首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein kinase injection reduces voltage-dependent potassium currents   总被引:8,自引:0,他引:8  
Intracellular iontophoretic injection of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase increased input resistance and decreased a delayed voltage-dependent K+ current of the type B photoreceptor in the nudibranch Hermissenda crassicornis to a greater extent than an early, rapidly inactivating K+ current (IA). This injection also enhanced the long-lasting depolarization of type B cells after a light step. These findings suggest the involvement of cyclic adenosine monophosphate-dependent phosphorylation in the differential regulation of photoreceptor K+ currents particularly during illumination. On the other hand, conditioning-induced changes in IA may also be regulated by a different type of phosphorylation (for example, Ca2+-dependent).  相似文献   

2.
Regulation of a heart potassium channel by protein kinase A and C   总被引:28,自引:0,他引:28  
The enzymes adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase (protein kinase A) and protein kinase C regulate the activity of a diverse group of cellular proteins including membrane ion channel proteins. When protein kinase A was stimulated in cardiac ventricular myocytes with the membrane-soluble cAMP analog 8-chlorphenylthio cAMP (8-CPT cAMP), the amplitude of the delayed-rectifier potassium current (IK) doubled when recorded at 32 degrees C but was not affected at 22 degrees C. In contrast, modulation of the calcium current (ICa) by 8-CPT cAMP was independent of temperature with similar increases in ICa occurring at both temperatures. Stimulation of protein kinase C by phorbol 12,13-dibutyrate also enhanced IK in a temperature-dependent manner but failed to increase ICa at either temperature. Thus, cardiac delayed-rectifier potassium but not calcium channels are regulated by two distinct protein kinases in a similar temperature-dependent fashion.  相似文献   

3.
Calcium-dependent chloride channels are required for normal electrolyte and fluid secretion, olfactory perception, and neuronal and smooth muscle excitability. The molecular identity of these membrane proteins is still unclear. Treatment of bronchial epithelial cells with interleukin-4 (IL-4) causes increased calcium-dependent chloride channel activity, presumably by regulating expression of the corresponding genes. We performed a global gene expression analysis to identify membrane proteins that are regulated by IL-4. Transfection of epithelial cells with specific small interfering RNA against each of these proteins shows that TMEM16A, a member of a family of putative plasma membrane proteins with unknown function, is associated with calcium-dependent chloride current, as measured with halide-sensitive fluorescent proteins, short-circuit current, and patch-clamp techniques. Our results indicate that TMEM16A is an intrinsic constituent of the calcium-dependent chloride channel. Identification of a previously unknown family of membrane proteins associated with chloride channel function will improve our understanding of chloride transport physiopathology and allow for the development of pharmacological tools useful for basic research and drug development.  相似文献   

4.
Calcium-activated potassium channels mediate many biologically important functions in electrically excitable cells. Despite recent progress in the molecular analysis of voltage-activated K+ channels, Ca(2+)-activated K+ channels have not been similarly characterized. The Drosophila slowpoke (slo) locus, mutations of which specifically abolish a Ca(2+)-activated K+ current in muscles and neurons, provides an opportunity for molecular characterization of these channels. Genomic and complementary DNA clones from the slo locus were isolated and sequenced. The polypeptide predicted by slo is similar to voltage-activated K+ channel polypeptides in discrete domains known to be essential for function. Thus, these results indicate that slo encodes a structural component of Ca(2+)-activated K+ channels.  相似文献   

5.
The c-fms proto-oncogene is a member of a gene family that has been implicated in tumorigenesis. Glycoproteins encoded by c-fms were identified in cat spleen cells by means of an immune-complex kinase assay performed with monoclonal antibodies to v-fms-coded epitopes. The major form of the normal cellular glycoprotein has an apparent molecular weight of 170,000 and, like the product of the viral oncogene, serves as a substrate for an associated tyrosine-specific protein kinase activity in vitro. The results suggest that the transforming glycoprotein specified by v-fms is a truncated form of a c-fms-coded growth factor receptor.  相似文献   

6.
It has recently been suggested that the solar irradiance has varied in phase with the 80- to 90-year period represented by the envelope of the 11-year sunspot cycle and that this variation is causing a significant part of the changes in the global temperature. This interpretation has been criticized for statistical reasons and because there are no observations that indicate significant changes in the solar irradiance. A set of data that supports the suggestion of a direct influence of solar activity on global climate is the variation of the solar cycle length. This record closely matches the long-term variations of the Northern Hemisphere land air temperature during the past 130 years.  相似文献   

