首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increases in atmospheric carbon dioxide (CO2) concentration have stimulated interest in the response of agricultural crops to elevated levels of CO2. Several studies have addressed the response of C3 cereals to CO2, but the interactive effect of nutrient supply and CO2 on apical development and spikelet set and survival has not been investigated thoroughly. Hence, an experiment was conducted in the greenhouse to evaluate the effect of high (700 μmol CO2mol?1 air) and low (400 μmol mol?1) levels of atmospheric CO2 on apical development, spikelet set and abortion, and pre- and post-anthesis growth in spring barley (Hordeum vulgare L.) grown under high N (0.3 g N pot?1 before sowing ?1–0.11 g N pot?1 week?1) and low N (0.3 g N pot?1) regimes. The plants were grown in 5 L pots. Development of spike was hastened due to CO2 enrichment, and the C+ plants pollinated few days earlier than the C— plants. Carbon dioxide enrichment had no effect on date of ripening. Development of spike slowed following application of extra N, and plants pollinated 10 days later and matured 2 weeks later when compared with plants under low N. Carbon dioxide enrichment did not affect the number of spikelets at anthesis. Excess N decreased spikelet abortion and the increased maximum number of spikelets under both [CO2]. Barley plants did not tiller when grown in low [CO2] and low N. Increased endogenous IAA concentration in those plants, recorded three days before tillers appeared in other treatments, may have contributed to this. Carbon dioxide enrichment increased the C concentration of plants, but decreased the N concentration under high N regime. Both the C and N concentration of plants were increased under high N regime. Carbon dioxide enrichment increased the total dry matter of mature plants by 9 % under high N regime and by 21 % under low N regime. Under high [CO2] increased kernel number on tiller spikes, and increased kernel weight both on main stem and on tiller spikes resulted in a 23 % increase in kernel yield under low N regime and 76 % increase in kernel yield under high N regime. The rate of N application influenced growth and yield components to a greater extent than CO2 enrichment. At maturity, plant dry matter, kernel weight, the number of kernels per spike, and the number of spikes per plant were higher under high N regime than under low N regime. Long days (16 h), low light intensity (280 μmol m?2s?1), and at constant temperature of 20 °C high [CO2] increased kernel weight and the number of kernels on tiller spikes under high and low N application rate, but did not increase the number of kernels on main stem spike, or the number of tillers or tiller spikes per plant.  相似文献   

2.
This study analysed the alleviating effect of elevated CO2 on stress‐induced decreases in photosynthesis and changes in carbohydrate metabolism in two wheat cultivars (Triticum aestivum L.) of different origin. The plants were grown in ambient (400 μl l?1) and elevated (800 μl l?1) CO2 with a day/night temperature of 15/10 °C. At the growth stages of tillering, booting and anthesis, the plants were subjected to heat stress of 40 °C for three continuous days. Photosynthetic parameters, maximum quantum efficiency of photosystem II (PSII) photochemistry (Fv/Fm) and contents of pigments and carbohydrates in leaves were analysed before and during the stress treatments as well as after 1 day of recovery. Heat stress reduced PN and Fv/Fm in both wheat cultivars, but plants grown in elevated CO2 maintained higher PN and Fv/Fm in comparison with plants grown in ambient CO2. Heat stress reduced leaf chlorophyll contents and increased leaf sucrose contents in both cultivars grown at ambient and elevated CO2. The content of hexoses in the leaves increased mainly in the tolerant cultivar in response to the combination of elevated CO2 and heat stress. The results show that heat stress tolerance in wheat is related to cultivar origin, the phenological stage of the plants and can be alleviated by elevated CO2. This confirms the complex interrelation between environmental factors and genotypic traits that influence crop performance under various climatic stresses.  相似文献   

