首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用6级Andersen空气生物采样器,以孟加拉红培养基为培养介质,测定并分析羊舍气载真菌浓度、分布特征及与环境的关系,以期为羊舍的环境控制提供依据。结果表明,羊舍内真菌气溶胶浓度为2 855(±1 806)~3 698(±3 087)CFU/m3;9∶00左右浓度最低,显著低于13∶00和17∶00(P<0.05);真菌粒子主要分布在采样器第3~5级,粒径<5μm的真菌粒子约占80%,可侵入肺泡;与环境因素的相关性分析表明,空气真菌含量与环境因素有显著的线性关系,与温度呈正相关,与相对湿度呈负相关。  相似文献   

2.
为评估不同养殖模式鸡舍环境卫生质量,采用TYK-6型六级筛孔撞击式空气微生物采样器,对封闭式和开放式蛋鸡舍环境中的微生物气溶胶浓度及大肠杆菌血清型的分布进行监测。结果显示:封闭式鸡舍微生物气溶胶的含量、大肠杆菌检出量均明显低于开放式鸡舍,两者优势血清型均为O_(65)、O_(101)和O_(78);发病鸡舍气载大肠杆菌和鸡源大肠杆菌血清型存在一致性,且病鸡舍气载大肠杆菌颗粒多分布于采样器的第3~5级介质中。结果表明:封闭式鸡舍养殖环境优于开放式环境,有利于大肠杆菌病的防控。  相似文献   

3.
为评估笼养鸡舍环境卫生质量及推断微生物气溶胶对饲养人员及肉鸡可能造成的危害,本试验采用FA-1型六级筛孔撞击式空气微生物采样器分别对3个笼养肉鸡场鸡舍环境中气载需氧菌、气载大肠杆菌、气载金黄色葡萄球菌、气载真菌气溶胶的含量进行检测,并对其气溶胶粒子分布情况进行分析。结果表明:鸡舍环境中气载需氧菌浓度可达21.4×10~3 CFU/m~3,气载大肠杆菌浓度可达0.71×10~3 CFU/m~3,气载金黄色葡萄球菌浓度均值可达2.52×10~3 CFU/m~3,气载真菌浓度可达7.28×10~3 CFU/m~3;鸡舍内环境气载需氧菌在FA-1型六级筛孔撞击式空气微生物采样器第1层级分布比例显著高于其他层级(P0.05),气载大肠杆菌在第4层级分布比例显著高于其他层级(P0.05),气载金黄色葡萄球菌在第5层级分布比例显著高于其他层级(P0.05),气载真菌在第4层级分布比例显著高于其他层级(P0.05)。  相似文献   

4.
夏季立体养殖肉鸡舍细菌气溶胶分布规律研究   总被引:2,自引:0,他引:2  
为研究夏天封闭有窗立体养殖白羽肉鸡舍中细菌气溶胶的分布规律,使用Ander-son-6撞式空气微生物采样器,采用多点测量法对山西省某养殖基地的单栋饲养量40 320只的白羽商品肉鸡舍进行了气溶胶采样与分析。结果显示:在夏季该类型鸡舍内的气溶胶粒度主要分布于采样器的第Ⅲ、Ⅳ、Ⅴ层级,占总菌数的72.4%;采样器中各级细菌气溶胶的浓度均低于行业标准的限值,平均浓度为3.11×10~2cfu/m~3;细菌气溶胶浓度与不同采样位置无关,但从湿帘端到风机端有升高的趋势。研究表明:该类型鸡舍在夏季舍内细菌气溶胶控制良好,适宜肉鸡生长,向舍外排出的细菌对环境的污染需要进一步的研究。  相似文献   

5.
以5%绵羊血琼脂平板为采样基质,应用Andersen-6级空气微生物采样器,分别于春季、夏季、秋季和冬季采集牛场、羊场、牛运动场及养殖场外环境空气中的葡萄球菌,并分析葡萄球菌气溶胶的空气动力学特性,为反刍动物养殖场的环境控制提供依据。结果显示,牛、羊场环境气载葡萄球菌浓度随季节变化波动较大,夏、冬两季较高,春季最低;牛、羊场环境气载葡萄球菌浓度在养殖场下风向均随与场区距离增大而逐渐减小,下风向100 m处浓度均高于上风向10 m处。牛场和羊场环境葡萄球菌气溶胶颗粒在采样器Ⅲ~Ⅵ级占比为53.33%~84.73%,牛场葡萄球菌气溶胶颗粒的峰值分布在采样器第Ⅳ级,羊场峰值分布在采样器第Ⅰ级;羊场及外环境葡萄球菌气溶胶粒子中值直径(CMD)大于牛场,细菌粒径分布的离散度(GSD)值小于牛场。  相似文献   

