首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(ethylene terephthalate) (PET)/CaCO3 and PET/modified-CaCO3 (m-CaCO3) nanocomposites were prepared by melt blending. The morphology indicated that m-CaCO3 produced by reacting sodium oxalate and calcium chloride, was well dispersed in PET matrix and showed good interfacial interaction with PET compared to CaCO3. No significant differences in the thermal properties such as, glass transition, melting and degradation temperatures, of the nanocomposites were observed. The thermal shrinkage of PET at 120 °C was 10.8 %, while those of PET/CaCO3 and PET/m-CaCO3 nanocomposites were 2.9–5.2 % and 1.2–2.8 %, respectively depending on filler content. The tensile strength of PET/CaCO3 nanocomposite decreased with CaCO3 loading, whereas that of PET/m-CaCO3 nanocomposites at 0.5 wt% loading showed a 17 % improvement as compared to neat PET. The storage modulus at 120 °C increased from 1660 MPa for PET to 2350 MPa for PET/CaCO3 nanocomposite at 3 wt% loading, and 3230 MPa for PET/m-CaCO3 nanocomposite at 1 wt% loading.  相似文献   

2.
In this paper, novel electrospun LA-PA/PET/Ag phase change composite fibers with different amount of Ag nanoparticles were prepared via the technique of electrospinning followed by UV irradiation method. The morphological structure, thermal energy storage properties, thermal energy storage and release rates of prepared LA-PA/PET/AgNO3 and LA-PA/PET/Ag composite fibers were investigated by scanning electron microscope (SEM), high-resolution transmission electron microscope (HR-TEM), differential scanning calorimeter (DSC), and the measurement of melting and freezing times, respectively. The SEM images revealed that electrospun LA-PA/PET/AgNO3 and LA-PA/PET/Ag composite fibers possessed the smooth morphologies with cylindrical shape. The corresponding average fiber diameters gradually decreased with increasing content of the AgNO3 in the solutions, and slightly smaller than those of the LA-PA/PET composite fibers with oblate morphology and wrinkled surfaces. Yellow-brown coloration of electrospun LA-PA/PET/Ag phase change composite fibers were observed after UV irradiation treatment, which demonstrated that Ag ions were successfully reduced to Ag nanoparticles. The TEM images revealed that these reduced Ag nanoparticles were homogenously dispersed within the composite fibers. The results from DSC measurements indicated that the phase change temperatures and enthalpies of electrospun LA-PA/PET/Ag phase change composite fibers with different Ag content have not be influenced by the UVirradiation treatment. The thermal energy storage and release rates of electrospun LA-PA/PET/Ag phase change composite fibers were also improved due to the combination of reduced Ag nanoparticles. These UV-irradiated electrospun phase change composite fibers with excellent thermal energy storage properties can be acted as a novel form-stable PCMs for the applications related to storage and retrieval of thermal energy.  相似文献   

3.
Conductive polyaniline (PAn)/poly(ethylene terephthalate) (PET) composite fibers were prepared by chemical polymerization of aniline in the presence of PET fibers using benzoyl peroxide (Bz2O2) in organic solvent/aqueous hydrochloric acid mixtures. The effects of polymerization conditions such as organic solvent/water ratio, oxidant, aniline and hydrochloric acid concentrations and temperature were investigated on the amount of PAn deposited on PET fiber and the electrical surface resistance of composite fibers. The maximum PAn content and the lowest electrical surface resistance of composite fibers were observed at HCl concentrations of 0.5 mol L−1. The properties of PAn/PET composite fibers such as density, diameter, tensile strength and breaking elongation were also investigated in comparison with those of pure PET. Characterization of conductive composite fibers was carried out by FTIR, TGA, SEM techniques, surface resistance measurements, and cross section images taken by optical microscope.  相似文献   