3.
Waterlogging causes long‐lasting damage to wheat (Triticum aestivum). Root growth and respiration were investigated after heading in waterlogged, pot‐grown, wheat plants and also in hydroponically grown, wheat seedlings exposed to a hypoxic treatment. In the pot experiment, plants were subjected to 8 days of waterlogging after heading. This period of waterlogging resulted in reduced shoot and root growth through to maturity. The root CO2 emission rates of previously waterlogged and well‐drained plants were about 220 and 140 nmol g?1 per s, respectively, with the rate differences persisting from 10 days after anthesis through to maturity. In the hydroponic experiments, seedlings (Feekes stage 2.0) were exposed to root‐zone, hypoxic treatment for 10–19 days. The roots showed 27 % higher CO2 emission rates and 37 % higher O2 consumption rates, compared with untreated roots. In whole root systems, the high respiration rates found during hypoxic treatment disappeared during recovery under aerated conditions as a result of the appearance of newly initiated roots. However, measurements of the respiration of the previously hypoxic roots showed abnormally high respiration rates. In roots exposed to hypoxic treatment, total sugar concentrations were 3.6‐times higher than in untreated roots indicating that this elevation of sugar may be responsible for the continued high respiration rate. This study shows that roots exposed to waterlogging or to hypoxic treatments do not increase their weights and thus recover from the metabolic disturbances resulting from these treatments.  相似文献   

4.
单本密植机插对杂交稻生长和产量的影响   总被引:2,自引:0,他引:2  
为了研究单本密植机插和常规机插对杂交稻分蘖动态、干物质积累、辐射利用率和产量及产量构成的影响,在湖南省浏阳市以杂交稻泰优390、五优308为材料和在广东省肇庆市以五优308为材料,进行印刷播种和常规播种的秧苗素质比较以及单本密植机插和常规机插的大田栽培试验。结果表明,两试验点印刷播种的叶龄、白根数、总根数、茎基宽、地上部干重和地下部干重均明显高于常规播种。单本密植机插的最高分蘖数和有效分蘖数显著低于常规机插,但单本密植机插的每穗粒数、总颖花数、结实率和千粒重高于常规机插,增产10.28%~13.96%,达到显著水平。从穗部性状来看,单本密植机插的一次枝梗数、二次枝梗数、穗长、着粒密度和单穗重均显著高于常规机插。在生长前期,单本密植机插的干物质积累和叶面积指数低于常规机插,而成熟期干物质量比常规机插高0.61%~9.45%,且收获指数显著高于常规机插。此外,单本密植机插的截获辐射量和截获率低于常规机插,而辐射利用率显著高于常规机插。由此可见,杂交稻单本密植机插不仅可以降低用种量、提高秧苗素质,还能增加每穗粒数、总颖花数、千粒重及提高结实率、收获指数和辐射利用率,从而获得高产。  相似文献   

5.
Photosynthetic Response of Wheat to Soil Water Deficits in the Tropics   总被引:1,自引:0,他引:1  
The changes in photosynthetic rate and translocation of photosynthates in winter wheat (Triticum Aestivum L.) grown in lysimeters were studied, in response to periodic soil water deficit during late tillering and flowering stages. Soil water deficits were imposed to previously nonstressed plants during late tillering and flowering states. Timing of irrigation was scheduled according to the ratio between irrigation water applied and cumulative pan evaporation (IW/CPE) of 0.75 (low deficit), and 0.5 (moderate deficit), as well as by suspending irrigations after crown root initiation stage (severe deficit). To determine the rate of photosynthesis, a short radioactive pulse of 14CO2 with 300 ppm concentration was given to second leaf from the top at tillering, and to the flag leaf at flowering stages for 20 second exposure time. The translocation of photosynthates was estimated by scanning 14C activity in different plant parts. In late tillering the midday Photosynthetic rate (PR) was significantly 3 mg CO2 dm?2 h?1 lower under low water deficit (WD1) than under zero water deficit (WD0). Under higher stress conditions, soil water acted as a limiting factor to keep the rate from rising above 13.2 during stress at late tillering (WD2), 14.5 flowering (WD4), and 10.0 mg CO2 dm?2 h?1 for stress at both the growth stages (WD5), respectively. The difference in daily accumulated photosynthesis (8 h), between stressed and nonstressed were 15, 40, 42, and 77 mg CO2 dm?2 h?1 respectively at WD1 WD2, WD4, and WD5. The retention of 14C in flag leaf decreased considerably after 24 hours of exposure time when the labelled assimilates were translocated in bulk to the ear head. Under stressed condition a general trend was observed for upward translocation of assimilates towards the ear, even from the stem and root. The percent 14C activity observed in ear after 24 hours was greatest in severely stressed plants. The photosynthetic rate is reasonable predicted by midday LDR and surface moisture.  相似文献   