6.
冬季全环控鸡舍细菌气溶胶分布规律研究   总被引:1,自引:0,他引:1  
为掌握冬季全环控鸡舍细菌气溶胶分布规律,使用六级筛孔撞击式微生物采样器,对采用纵向通风模式的全环控鸡舍细菌气溶胶进行采样分析。结果显示:通风条件下,舍内细菌气溶胶浓度随气流方向逐步升高,在前端两侧细菌气溶胶浓度高于中部,而到后端鸡舍中间受风机影响,细菌气溶胶在中间出风口聚集,高于两侧,可达到8.989×10~4cfu/m~3,超过国家行业推荐标准,同时鸡舍中上层的细菌气溶胶浓度高于下层;在粒径分布上,84.84%的细菌气溶胶分布于第一、二、三和四级,随气流方向,分布于第一、二级的细菌气溶胶比例增加,第五、六级比例减少。  相似文献   

7.
《畜牧与兽医》2017,(8):111-116
为了研究自然通风模式下和"湿帘-风机系统"下妊娠舍和产仔舍空气细菌气溶胶的分布规律,筛选出更适合养猪生产的养殖模式,采用Andersen-6级撞击式空气微生物采样器对2种通风模式下的妊娠舍和产仔舍15个采样点细菌气溶胶的浓度和粒子分布规律进行了比较分析。结果显示:2种通风模式下产仔舍的细菌气溶胶浓度均显著低于妊娠舍(P0.05);相较于自然通风模式,"湿帘-风机系统"可以显著减少妊娠舍内细菌气溶胶的浓度(P0.05),但是对产仔舍影响不显著(P0.05);细菌气溶胶粒子均主要分布在7.0μm和2.1~3.3μm区间,通风模式和猪舍类型对细菌气溶胶粒子的分布无显著相关(P0.05)。研究表明,"湿帘-风机系统"可以显著降低妊娠舍细菌气溶胶的浓度。  相似文献   

8.
《畜牧与兽医》2015,(12):50-53
采用国际标准的Andersen-6级空气微生物样品收集器在5个养鹿舍(A、B、C、D、E)空气中收集微生物气溶胶。通过对养鹿舍环境中气载需氧菌、空气中大肠杆菌、空气中肠球菌含量的检测及其在Andersen-6级采样器上的分布情况,评估养鹿舍的环境卫生质量以及推断微生物气溶胶对饲养人员及鹿自身可能造成的危害。结果表明:鹿舍环境中微生物气溶胶的浓度较高,而且大部分空气微生物气溶胶粒子的空气动力学直径较小,很容易进入人和鹿的呼吸道深部,对机体造成危害;5个鹿舍内气载需氧菌含量在鹿舍C中最高,为4.06×105cfu/m~3,鹿舍E内气载需氧菌含量最低,为7.80×104cfu/m~3,5个鹿舍内空气需氧菌含量之间差异均不显著(P0.05),但是,鹿舍C和D中可吸入的需氧菌含量与其他鹿舍之间差异显著(P0.05)。  相似文献   

9.
牛舍内微生物气溶胶含量检测   总被引:1,自引:0,他引:1  
采用ANDERSEN-6级空气微生物样品收集器在6个牛舍(A、B、C、D、E、F)空气中收集微生物气溶胶。通过对牛舍环境中微生物气溶胶含量的检测及其在ANDERSEN六级采样器上的分布规律,推断其对饲养员及牛体自身可能造成的危害。结果表明:牛舍环境中微生物气溶胶粒子浓度较高,而且大部分粒子的空气动力学直径较小,更容易进入呼吸道深部;牛舍内气载需氧菌含量在牛舍D内最高,为4.19×105CFU/m3,牛舍C内含量最低,为8.90×104CFU/m3,且6个牛舍内需氧菌含量之间差异均不显著(P>0.05),但是,牛舍D和E中可吸入需氧菌含量与其他牛舍之间差异显著(P<0.05)。  相似文献   

