (R: 30; RB: 29 μg kg?1 hour?1). CRI protocols leading to constant sedation were developed. Time to first additional romifidine bolus was significantly longer in RB (mean ± SD, R: 38.5 ± 13.6; RB: 50.5 ± 11.7 minutes). Constant plasma concentrations of romifidine were achieved during the second hour of CRI. Ataxia was greater when butorphanol was added.ConclusionRomifidine bolus, followed by CRI, provided constant sedation assessed by HHAG. Butorphanol was ineffective in reducing romifidine requirements in unstimulated horses, but prolonged the sedation caused by the initial romifidine bolus.Clinical relevanceBoth protocols need to be tested under clinical conditions.  相似文献   

14.
The effects of constant rate infusion (CRI) of lidocaine on sevoflurane (SEVO) requirements, autonomic responses to noxious stimulation, and postoperative pain relief were evaluated in dogs undergoing opioid-based balanced anesthesia. Twenty-four dogs scheduled for elective ovariectomy were randomly assigned to one of four groups: BC, receiving buprenorphine without lidocaine; FC, receiving fentanyl without lidocaine; BL, receiving buprenorphine and lidocaine; FL, receiving fentanyl and lidocaine. Dogs were anesthetized with intravenous (IV) diazepam and ketamine and anesthesia maintained with SEVO in oxygen/air. Lidocaine (2mg/kg plus 50μg/kg/min) or saline were infused in groups BL/FL and BC/FC, respectively. After initiation of lidocaine or saline CRI IV buprenorphine (0.02mg/kg) or fentanyl (4μg/kg plus 8μg/kg/h CRI) were administered IV in BC/BL and FC/FL, respectively. Respiratory and hemodynamic variables, drug plasma concentrations, and end-tidal SEVO concentrations (E'SEVO) were measured. Behaviors and pain scores were subjectively assessed 1 and 2h post-extubation. Lidocaine CRI produced median drug plasma concentrations <0.4μg/mL during peak surgical stimulation. Lidocaine produced a 14% decrease in E'SEVO in the BL (P<0.01) but none in the FL group and no change in cardio-pulmonary responses to surgery or postoperative behaviors and pain scores in any group. Thus, depending on the opioid used, supplementing opioid-based balanced anesthesia with lidocaine (50μg/kg/min) may not have any or only a minor impact on anesthetic outcome in terms of total anesthetic dose, autonomic responses to visceral nociception, and postoperative analgesia.  相似文献   

15.
Isofluorane is a modern, only slightly depressive inhalation anaesthetic with excellent pharmacologic characteristics in use in equine medicine. In contrast to halothane, isofluorane is hardly broken down in the liver, but is eliminated by the lung. It low solubility in blood permits excellent control of anaesthesia. However, due to its swift elimination from the organism there is heightened risk of premature recovery from isofluorane anaesthesia. In this study the recovery phases of 96 horses were monitored for its duration and the animals' physical coordination. The horses were divided into four groups. Two groups were sedated with xylazine, one of which received postanaesthetic sedation with xylazine, the other saline solution only. The other two groups were sedated with romifidine, either with or without postanaesthetic sedation after general anaesthesia. In this study the horses of Group 4, sedated with 0.02 mg/kg BW romifidine at the moment of extubation, showed the best recovery phase. The number of attempts to arise was reduced and coordination was better. Similar results were obtained by postanaesthetic sedation with 0.2 mg/kg BW xylazine (Group 2). Premedication with 0.08 mg/kg BW romifidine without postanaesthetic sedation (Group 3) could be carried out at mean duration of anaesthesia of 85 minutes with no negative effects observed during the recovery period. Premedication with xylazine without postanaesthetic sedation (Group 1) is not to be recommended, as the number of attemps to stand up was significantly higher and coordination was either weak or significantly poorer than in the other three groups. The results of this study show that post-anaesthetic sedation of horses with an alpha 2-adrenoceptor agonist can improve the recovery phase after inhalant anaesthesia with isofluorane in regard to the number of attempts to arise and the animals' physical coordination.  相似文献   