6.
Stagnant flooding (SF) during vegetative growth triggers stem elongation usually at the cost of tiller production in rice, reducing grain yield. To explore physiological mechanisms associated with tillering suppression under SF, three contrasting genotypes (Swarna and Swarna‐Sub1, both sensitive and IRRI154, tolerant) were evaluated under standing water depths of 0, 5, 30 and 50 cm. SF significantly suppressed tiller formation but increased plant height, root biomass, shoot elongation (ratio of plant height before and after flooding), leaf emergency and non‐structural carbohydrate (NSC) concentration (in root–shoot junction) in all genotypes at the early stage of development. Chlorophyll concentration in the upper leaves (upper most fully expanded leaf at top) was higher than in lower leaves (lowest green leaf at base), but decreased under SF in both. SF increased hydrogen peroxide (H2O2) at the early stage of treatment, with concomitant increase in malondialdehyde (MDA) production by stems and leaves. MDA concentration in root–shoot junction increased but delayed. Tiller number correlated negatively with plant height, shoot elongation, leaf emergency, MDA concentration in leaves and root–shoot junction, root biomass, and NSC concentration in the root–shoot junction. The results suggested existence of compensatory mechanisms between tiller growth and shoot elongation in rice for resilience under SF, where energy is mainly diverted for shoot elongation to escape flooding. The SF‐tolerant genotype produced less H2O2 and maintained energy balance for higher survival and better growth under stagnant flooding.  相似文献   

7.
CO2浓度升高和施氮对冬小麦花前贮存碳氮转运的影响   总被引:2,自引:0,他引:2  
许育彬  沈玉芳  李世清 《作物学报》2011,37(8):1465-1474
为探讨大气CO2浓度升高对冬小麦花前贮存碳氮转运的影响及氮素营养的调节作用,以小偃22和小偃6号为材料,于2007—2009连续2个生长季,利用开顶式气室进行盆栽试验,对背景CO2浓度(375 μL L-1)和高CO2浓度(2007—2008年度680 μL L-1, 2008—2009年度750 μL L-1)条件下不同施氮处理的干物质和氮素在籽粒、花前地上部中的累积以及花后营养器官的转运进行了评价。2007—2008年度设4个施氮水平,分别是0、0.1、0.2和0.3 g kg-1土; 2008—2009年度设3个施氮水平,分别是0、0.15和0.30 g kg-1土。结果表明,施氮和CO2浓度升高促进了干物质和氮素在籽粒和花前营养器官的积累,增加了花前营养器官和地上部贮存干物质和氮素向籽粒的转运量,适量施氮提高了CO2浓度升高对花前营养器官干物质和氮素累积以及花后向籽粒转运的正向效应。与背景CO2浓度相比,高CO2浓度提高了花前营养器官和地上部干物质对籽粒产量的贡献率和转运率,但CO2浓度升高对花前氮素的贡献率和转运率的影响因年份和品种而异。CO2浓度升高后,2007—2008年度各营养器官和地上部,以及2008—2009年度茎鞘和穗的氮素贡献率和转运率均增加,但2008—2009年度2个品种叶片和地上部氮素贡献率在施氮时均显著降低,小偃22叶片和地上部氮素转运率在各施氮水平下以及小偃6号地上部氮素转运率在0.13 g kg-1土施氮水平下均明显增加。适量施氮也在大多数情况下增强了CO2浓度升高对营养器官干物质和氮素的贡献率和转运率的正向效应。说明CO2浓度升高后小麦产量和氮素积累增加与其促进花前干物质和氮素积累及花后向籽粒的转运密切相关。  相似文献   