10.
试验研究了山西省东南部羊舍气载真菌浓度变化规律和真菌气溶胶的空气动力学特征,以期为羊场的环境控制提供依据。应用Andersen-6级空气微生物采样器,以孟加拉红培养基为采样介质,于春、夏、秋、冬分别采集了山西省东南部3个羊场羊舍的真菌气溶胶,分析其气载真菌浓度和真菌气溶胶的粒径特点。结果表明,羊舍气载真菌一年中以秋季浓度最高,显著高于其他季节(P0.05),且秋季一天上午、中午、下午3个时间段中,浓度差异显著(P0.05);羊舍真菌气溶胶粒子4个季节在采样器上的分布基本相同,高峰出现在第Ⅳ级,主要分布在Ⅲ~Ⅴ级,占各级总数的72.66%~83.87%,可进入人和动物的肺泡;羊舍真菌气溶胶粒子计数中值直径(CMD)为1.3~2.9μm,粒径分布的离散度(GSD)为1.6~2.7μm;夏季CMD显著低于其他季节(P0.05)。综合以上结果,羊舍气载真菌浓度与季节密切相关,80%左右气溶胶粒子可进入人和动物肺泡,且CMD小于其他动物圈舍,潜在危害较大。  相似文献   

11.
试验研究了山西省东南部羊舍气载真菌浓度变化规律和真菌气溶胶的空气动力学特征,以期为羊场的环境控制提供依据。应用Andersen-6级空气微生物采样器,以孟加拉红培养基为采样介质,于春、夏、秋、冬分别采集了山西省东南部3个羊场羊舍的真菌气溶胶,分析其气载真菌浓度和真菌气溶胶的粒径特点。结果表明,羊舍气载真菌一年中以秋季浓度最高,显著高于其他季节(P<0.05),且秋季一天上午、中午、下午3个时间段中,浓度差异显著(P<0.05);羊舍真菌气溶胶粒子4个季节在采样器上的分布基本相同,高峰出现在第Ⅳ级,主要分布在Ⅲ~Ⅴ级,占各级总数的72.66%~83.87%,可进入人和动物的肺泡;羊舍真菌气溶胶粒子计数中值直径(CMD)为1.3~2.9 μm,粒径分布的离散度(GSD)为1.6~2.7 μm;夏季CMD显著低于其他季节(P<0.05)。综合以上结果,羊舍气载真菌浓度与季节密切相关,80%左右气溶胶粒子可进入人和动物肺泡,且CMD小于其他动物圈舍,潜在危害较大。  相似文献   

12.
鸡舍内外环境中气载大肠杆菌同源性的分子鉴定   总被引:5,自引:2,他引:3  
采用ANDERSEN-6级空气微生物样品收集器和RCS离心式采样器在5个鸡场舍内空气、舍外上风向和下风向不同距离收集气载大肠杆菌;并收集鸡的粪便,分离大肠杆菌。利用大肠杆菌基因间重复一致序列为引物的聚合酶链式反应(ERIC-PCR)分型技术,扩增不同测量点收集的大肠杆菌的DNA图谱。通过每个采样点的大肠杆菌的浓度变化以及大肠杆菌遗传相似性分析确认动物舍微生物气溶胶向舍外环境的传播。结果显示:5个鸡舍内空气中大肠杆菌的浓度远远高于舍外上风和下风向的大肠杆菌浓度(P〈0.05或P〈0.01),但是舍外不同距离间的大肠杆菌浓度差异并不显著(P〉0.05)。同样,ERIC-PCR结果表明,从鸡的粪便中分离的大肠杆菌与从舍内空气中分离的部分大肠杆菌(34.1%),以及从鸡场舍外下风方向分离到的多数大肠杆菌(54.5%)与从舍内空气或粪便中分离的大肠杆菌相似性可达100%。而从鸡舍上风向分离到的大肠杆菌与从舍内空气或粪便中分离的大肠杆菌相似性为73%-92%。从而说明来自动物体的大肠杆菌既能污染舍内空气,又能对其周围的环境构成污染。本研究揭示了微生物气溶胶的传播规律,具有公共卫生及流行病学意义。  相似文献   

13.
兔舍环境空气微生物气溶胶的检测   总被引:5,自引:0,他引:5  
采用国际标准ANDERSEN6级微生物空气样品收集器,选用血葡萄糖琼脂培养基,分别对两个不同种兔舍环境空气微生物进行监测。其舍内需氧菌含量分别为4.19×103~5.55×104CFU/m3、6.35×103CFU/m3空气,需氧革兰氏阴性细菌含量分别为3.04×102~3.27×103CFU/m3、4.68×102CFU/m3空气。根据微生物气溶胶颗粒在ANDERSEN-收集器不同层级上的分布情况得知,约有50%的需氧细菌气溶胶颗粒和革兰氏阴性细菌气溶胶颗粒分布在3、4层上,空气动力学直径(Dae50)在2~6μm之间,它们能进入人、畜的气管、支气管,甚至细支气管,对饲养员和动物的呼吸道构成严重威胁。  相似文献   