16.
ObjectiveTo examine the cardiopulmonary effects of two anesthetic protocols for dorsally recumbent horses undergoing carpal arthroscopy.Study designProspective, randomized, crossover study.AnimalsSix horses weighing 488.3 ± 29.1 kg.MethodsHorses were sedated with intravenous (IV) xylazine and pulmonary artery balloon and right atrial catheters inserted. More xylazine was administered prior to anesthetic induction with ketamine and propofol IV. Anesthesia was maintained for 60 minutes (or until surgery was complete) using either propofol IV infusion or isoflurane to effect. All horses were administered dexmedetomidine and ketamine infusions IV, and IV butorphanol. The endotracheal tube was attached to a large animal circle system and the lungs were ventilated with oxygen to maintain end-tidal CO2 40 ± 5 mmHg. Measurements of cardiac output, heart rate, pulmonary arterial and right atrial pressures, and body temperature were made under xylazine sedation. These, arterial and venous blood gas analyses were repeated 10, 30 and 60 minutes after induction. Systemic arterial blood pressures, expired and inspired gas concentrations were measured at 10, 20, 30, 40, 50 and 60 minutes after induction. Horses were recovered from anesthesia with IV romifidine. Times to extubation, sternal recumbency and standing were recorded. Data were analyzed using one and two-way anovas for repeated measures and paired t-tests. Significance was taken at p=0.05.ResultsPulmonary arterial and right atrial pressures, and body temperature decreased from pre-induction values in both groups. PaO2 and arterial pH were lower in propofol-anesthetized horses compared to isoflurane-anesthetized horses. The lowest PaO2 values (70–80 mmHg) occurred 10 minutes after induction in two propofol-anesthetized horses. Cardiac output decreased in isoflurane-anesthetized horses 10 minutes after induction. End-tidal isoflurane concentration ranged 0.5%–1.3%.Conclusion and clinical relevanceBoth anesthetic protocols were suitable for arthroscopy. Administration of oxygen and ability to ventilate lungs is necessary for propofol-based anesthesia.  相似文献   

17.
REASONS FOR PERFORMING STUDY: Lidocaine and ketamine are administered to horses as a constant rate infusion (CRI) during inhalation anaesthesia to reduce anaesthetic requirements. Morphine decreases the minimum alveolar concentration (MAC) in some domestic animals; when administered as a CRI in horses, morphine does not promote haemodynamic and ventilatory changes and exerts a positive effect on recovery. Isoflurane-sparing effect of lidocaine, ketamine and morphine coadministration has been evaluated in small animals but not in horses. OBJECTIVES: To determine the reduction in isoflurane MAC produced by a CRI of lidocaine and ketamine, with or without morphine. HYPOTHESIS: Addition of morphine to a lidocaine-ketamine infusion reduces isoflurane requirement and morphine does not impair the anaesthetic recovery of horses. METHODS: Six healthy adult horses were anaesthetised 3 times with xylazine (1.1 mg/kg bwt i.v.), ketamine (3 mg/kg bwt i.v.) and isoflurane and received a CRI of lidocaine-ketamine (LK), morphine-lidocaine-ketamine (MLK) or saline (CTL). The loading doses of morphine and lidocaine were 0.15 mg/kg bwt i.v and 2 mg/kg bwt i.v. followed by a CRI at 0.1 mg/kg bwt/h and 3 mg/kg bwt/h, respectively. Ketamine was given as a CRI at 3 mg/kg bwt/h. Changes in MAC characterised the anaesthetic-sparing effect of the drug infusions under study and quality of recovery was assessed using a scoring system. Results: Mean isoflurane MAC (mean ± s.d.) in the CTL, LK and MLK groups was 1.25 ± 0.14%, 0.64 ± 0.20% and 0.59 ± 0.14%, respectively, with MAC reduction in the LK and MLK groups being 49 and 53% (P<0.001), respectively. No significant differences were observed between groups in recovery from anaesthesia. Conclusions and clinical relevance: Administration of lidocaine and ketamine via CRI decreases isoflurane requirements. Coadministration of morphine does not provide further reduction in anaesthetic requirements and does not impair recovery.  相似文献   

18.
ObjectiveTo compare the clinical usefulness of constant rate infusion (CRI) protocols of romifidine with or without butorphanol for sedation of horses.Study designProspective ‘blinded’ controlled trial using block randomization.AnimalsForty healthy Freiberger stallions.MethodsThe horses received either intravenous (IV) romifidine (loading dose: 80 μg kg?1; infusion: 30 μg kg?1 hour?1) (treatment R, n = 20) or romifidine combined with butorphanol (romifidine loading: 80 μg kg?1; infusion: 29 μg kg?1 hour?1, and butorphanol loading: 18 μg kg?1; infusion: 25 μg kg?1 hour?1) (treatment RB, n = 20). Twenty-one horses underwent dentistry and ophthalmic procedures, while 19 horses underwent only ophthalmologic procedure and buccal examination. During the procedure, physiologic parameters and occurrence of head/muzzle shaking or twitching and forward movement were recorded. Whenever sedation was insufficient, additional romifidine (20 μg kg?1) was administered IV. Recovery time was evaluated by assessing head height above ground. At the end of the procedure, overall quality of sedation for the procedure was scored by the dentist and anaesthetist using a visual analogue scale. Statistical analyses used two-way anova or linear mixed models as relevant.ResultsSedation quality scores as assessed by the anaesthetist were R: median 7.55, range: 4.9–9.0 cm, RB: 8.8, 4.7–10.0 cm, and by the dentist R: 6.6, 3.0–8.2 cm, RB: 7.9, 6.6–8.8 cm. Horses receiving RB showed clinically more effective sedation as demonstrated by fewer poor scores and a tendency to reduced additional drug requirements. More horses showed forward movement and head shaking in treatment RB than treatment R. Three horses (two RB, one R) had symptoms of colic following sedation.Conclusions and clinical relevanceThe described protocols provide effective sedation under clinical conditions but for dentistry procedures, the addition of butorphanol is advantageous.  相似文献   