8.
During the vegetative phase of growth of two field bean and two field pea cultivars of different drought tolerance, the effect of short and prolonged soil drought on gas exchange (CO2 i H2O), leaf water potential (ψ), stomatal diffusive resistance (rS), uptake of CO2, and the distribution and accumulation of 14C was studied. Differences in the response to drought conditions between resistant and susceptible cultivars were marked. After 5 days of soil drought, the decrease in net photosynthesis and transpiration rate and the increase of stomatal resistance were greater in the drought-resistant cultivars than in the drought-susceptible ones. In contrast, after 10 days of drought the decrease of leaf PN (CO2 assimilation rate), E (rate of transpiration) and ψ (water potential) was greater in the susceptible cultivars than in the resistant ones. Significant differences between the resistant and the susceptible cultivars were also observed in the assimilation and translocation of 14C by the green parts of the plant. The amount of carbon accumulation in roots in drought-susceptible cultivars increased less than in the drought-resistant cultivars. For treatments in which optimal soil watering was resumed after 5 or 10 days of drought there was no evidence of effects of drought on the majority of measurements, but the drought-resistant cultivars showed a general tendency for a more rapid recovery. Our results confirm the existence of genetic variability in drought tolerance among the cultivars of field bean and field pea. The recorded differences in the response to drought of experimental cultivars may indicate that, under water deficit in the soil and in plant tissues, they may use different strategies to avoid the damaging effects of temporary limitation of water supply; for example, the drought-resistant cultivars may more effectively conserve tissue hydration through effective stomatal closure. Also, the observed changes in carbon assimilation and accumulation might be the reason for their different responses to drought. The change in radioactivity losses in the control and stressed plants may result from the differences in demand for energy to maintain cell structure and function. Similarly, the less intense carbon accumulation in the roots of the sensitive cultivars could be caused by more harmful effects of drought on root growth.  相似文献   

9.
水稻甬优12产量13.5t hm~(–2)以上超高产群体的生育特征   总被引:1,自引:0,他引:1  
以籼粳交超级稻甬优12为试材、四叶一心期带蘖小苗移栽,超稀植(12.45×104穴hm–2)栽培,对高产(10.5~12.0 t hm–2)、更高产(12.0~13.5 t hm–2)、超高产(13.5 t hm–2)3个产量群体的产量及其结构、茎蘖动态、叶面积动态及干物质的积累与运转等进行了系统比较研究。结果表明,产量由高产(10.5~12.0 t hm–2)到更高产(12.0~13.5 t hm–2)再到超高产(13.5 t hm–2),群体的颖花量不断提高,结实率和千粒重略微下降。与高产和更高产群体相比,超高产群体茎蘖数起点较高,在有效分蘖临界叶龄期及时够苗,至拔节期群体茎蘖数稳步增长,达高峰苗,此后群体茎蘖数平缓下降,成穗率近60%;群体叶面积指数生育前期较小,最大值出现在孕穗期,为9.17,此后平缓下降,成熟期在4.0以上;群体干物质积累量在拔节期略低,此后各生育时期均升高,抽穗期为14.38 t hm–2,抽穗至成熟期为9.73 t hm–2,成熟期为24.11 t hm–2;群体根系干重、根冠比及单茎伤流强度在后期(抽穗至成熟期)均较高。  相似文献   