4.
Boron doped PVA/Zr-Al acetate nanofibers were prepared by electrospinning using PVA as a precursor. The effect of calcination temperature on morphology and crystal structure was investigated at 250, 500, and 800 °C. The study also establishes the effect of boron doping on the morphology of PVA/Zr-Al acetate nanofibers at various calcination temperatures. The measurements showed that the conductivity, pH, viscosity and the surface tension of the hybrid polymer solutions have increased with boron doping. In addition, the fibers were characterized by FTIR, DSC, XPS, XRD and SEM techniques. The addition of boron did not only increase the thermal stability of the fibers, but also increased the average fiber diameters, which gave stronger fibers. The DSC results indicated that the melting temperature (Tm) of the fibers was increased from 256 to 270 °C with the addition of boron. XRD peak patterns showed that after further heat treatment at 800 °C, zirconia exists in two phases of tetragonal and monoclinic modifications. Moreover, alumina does not transform into the γ-Al2O3 and θ-Al2O3 phase at 800 °C. The SEM appearance of the fibers showed that the addition of boron resulted in the formation of crosslinked bright surfaced fibers.  相似文献   

5.
Poly(ethylene terephthalate) was annealed at different temperature and pressure of supercritical carbon dioxide (CO2) using samples quenched from the melt. Crystallization and molecular relaxation behavior due to CO2-annealing of samples were investigated using differential scanning calorimetric and dynamic mechanical measurements. The glass transition and crystallization temperatures significantly decreased with increasing temperature and pressure of CO2. The dynamic mechanical measurement of samples annealed at 150 °C in supercritical CO2 showed three relaxation peaks, corresponding to existence of different amorphous regimes such as rigid, intermediate, and mobile domains. As a result, the mobile chains were likely to facilitate crystallization in supercritical state. It also led to the decreased modulus of CO2-annealed samples with increasing pressure.  相似文献   

6.
Thermotropic liquid crystalline polymer made up of poly(p-hydroxybenzoate) (PHB)-poly(ethylene terephthalate) (PET) 8/2 copolyester, poly(ethylene 2,6-naphthalate) (PEN) and PET were mechanically blended to pursue the liquid crystalline phase of ternary blends. Complex viscosities of blends decreased with increasing temperature and PHB content. DSC thermal analysis indicated that glass transition temperature (Tg) and melting temperature (Tm) of blends increased with increasing PHB content. Both tensile strength and initial modulus increased with raising PHB content and take-up speed of monofilaments. In the WAXS diagram, only PEN crystal reflection at 2Θ=15.5o appeared but PET crystal reflection was not shown in all compositions. The degree of transesterification and randomness of blends increased with blending time but sequential length of both PEN and PET segment decreased.  相似文献   

7.
PET or PVC wig fibers are usually colored by the dope dyeing method in which the pigment or color master batch is mixed before the spinning process. However, the colored fibers need to be dyed again to obtain a two-tone color along the longitudinal fiber direction. In this study, PET and PVC fibers were dyed by the carrier dyeing method using a disperse dye, and the dyeing behavior was investigated. The fiber was dyed at various carrier and dye concentrations. The dye uptake increased with increasing carrier concentration or dye concentration. The saturation of the dye uptake was observed in each case. No change of the glass transition temperature (Tg) was observed in the 1st run of the DSC thermogram, however, a decrease in the value of Tg was observed in the 2nd run performed after the 1st run sample was quenched and re-measured. The reduction in the value of Tg implies that the carrier acted as a plasticizer in the fiber and enhanced the segmental mobility of the polymer chains. The dyeing temperature and carrier concentration were varied and the diffusion coefficients of the dye and activation energy were measured. The activation energy was increased at a higher carrier concentration, because the carrier acted as a plasticizer and lowered the energy barrier to the penetration of the dye molecule into the polymer chains.  相似文献   

8.
We have prepared the blends of poly(pentamethylene 2,6-naphthalate) (PPN) with poly(heptamethylene 2,6-naphthalate) (PHepN) by solution blending method and investigated their glass transition behaviour, melting behaviour, and tensile properties. It was observed that the blends of PPN/PHepN(9/1) and PPN/PHepN(1/9) have a single glass transition, reflecting a homogeneous phase, whereas those of PPN/PHepN(7/3), PPN/PHepN(5/5), and PPN/PHepN(3/7) exhibit double glass transitions, representing the existence of two phases. The PPN homopolymer annealed below 90 °C shows triple melting peaks (T m1, T m2, and T m3). It was proved that T m1 is attributed to melting of thin lamellar formed during secondary crystallization process, T m2 to melting of thick lamellar created during primary crystallization, and T m3 to melting of crystals recrystallized after melting the primary crystals at T m2. For the annealed PHepN homopolymer, double melting endotherms (T m1 and T m2) were observed, caused by dual lamellar population with different thickness, i.e. T m1 corresponding to the melting of secondary crystal and T m2 to primary one. The Hoffman-Weeks plots, applied to the melting of primary crystals (T m2s), indicate that the equilibrium melting temperatures of PPN homopolymer, PPN/PHepN(9/1), and PPN/PHepN(7/3) blends are same to be 147 °C, and those of PHepN homopolymer, PPN/PHepN(1/9), and PPN/PHepN(3/7) blends to be 145 °C. Both the glass transition and melting behaviours demonstrate that the PPN/PHepN blend system is partially miscible. In addition, both the modulus and strength for the blends almost follow additive rule against blend composition, indicating that the PPN/PHepN blends are mechanically compatible over all blend compositions.  相似文献   