7.
We cloned and characterized a protein kinase and ion channel, TRP-PLIK. As part of the long transient receptor potential channel subfamily implicated in control of cell division, it is a protein that is both an ion channel and a protein kinase. TRP-PLIK phosphorylated itself, displayed a wide tissue distribution, and, when expressed in CHO-K1 cells, constituted a nonselective, calcium-permeant, 105-picosiemen, steeply outwardly rectifying conductance. The zinc finger containing alpha-kinase domain was functional. Inactivation of the kinase activity by site-directed mutagenesis and the channel's dependence on intracellular adenosine triphosphate (ATP) demonstrated that the channel's kinase activity is essential for channel function.  相似文献   

8.
Unfolded proteins in the endoplasmic reticulum cause trans-autophosphorylation of the bifunctional transmembrane kinase Ire1, which induces its endoribonuclease activity. The endoribonuclease initiates nonconventional splicing of HAC1 messenger RNA to trigger the unfolded-protein response (UPR). We explored the role of Ire1's kinase domain by sensitizing it through site-directed mutagenesis to the ATP-competitive inhibitor 1NM-PP1. Paradoxically, rather than being inhibited by 1NM-PP1, drug-sensitized Ire1 mutants required 1NM-PP1 as a cofactor for activation. In the presence of 1NM-PP1, drug-sensitized Ire1 bypassed mutations that inactivate its kinase activity and induced a full UPR. Thus, rather than through phosphorylation per se, a conformational change in the kinase domain triggered by occupancy of the active site with a ligand leads to activation of all known downstream functions.  相似文献   

9.
10.
11.
Expression of a cloned rat brain potassium channel in Xenopus oocytes   总被引:21,自引:0,他引:21  
Potassium channels are ubiquitous membrane proteins with essential roles in nervous tissue, but little is known about the relation between their function and their molecular structure. A complementary DNA library was made from rat hippocampus, and a complementary DNA clone (RBK-1) was isolated. The predicted sequence of the 495-amino acid protein is homologous to potassium channel proteins encoded by the Shaker locus of Drosophila and differs by only three amino acids from the expected product of a mouse clone MBK-1. Messenger RNA transcribed from RBK-1 in vitro directed the expression of potassium channels when it was injected into Xenopus oocytes. The potassium current through the expressed channels resembles both the transient (or A) and the delayed rectifier currents reported in mammalian neurons and is sensitive to both 4-aminopyridine and tetraethylammonium.  相似文献   

12.
Modulation of calcium-sensitive potassium (BK) channels by oxygen is important in several mammalian tissues, and in the carotid body it is crucial to respiratory control. However, the identity of the oxygen sensor remains unknown. We demonstrate that hemoxygenase-2 (HO-2) is part of the BK channel complex and enhances channel activity in normoxia. Knockdown of HO-2 expression reduced channel activity, and carbon monoxide, a product of HO-2 activity, rescued this loss of function. Inhibition of BK channels by hypoxia was dependent on HO-2 expression and was augmented by HO-2 stimulation. Furthermore, carotid body cells demonstrated HO-2-dependent hypoxic BK channel inhibition, which indicates that HO-2 is an oxygen sensor that controls channel activity during oxygen deprivation.  相似文献   

13.
A distinct potassium channel polypeptide encoded by the Drosophila eag locus.   总被引:21,自引:0,他引:21  
Many of the signaling properties of neurons and other electrically excitable cells are determined by a diverse family of potassium channels. A number of genes that encode potassium channel polypeptides have been cloned from various organisms on the basis of their sequence similarity to the Drosophila Shaker (Sh) locus. As an alternative strategy, a molecular analysis of other Drosophila genes that were defined by mutations that perturb potassium channel function was undertaken. Sequence analysis of complementary DNA from the ether à go-go (eag) locus revealed that it encodes a structural component of potassium channels that is related to but is distinct from all identified potassium channel polypeptides.  相似文献   