10.
籼粳杂交稻甬优2640钵苗机插超高产群体若干特征探讨   总被引:13,自引:8,他引:5  
选用大穗型籼粳杂交稻甬优2640,以国家粮食丰产科技工程实施基地江苏东海、兴化和海安6.4、6.8和7.3 hm2连片超高产攻关方为依托,对籼粳杂交稻钵苗机插超高产群体(13.5 t hm–2左右)和高产群体(12.0 t hm–2左右)系统比较研究,旨在阐明秸秆还田条件下钵苗机插水稻超高产产量构成及其群体特征。结果表明,与高产群体相比,籼粳杂交稻钵苗机插超高产群体表现穗型大、粒数多和群体颖花量高,有效穗数、结实率和千粒重相当;群体茎蘖数生育前期稳步增长,有效分蘖临界叶龄期达适宜穗数,拔节期高峰苗数量少,拔节之后缓慢消减,最终成穗率高;群体叶面积指数有效分蘖临界叶龄期和拔节期较小,孕穗期达最大值(8.5左右),此后平稳减少,成熟期仍保持3.5以上;群体干物质积累量有效分蘖临界叶龄期和拔节期相当,拔节后积累较快,孕穗期、抽穗期和成熟期显著或极显著增高,且生育中、后期干物质积累比例高;群体氮素积累、群体光合势、群体生长率和净同化率表现为"前小,中高,后强"。说明水稻钵苗机插超高产群体生育中、后期具有较强的光合物质生产力和较高的氮素积累量。本文还探讨了秸秆还田条件下水稻钵苗机插超高产栽培关键技术。  相似文献   

11.
In this study, conducted from 1979 to 1986 in southern Spain, the objective was to analyze the effects of a possible interaction between soil-applied N and foliar S applied to barley (Hordeum vulgare L.) during tillering on grain yield and to identify the mechanism involved. From 1979 to 1982, we used rates of 20, 40, 60 and 80 kg a.i. N ha?1, together with 12.5 or 25 kg foliar a.i. S ha?1 during tillering. The results demonstrated that foliar S at both dosages acted as a partial (but not total) substitute for N, when the latter was applied at levels of 40 to 60 kg ha?1. These effects of S did not appear to result only from a nutritive mechanism, but rather from a hormonal mechanism through the increase in ethylene biosynthesis. Therefore, during 1983 to 1986, we used 40, 60 and 80 kg a. i. N ha?1, together with 12.5 a. i. S ha?1 and 0.55 kg a.i. ethrel (2-chloroethyl-phosphonic acid) ha?1. The results showed that the effects of S and ethrel on yield were practically the same. Assayed with 40 and 60 kg N ha?1, S and ethrel acted as partial (but not total) substitutes for N, exceeding the yield of the control without S or ethrel, and equalling the yield obtained with 20 kg more of N ha?1. The S or ethrel applied with 80 kg N ha?1 presented an additive effect with the N. The increases in yield using S or ethrel were in all cases due to the increased final number of spikes m?2, which was principally a consequence of the higher number of tillers formed but also a result of increased survival of tillers to form a viable spike. In addition, the positive effects of S on yield were greater the smaller the N dosage and the lower the annual yield. Finally, we present a possible mechanism of hormonal action, to explain how foliar S applied during tillering affects grain yield in barley.  相似文献   

12.
Contribution of leaf area duration (LAD) to grain yield during the short growing season characteristic of northern latitudes may differ from the marked impact it has at lower latitudes. Three experiments (exps) were carried out at Viikki Experimental Farm, University of Helsinki, Finland (60° 13′N) to compare associations between main shoot and tiller LAD with grain yield, yield components and morpho-physiological traits characterizing plant stand structure. This was done using correlation analysis and principal component analysis (PCA) for data from trials conducted during 1993–1995. Exp I included three N fertilizer rates (80, 120, 160 kg N ha?1), three seeding rates (250, 500, and 750 seeds m?2), and tall, moderate, semi-dwarf, and dwarf oat lines. Exp II incorporated two N fertilizer rates (80 and 120 kg ha?1), three seeding rates (400, 600, and 800 seeds m?2), and naked and hulled oat lines, and exp III, foliar applications of plant growth regulators [control, chlormequat chloride (CCC), and ethephon], and dwarf, naked, and conventional oat lines. LAD for main shoots and tillers [calculated as ∫ LAI d T, where T is cumulated degree days from seedling emergence to yellow ripening (dd °C)] and 12 morpho-physiological traits were measured. Oat was not able to benefit from high main shoot LAD if drought occurred at grain-fill, but in the absence of severe drought or if it occurred at pre-anthesis, high LAD favoured yield formation. Tiller LAD had a negative impact, if any, on grain yield in cases of an inverse relationship between tiller LAD and yield components on main shoots was recorded. Use of low seeding rates resulted in improved ability of total LAD to contribute to dry-matter production, but was not associated with grain yield. Low seeding rates enhanced formation of high tiller LAD, which was not able to compensate for grain yield reduction caused by fewer main shoots. Foliar application of CCC and ethephon tended to increase the proportion of LAD production by tillers at the expense of grain yield, which can be attributed to lower post-anthesis precipitation. Oat types differed in main shoot and tiller LAD. Disadvantageous characteristics of naked oat, such as low single groat weight, were not associated with insufficient main shoot LAD. High tiller LAD in naked lines and the Minnesota-adapted dwarf line that was not associated with high tiller grain yield in naked lines, in particular, indicates that tiller growth was enhanced at the expense of grain yield production. Application of N fertilizer at various rates did not have any effect on LAD.  相似文献   