14.
为评估笼养鸭舍环境卫生质量和不同笼养鸭舍微生物气溶胶浓度的变化规律,采用FA-1型六级筛孔撞击式空气微生物采样器分别对三个笼养肉鸭舍环境中气载需氧菌、气载真菌、气载金黄色葡萄球菌气溶胶的含量进行了检测。结果显示:鸭舍环境中气载需氧菌浓度可达7.24×10~3cfu/m~3,气载金黄色葡萄球菌浓度可达0.56×10~3cfu/m~3,气载真菌浓度可达1.66×10~3cfu/m~3;整个养殖周期中鸭舍内气载需氧菌、气载金黄色葡萄球菌和气载真菌的浓度在鸭14日龄时最高,然后开始下降;三个鸭舍内在消毒前后均未检出金黄色葡萄球菌,但随鸭日龄增长开始出现。通过对笼养鸭舍内微生物气溶胶的浓度、变化规律进行研究,可为笼养肉鸭场生物安全体系的制定提供依据。  相似文献   

15.
摘 要:[目的]本研究旨在了解水貂舍细菌气溶胶和气载内毒素对环境的污染及对饲养人员健康的潜在危害。[方法]采用Andersen-6空气收集器和AGI-30液体冲击式采样器对市郊不同饲养条件的2个水貂场6栋养殖舍内的细菌气溶胶和气载内毒素进行定期检测。[结果]两个场舍内气载需氧革兰氏阴性菌浓度分别介于4.17×101~2.43×103 CFU/m3之间和4.27×101~5.1×103 CFU/m3之间,以大肠杆菌科为主,假单胞菌属和巴斯德氏菌属次之;从革兰氏阴性菌在Andersen-6空气收集器层级上的分布规律来看,主要分布在Ⅲ级(36.9%),气溶胶颗粒直径在2~6 mm之间。两个场舍内的气载内毒素浓度分别介于2.92×102~2.15×103 EU/m3之间和2.67×101~2.56×102 EU/m3之间。[结论]水貂舍内气溶胶颗粒可以进入到动物和人的支气管、细支气管,甚至肺泡,在一定程度上增加了水貂和饲养人员呼吸道疾病发生的可能性;气载内毒素的浓度部分超出了对人体无影响的推荐标准(1.0×102 EU/m3),可对水貂饲养人员的健康造成一定的危害;舍内气载革兰氏阴性菌与内毒素之间没有必然的相关性,表明空气中气载内毒素含量不能用空气中气载革兰氏阴性菌的含量来评估。  相似文献   

16.
<正>鉴于仔猪普遍在白天活动,故仔猪白天的采食量要比夜间多。据杨国民报道,仔猪6∶00-18∶00采食量为全天的73.8%,18∶00-21∶00为26.2%,21∶00至次日6∶00仅为全天的15.2%。夜间采食量低于白天,除了与仔猪作息时间有关外,是否与照明有关呢?如果增加夜间照明,是否有利于仔猪的生长呢?笔者曾对本研究所试验场生产一线技术员做过1次调查,部分人认为夜间照明能增加仔猪的采食次数,从而增加采食量,进而提高仔猪生长速度。事实是否如此呢?为探求夜照对仔猪生长性能的影响,  相似文献   

17.
固体甲醛熏蒸消毒对畜禽舍微生物气溶胶的影响   总被引:1,自引:0,他引:1  
《中国兽医学报》2016,(10):1718-1721
使用国际标准的Anderson-6级空气微生物收集器检测消毒前后牛、羊、鸡、猪舍内和舍外的气载需氧菌、气载真菌和气载大肠杆菌浓度变化,并分析以上各菌种在上述收集器不同层级中的比例变化。结果显示,消毒后的动物舍内的气载需氧菌、气载真菌和气载大肠杆菌浓度均显著低于消毒前的浓度(P0.05或P0.01),消毒后的舍内以上微生物气溶胶浓度与舍外的浓度差异不显著(P0.05),且消毒后舍内的气载需氧菌、气载真菌和气载大肠杆菌在收集器5,6层级上的比例整体上呈现大幅下降的趋势。由此可见,固体甲醛熏蒸的消毒方式可有效降低畜禽舍内的微生物气溶胶浓度,且对可进入肺泡的小颗粒微生物气溶胶消毒效果更佳。  相似文献   