9.
The effects of sucrose, NaCl, and ascorbic acid on dielectric relaxations of frozen wheat doughs were investigated using dielectric analysis (DEA). All ingredients were dissolved in distilled water used to prepare wheat flour doughs to optimum consistency using a 10 g bowl Micro-Mixer. DEA measurements were made at a heating rate of 1 °C/min from −150 to 10 °C. Before the measurements, samples were equilibrated at −30 °C for 15 min to allow maximum ice formation, and then cooled at 1 °C/min to −150 °C. The frequencies used were 0·1, 0·5, 1, 5, 10, 20, 50, 100 and 1000 Hz. The dissipation factor (tan δ) of DEA showed an α-relaxation (glass transition), two low temperature relaxations (β and γ) and ice dissolution. Added NaCl had a markedly depressed the glass transition temperature (Tg′) and onset of melting of ice temperature (Tm′), probably because of the higher conductivity of the frozen material, and the decreased transition temperatures of the unfrozen solute phase. At the higher frequencies, the α-relaxation coincided with melting of ice, and all relaxation temperatures (α, β and γ) increased with increasing frequencies.  相似文献   

10.
Poly(ethylene terephthalate) (PET) copolymers containing fluorenylidene bis(2-phenoxyethanol) (FBPE) were prepared. The glass transition temperature of copolymers increased continuously with the composition of FBPE. The glass transition temperature of PET/FBPE copolymer at loading of 15 mol% FBPE was 107 °C, which was 35 °C higher than that of PET. The melting temperature of PET/FBPE copolymers was decreased with the composition of FBPE, and it disappeared above 6 mol% of FBPE. The heat deflection temperature of copolymers increased from 60.7 °C for PET to 89.9 °C for the copolymer containing 15 mol% of FBPE. The values of optical transmittance of copolymers were 89-90 % at 550 nm, and no significant change was observed with the FBPE composition. The impact strength value of copolymer at loading of 10 mol% FBPE was 26 J/m, which was 20 J/m higher than that of PET.  相似文献   

11.
In this article, the thermo-mechanical characterization of poly(butylene terephthalate)/poly(tetramethylene oxide) (PBT/PTMO) is studied by thermal analysis, dynamic mechanical analysis, and uniaxial tensile tests. The results of poly(ether esters) show that the melting temperature is equal to T m =193 °C, which is 31 °C, lower than that of the melting temperature of poly(butylene terephthalate) (PBT). Its glass transition temperature, T g is equal to -61 °C, determined by DMA. The melting and cooling temperatures (T m , T c ) after aging at T0+48 h and T0+week are virtually unchanged. Moreover, the results of the tensile tests show that the effect of the low deformation rate reduces the friction resulting from the sliding mechanisms between the amorphous and crystalline parts.  相似文献   