13.
Summary Wheat root characters which influence vital plant processes have scarcely been explored for their genetic control. This study was conducted to i) examine the diversity of root traits and associated shoot traits in spring wheat (Triticum aestivum L.) cultivars; ii) study the nature of genetic control of selected traits; and iii) examine associations among root and shoot traits. Three experiments were conducted in the greenhouse with plants grown in the vermiculite medium in clear plastic tubes. In the first experiment, 42 spring wheat cultivars were grown for three weeks and measurements were taken on root length, leaf length, root number, leaf number, root dry weight, and top dry weight. In the second study, 15F1's originating from a partial diallel mating of six cultivars along with the parents were evaluated for 4 weeks. The data on root length, leaf length, and root number were subjected to diallel analysis according to Griffing's method 4, fixed model. A third experiment consisted of studying 2 F2 populations with 141 plants per population. In the first study the 42 cultivars exhibited a wide range of variation for all six traits. Diallel analysis revealed significant effects of both general combining ability (GCA) and specific combining ability (SCA) for root length, leaf length, and root number. Parents with high GCA estimates were identified. Significant positive correlation coefficients were found among root and shoot traits. Analysis of F2's for root length indicated quantitative nature of inheritance of root length.  相似文献   

14.
The increase in atmospheric CO2 concentration [CO2] has been demonstrated to stimulate the growth of C3 crops. However, little information exists about the effect of elevated [CO2] on biomass production of sugar beet, and data from field experiments are lacking. In this study, sugar beet was grown within a crop rotation over two rotation cycles (2001, 2004) at present and elevated [CO2] (375 μl l?1 and 550 μl l?1) in a free air CO2 enrichment (FACE) system and at two levels of nitrogen supply [high (N2), and 50% of high (N1)], in Braunschweig, Germany. The objective of the present study was to determine the CO2 effect on seasonal changes of leaf growth and on final biomass and sugar yield. Shading treatment was included to test whether sugar beet growth is sink limited under elevated [CO2]. CO2 elevation did not affect leaf number but increased individual leaf size in early summer resulting in a faster row closure under both N levels. In late summer CO2 enrichment increased the fraction of senescent leaves under high but not low N supply, which contributed to a negative CO2 effect on leaf area index and canopy chlorophyll content under high N at final harvest. Petioles contained up to 40% water-soluble carbohydrates, which were hardly affected by CO2 but increased by N supply. More N increased biomass production by 21% and 12% in 2001 and 2004, respectively, while beet and sugar yield was not influenced. Concentration of α-amino N in the beet fresh weight was increased under low N and decreased under high N by CO2 enrichment. The CO2 response of total biomass, beet yield and white sugar yield was unaffected by N supply. Averaged over both N levels elevated [CO2] increased total biomass by 7% and 12% in 2001 and 2004, respectively, and white sugar yield by 12% and 13%. The shading treatment in 2004 prevented the decrease in leaf area index under elevated [CO2] and high N in September. Moreover, the CO2 effect on total biomass (24%) and white sugar yield (28%) was doubled as compared to the unshaded conditions. It is concluded that the growth of the storage root of sugar beet is not source but sink limited under elevated [CO2], which minimizes the potential CO2 effect on photosynthesis and beet yield.  相似文献   