14.
To understand the molecular mechanisms responsible for generating physiologically diverse potassium channels in mammalian cells, mouse genomic clones have been isolated with a potassium channel complementary DNA, MBK1, that is homologous to the Drosophila potassium channel gene, Shaker. A family of three closely related potassium channel genes (MK1, MK2, and MK3) that are encoded at distinct genomic loci has been isolated. Sequence analysis reveals that the coding region of each of these three genes exists as a single uninterrupted exon in the mouse genome. This organization precludes the generation of multiple forms of the protein by alternative RNA splicing, a mechanism known to characterize the Drosophila potassium channel genes Shaker and Shab. Thus, mammals may use a different strategy for generating diverse K+ channels by encoding related genes at multiple distinct genomic loci, each of which produces only a single protein.  相似文献   

15.
Potassium currents are crucial for the repolarization of electrically excitable membranes, a role that makes potassium channels a target for physiological modifications that alter synaptic efficacy. The Shaker locus of Drosophila is thought to encode a K+ channel. The sequence of two complementary DNA clones from the Shaker locus is reported here. The sequence predicts an integral membrane protein of 70,200 daltons containing seven potential membrane-spanning sequences. In addition, the predicted protein is homologous to the vertebrate sodium channel in a region previously proposed to be involved in the voltage-dependent activation of the Na+ channel. These results support the hypothesis that Shaker encodes a structural component of a voltage-dependent K+ channel and suggest a conserved mechanism for voltage activation.  相似文献   

16.
The 1.1-megaton nuclear test Benham caused movement on previously mapped faults and was followed by a sequence of small earthquakes. These effects were confined to a zone extending not more than 13 kilometers from ground zero; they are apparently related to the release of natural tectonic strain.  相似文献   

17.
GORDON P  ZAK R 《Science (New York, N.Y.)》1963,140(3564):294-295
Proteolytic activity accompanies myosin through three reprecipitations. The fact that this activity can be potentiated by very small doses of 1-adrenaline supports the view that adrenaline receptors are protein in nature and that adrenaline-like compounds exert their action through modification of the activity of enzymes.  相似文献   

18.
The nematode pharynx has a potassium channel with unusual properties, which allows the muscles to repolarize quickly and with the proper delay. Here, the Caenorhabditis elegans exp-2 gene is shown to encode this channel. EXP-2 is a Kv-type (voltage-activated) potassium channel that has inward-rectifying properties resembling those of the structurally dissimilar human ether-à-go-go-related gene (HERG) channel. Null and gain-of-function mutations affect pharyngeal muscle excitability in ways that are consistent with the electrophysiological behavior of the channel, and thereby demonstrate a direct link between the kinetics of this unusual channel and behavior.  相似文献   

19.
Protein kinase C contains a pseudosubstrate prototope in its regulatory domain   总被引:74,自引:0,他引:74  
C House  B E Kemp 《Science (New York, N.Y.)》1987,238(4834):1726-1728
The regulatory domain of protein kinase C contains an amino acid sequence between residues 19 and 36 that resembles a substrate phosphorylation site in its distribution of basic residue recognition determinants. The corresponding synthetic peptide (Arg19-Phe-Ala-Arg-Lys-Gly-Ala25-Leu-Arg-Gln-Lys-Asn-Val-His -Glu-Val-Lys-Asn36) acts as a potent substrate antagonist with an inhibitory constant of 147 +/- 9 nM. It is a specific inhibitor of protein kinase C and inhibits both autophosphorylation and protein substrate phosphorylation. Substitution of Ala25 with serine transforms the pseudosubstrate into a potent substrate. These results demonstrate that the conserved region of the regulatory domain (residues 19 to 36) of protein kinase C has the secondary structural features of a pseudosubstrate and may be responsible for maintaining the enzyme in the inactive form in the absence of allosteric activators such as phospholipids.  相似文献   

20.
Association of the effects of the SNPs in the KCNQ3 and KCNB2 genes with breeding value of bulls of the holsteinized Black-and-White breed has been verified. The reliable influence of SNP (rs41610985) in the KCNB2 gene on the breeding value of bulls is not revealed. The SNP marker (rs41580517) in the KCNQ3 gene is associated with fat content in milk. In addition, the effect of a G to C allele substitution is equal to 0.044, and domination of allele G is observed. It was ascertained that the causal mutation should be located in the KCNQ3 gene, and, consequently, this gene is a candidate gene stipulating the SNP marker (rs41580517) association with the fat content in milk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号