19.
The anesthetic and cardiovascular effects of a combination of continuous intravenous infusion using a mixture of 100 g/L guaifenesin-4 g/L ketamine-5 mg/L medetomidine (0.25 ml/kg/hr) and oxygen-sevoflurane (OS) anesthesia (GKM-OS anesthesia) in horses were evaluated. The right carotid artery of each of 12 horses was raised surgically into a subcutaneous position under GKM-OS anesthesia (n=6) or OS anesthesia (n=6). The end-tidal concentration of sevoflurane (EtSEV) required to maintain surgical anesthesia was around 1.5% in GKM-OS and 3.0% in OS anesthesia. Mean arterial blood pressure (MABP) was maintained at around 80 mmHg under GKM-OS anesthesia, while infusion of dobutamine (0.39+/-0.10 microg/kg/min) was necessary to maintain MABP at 60 mmHg under OS anesthesia. The horses were able to stand at 36+/-26 min after cessation of GKM-OS anesthesia and at 48+/-19 minutes after OS anesthesia. The cardiovascular effects were evaluated in 12 horses anesthetized with GKM-OS anesthesia using 1.5% of EtSEV (n=6) or OS anesthesia using 3.0% of EtSEV (n=6). During GKM-OS anesthesia, cardiac output and peripheral vascular resistance was maintained at about 70% of the baseline value before anesthesia, and MABP was maintained over 70 mmHg. During OS anesthesia, infusion of dobutamine (0.59+/-0.24 microg/kg/min) was necessary to maintain MABP at 70 mmHg. Infusion of dobutamine enabled to maintaine cardiac output at about 80% of the baseline value; however, it induced the development of severe tachycardia in a horse anesthetized with sevoflurane. GKM-OS anesthesia may be useful for prolonged equine surgery because of its minimal cardiovascular effect and good recovery.  相似文献   

20.
ObjectiveTo investigate the influence of a dexmedetomidine constant rate infusion (CRI) in horses anaesthetized with isoflurane.Study designProspective, randomized, blinded, clinical study.AnimalsForty adult healthy horses (weight mean 491 ± SD 102 kg) undergoing elective surgery.MethodsAfter sedation [dexmedetomidine, 3.5 μg kg?1 intravenously (IV)] and induction IV (midazolam 0.06 mg kg?1, ketamine 2.2 mg kg?1), anaesthesia was maintained with isoflurane in oxygen/air (FiO2 55–60%). Horses were ventilated and dobutamine was administered when hypoventilation [arterial partial pressure of CO2 > 8.00 kPa (60 mmHg)] and hypotension [arterial pressure 70 mmHg] occurred respectively. During anaesthesia, horses were randomly allocated to receive a CRI of dexmedetomidine (1.75 μg kg?1 hour?1) (D) or saline (S). Monitoring included end-tidal isoflurane concentration, cardiopulmonary parameters, and need for dobutamine and additional ketamine. All horses received 0.875 μg kg?1 dexmedetomidine IV for the recovery period. Age and weight of the horses, duration of anaesthesia, additional ketamine and dobutamine, cardiopulmonary data (anova), recovery scores (Wilcoxon Rank Sum Test), duration of recovery (t-test) and attempts to stand (Mann–Whitney test) were compared between groups. Significance was set at p < 0.05.ResultsHeart rate and arterial partial pressure of oxygen were significantly lower in group D compared to group S. An interaction between treatment and time was present for cardiac index, oxygen delivery index and systemic vascular resistance. End-tidal isoflurane concentration and heart rate significantly increased over time. Packed cell volume, systolic, diastolic and mean arterial pressure, arterial oxygen content, stroke volume index and systemic vascular resistance significantly decreased over time. Recovery scores were significantly better in group D, with fewer attempts to stand and significantly longer times to sternal position and first attempt to stand.Conclusions and clinical relevance A dexmedetomidine CRI produced limited cardiopulmonary effects, but significantly improved recovery quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号