15.
Little information exists concerning how crops will respond to the predicted increased night temperatures. The objective of this work was to determine if respiration and growth of sorghum [Sorghum bicolor (L.) Moench], a C, plant, and sunflower (Helianthus annuus L.), a C3 plant, are affected when the night temperature is increased by 5°C compared to the long-term (19 year) average night temperature in June in Kansas. Sorghum and sunflower were grown in two walk-in growth chambers with either the ambient night temperature (21C) or a high night temperature (26C). Day temperature was the same for all plants (27C). Both sunflower and sorghum had higher respiration rates under the elevated night temperature than under the ambient temperature. The average respiration rate of sunflower grown under elevated night temperature increased by 19% (0.89 vs. 0.75 μmol m?2 s?1) and that of sorghum by 44 % (0.52 vs. 0.36μmol m?2s?1). After 74 days, sunflower plants grown under the ambient night temperature were 30.2 cm taller than sunflower plants grown under the elevated night temperature; sorghum plants under the ambient temperature were 24.8 cm taller. Sunflower plants grown under the elevated night temperature formed flowers one week earlier than those grown under the ambient temperature. Sorghum formed no flowers by 74 days. Results suggest that, if climate change does increase night temperature, respiration will be increased more in C4, than C3 plants.  相似文献   

16.
Summary A glasshouse study was conducted to describe the dynamics of leaf and tiller appearance of four accessions of T. tauschii (Tt 04, Tt 17, Tt 65 and Tt 74) and to determine the influence of moisture stress (treatments were high and low moisture, imposed seven days after transplanting) on these and other aspects of development in this wild wheat.Under high moisture conditions, accessions differed greatly in flag leaf dimensions, culm length and seed number per spike, the values being lower in Tt 04 than in the other accessions. Low moisture strongly reduced values for these traits, with Tt 04 being least affected, but overall, there was no apparent association between the values obtained for these variables in the high moisture conditions and the effects of moisture stress. For three of the four accessions, final leaf number on the main culm was significantly lower in the low moisture treatment than in the respective control (P<0.05), but the differences between treatments (ca. 0.5 leaves or less) were very small. Maximum tiller number, on the other hand, was strongly reduced by low moisture, and initiation of tillering was inhibited until water was reapplied. There were no apparent after-effects of the moisture regime on the rate of subsequent tiller appearance.The four accessions differed in their leaf appearance rates, giving phyllochron values (117–142° Cd leaf-1) within the range reported for hexaploid wheat. Low moisture tended to increase phyllochron, but in only one accession was this effect significant. Thus, depending on the accession, low moisture did not affect, or slightly decreased (by ca. 15–20%) the rate of leaf appearance. These effects were similar to those reported for cultivated wheat suggesting that there would be little scope for using these accessions of T. tauschii in breeding for stress tolerance.  相似文献   

17.
Using phytotron growth chambers, a short‐term pot experiment under non‐limiting water condition was conducted to investigate the individual and interactive effects of elevated carbon dioxide (650 ± 10 μmol mol?1 vs. ambient), temperature (3 °C above ambient vs. ambient) and different levels of urea–N (control, 100 % N and 200 % N of recommended dose) on growth and yields of wheat crop and changes in potential nitrogen mineralization (PNM), nitrification and denitrification activities, microbial biomass carbon (MBC), nitrogen (MBN), dissolved organic carbon (DOC), and nitrifying and denitrifying organisms in a semiarid Inceptisol. The plant parameters (root, shoot and grain) responded positively (10–23 %) to elevated CO2 and negatively (?17 to ?38 %) to higher temperature. Interactive effect of elevated CO2 and temperature caused a negligible impact on root, shoot (≈?5 %) and grain yields of wheat. Soil –N content was not affected, but –N was reduced significantly. Nitrate reductase activity was decreased by 14–20 % at elevated CO2. There was positive effect of elevated temperature on PNM (+9–16 %), whereas negative effects were observed for potential nitrification activity (PNA), MBC, MBN and DOC. Elevation of atmospheric CO2 or temperature did not affect the population of ammonia (AOB) and nitrite oxidizers (NOB), but elevation of CO2 has decreased the population of denitrifiers by 4–14 %.  相似文献   