18.
旨在探究冬季猪舍内有害气体、颗粒物和微生物气溶胶的分布规律,为猪场制定有效的环境调控措施提供基础数据和科学依据。本试验在江苏省盐城市某封闭式哺乳母猪舍进行,舍内设立5个监测点(前、中、后、南、北),高度设为距离地面1.0 m处,每30 min自动记录舍内温度和相对湿度,分别于每天6:00、10:00、14:00和18:00测定舍内风速、气体(NH3,H2S和CO2)、不同粒径颗粒物(PM10、PM2.5、PM1和PM0.3)和微生物气溶胶(细菌、真菌和大肠杆菌气溶胶)浓度,每天监测4次,连续监测7 d。结果表明,哺乳母猪舍内平均温度和相对湿度分别为23.2℃和71.8%。舍内平均风速为0.36 m/s,显著低于舍外(1.79 m/s)。舍内NH3、H2S和CO2平均浓度为5.50、0.27和2 214 mg/m3,舍内后部的NH3  相似文献   

19.
冬季六层层叠式笼养密闭式鸡舍环境质量测定与分析   总被引:1,自引:0,他引:1  
试验旨在对六层层叠式笼养密闭式鸡舍冬季环境质量进行测定与分析,以期为蛋鸡层叠式笼养环境控制提供参考依据。以六层层叠式笼养密闭式鸡舍为研究对象,使用环境智能监控系统、粉尘采样器和测氧仪每天6∶00~8∶00、12∶00~14∶00和18∶00~20∶00对鸡舍水平和垂直方向上不同位置的环境质量参数(温度、相对湿度、光照强度、CO2浓度、风速、粉尘浓度和氧气含量)进行测定。结果表明,在采取侧窗进风、纵向通风的模式下,六层层叠式笼养密闭式鸡舍冬季平均温度、相对湿度和风速分别为19.18℃、58.75%和0.12 m/s,空气中平均二氧化碳浓度、粉尘浓度和氧气含量分别是2 477.22 mg/m3、3.27 mg/m3和20.23%,不同测定点之间环境质量存在差异。下层H0.6 m、H1.3 m和H1.9 m测定点的温度显著低于上层H3.1 m、H3.8 m和H4.4 m的温度(P0.05),上层的相对湿度显著低于下层(P0.05)。上层的光照强度低于下层的光照强度(P0.05),上层H3.1 m、H3.8 m和H4.4 m测定点的二氧化碳浓度和粉尘浓度显著高于下层(P0.05)。相关分析结果表明,冬季鸡舍内温度与相对湿度呈极显著负相关(P0.01),与二氧化碳浓度、氧气含量极显著正相关(P0.01);风速与温度、相对湿度和二氧化碳浓度呈负相关。  相似文献   

20.
绿色荧光蛋白标记大肠杆菌气溶胶的发生及其传播模式   总被引:1,自引:0,他引:1  
为了认识微生物气溶胶的发生与传播规律,作者建立了细菌气溶胶传播模型,即试验鸡摄入用绿色荧光蛋白(GFP)基因标记的E. Coli JM109后,检测这种大肠杆菌在鸡体的排出及其形成气溶胶与传播过程.鸡饮完含E coli JM109-pGFP菌液(5.0×1010CFU·只-1)后,采用ANDERSEN-6级空气微生物样品收集器分别在鸡栏内、栏外2、5、10、20 m收集气载E.coli JM109-pGFP.通过每一个采样点JM109-pGFP浓度的变化来评估动物舍微生物气溶胶向舍外环境的传播情形.结果显示,试验鸡饮完含E.coli JM109-pGFP的饮水,0.5 h左右开始排出含E.coli JM109-pGFP的粪便,此时测量栏内和栏外2、5、10、20 m处JM109-pGFP气溶胶浓度达最高,分别为1.531×103、8.080×102、3.360×102、2.250×102、6.600×10 CFU·m-3;栏内与栏外不同距离间的JM109-pGFP浓度差异不显著(P>0.05).30 h时只能在栏框内收集到JM109-pGFP,为7 CFU·m-1;36 h后在栏框内也消失.结果表明,动物排泄物中的细菌能够形成气溶胶,并能通过舍内外气体交换传播到舍外,造成周边环境的生物污染.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号