18.
Phosphorous deficiency in soil limits crop growth and productivity in the majority of arable lands worldwide and may moderate the growth enhancement effect of rising atmospheric carbon dioxide (CO2) concentration. To evaluate the interactive effect of these two factors on cotton (Gossypium hirsutum) growth and physiology, plants were grown in controlled environment growth chambers with three levels of phosphate (Pi) supply (0.20, 0.05 and 0.01 mm ) under ambient and elevated (400 and 800 μmol mol?1, respectively) CO2. Phosphate stress caused stunted growth and resulted in early leaf senescence with severely decreased leaf area and photosynthesis. Phosphate stress led to over 77 % reduction in total biomass across CO2 levels. There was a below‐ground (roots) shift in biomass partitioning under Pi deficiency. While tissue phosphorus (P) decreased, tissue nitrogen (N) content tended to increase under Pi deficiency. The CO× Pi interactions were significant on leaf area, photosynthesis and biomass accumulation. The stimulatory effect of elevated CO2 on growth and photosynthesis was reduced or highly depressed suggesting an increased sensitivity of cotton to Pi deficiency under elevated CO2. Although, tissue P and stomatal conductance were lower at elevated CO2, these did not appear to be the main causes of cotton unresponsiveness to elevated CO2 under severe Pi‐stress. The alteration in the uptake and utilization of N was suggested due to a consistent reduction (18–21 %) in the cotton plant tissue N content under elevated CO2.  相似文献   

19.
The components of grain yield are altered by adverse growing conditions as the effects of certain environmental factors on crop growth and yield differ depending upon the developmental stages when these conditions occur. Path-coefficient analysis was used to investigate the main processes influencing grain yield and its formation under Mediterranean conditions. Twenty-five durum wheat genotypes, consisting of four Spanish commercial varieties and 21 inbred lines from the ICARDA durum wheat breeding program, were grown during 1997 and 1998 under both rainfed and irrigated conditions in southern Spain. {P}ath-coefficient analysis revealed that under favourable conditions grain yield depended in equal proportion on the three primary yield components (i.e. spikes m−2, grains spike−1, and mean grain weight), whereas in the rainfed experiments, variations in grain yield were due mainly to spikes m−2 and to a lesser extent to grains spike−1. Compensatory effects were almost absent under irrigated treatments; however, under water shortage, spikes m−2 exerted a negative influence on grain spike−1 due mainly to a negative interrelationship between tiller production and apical development. These compensatory effects could partially explain the restricted success in durum wheat breeding observed in water-limited environments of the Mediterranean region. Under rainfed conditions the number of spikes m−2 depended mainly on the ability for tiller production, whereas in the irrigated experiments the final number of spikes was determined mostly by tiller survival.  相似文献   

20.
通过盆栽试验,研究了水分胁迫对玉米各生育期叶面积(LA)、比叶面积(SLA)、水分利用效率(WUE)和碳稳定同位素判别值(Δ13C)的影响以及不同水分条件下WUE、茎叶Δ13C和SLA之间的关系。试验设4个水分处理, 分别为田间持水量的75%~100%(W1)、50%~75%(W2)、30%~50%(W3)和0~30%(W4)。W2和W3处理对生物量干重的影响在玉米拔节期明显,而W4处理导致各生育期生物量干重的极大降低。在W2和W3处理下,玉米各生育期的WUE随着水分胁迫程度的增加而增加;而W4处理下,WUE在孕穗期后则显著降低。SLA在孕穗期达到最大。玉米各生育期叶片Δ13C在W1、W2和W3处理中呈随水分胁迫的增加而降低的趋势,而W4处理下的叶片Δ13C则高于W2和W3处理。玉米叶片光合同化物质往茎秆转移时没有发生碳同位素的分馏作用。在玉米的各生育期,叶片Δ13C、茎秆Δ13C和玉米WUE呈一致性的负相关;各生育期的SLA与Δ13C呈正相关关系,而与WUE呈显著的负相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号