12.
Ethanol, as the first coagulation bath, and several common organic solvents, as well as aqueous solutions of NH4Cl, NaHCO3 and NaOH were explored and demonstrated to be adopted as the second coagulation bath for cellulose/phosphoric acid/tetraphosphoric acid (cellulose/complex PA solvent) solution to produce novel cellulose fibers by two-stage dry-wet spinning in a laboratory scale, and effect of coagulants, cellulose concentration, solvent concentration (P2O5 concentration) and coagulation temperature on crystal structure and properties of corresponding fibers were investigated. Surface morphology of regenerated fibers as-spun from different coagulants was observed by scanning electronic microscope (SEM), indicating that methanol and 8 wt% NaOH aqueous solution all rendered cellulose fibers relatively dense and smooth surface. X-ray diffraction (XRD) analysis showed that cellulose fiber precipitated from 8 wt% NaOH aqueous solution had pronounced characteristic peak of cellulose II than those of fibers precipitated from other coagulants, and highest crystallinity and orientation. Meanwhile, those two coagulants referred above also gave cellulose fibers relatively higher tensile strength under the same prerequisite. TGA curves exhibited that fibers were thermally stable produced from two salt aqueous solutions (8 wt% NH4Cl and NaHCO3) since they had the relatively higher onset decomposition temperatures. By evaluating the effect of cellulose concentration, P2O5 concentration and coagulation temperature on the structure and properties of asprepared fibers, it was preferable to produce cellulose fiber from a solution at 20 wt% cellulose concentration, 73 % P2O5 concentration, and coagulating in methanol at coagulation temperature of 60 °C at the second-stage.  相似文献   

13.
The subzero properties of wheat doughs were measured by dynamic mechanical thermal analysis (DMTA) and dielectric thermal analysis (DETA) over the temperature range −90 to +40 °C and by1H-nuclear magnetic resonance (NMR) T2relaxation over the range −45 to 0 °C. The experiments revealed two transitions in the dough: one independent of frequency at −10 °C (attributed to ice melting) and one dependent on frequency at −30 °C (attributed to a glass transition). The glass transition temperatures measured by DMTA moved to higher temperatures during frozen storage when the optimal water content of dough was used. A reduction in the water content eliminated this phenomenon. A similar effect of water reduction was observed by NMR studies, in which amplitude ratios and decay times were used to calculate the phase transitions. However, the glass transition recorded by NMR was independent of frozen storage with optimal water content. The changes of water state in frozen doughs were studied by ultracentrifugation (the amount of liquid phase) and NMR (freezable water based on liquid amplitude ratios). Frozen storage increased the liquid phase in dough with optimal water content. Thus, ice crystals are growing during frozen storage resulting in the concentration of polymers and a higher glass transition observed by DMTA. The increase of liquid phase during storage was substantially lower when the water content of dough was decreased. Ice crystals» growth can be minimised by reducing water content. The experiments were carried out with four different flours. The measurement of glass transition temperature by DMTA, DETA or NMR did not reveal great differences in doughs made from different flours. The amount of liquid phase was strongly flour dependent.  相似文献   

14.
Thermotropic polyurethanes were synthesized from 1,6-hexane diisocyanate (HDI) as a diisocyanate, 1,6-hexane diol (HD), and rigid diols containing imide unit such as N,N′-bis(4-hydroxyphenyl)-3,4,3′,4′-biphenyl-dicarboxyimide (BPDI) or bis-N-(4-hydroxyphenyl)-4,4′-oxydiphthalimide (ODPI). The effects of structure difference between BPDI and ODPI and composition of HD/BPDI (ODPI) on the thermal and liquid crystalline behavior were studied. Thermotropic polyurethanes with an inherent viscosity of 0.59–0.70 were obtained. The melting temperature of BPDI-based polyurethanes were in the range of 150–290°C, however, those of ODPI-based polyurethanes were in the range of 150–190°C. All the polyurethanes based on ODPI (25–100 mole %) clearly exhibited a stable liquid crystalline phase, and BPDI-based polyurethane having 5–25% of BPDI showed a mesophase. The melting and isotropization temperatures (T m , T i ) andΔT(T i −T m ) increased with increasing BPDI and ODPI content. The polyurethanes based on BPDI has higher melting points and thermal stability compared to ODPI-based polyurethanes.  相似文献   

15.
TiO2/NBR-PVC hollow fibers were spinned by NBR casting solution blended PVC with nano-titanium dioxide (TiO2). The effect of NBR-PVC hollow fiber damping and mechanical properties aroused by loading TiO2 were studied. Results showed that the hollow fibers loaded TiO2 increased in tensile strength, storage modulus, stiffness and glass transition temperature, while decreased in tanδpeak and breaking tensile elongation. The damping of the TiO2/NRR-PVC hollow fiber were not only linked to the dosage of TiO2, but also related to the degree of dispersion in matrix.  相似文献   

16.
There have been many interests in using natural fibers as substitutes for glass fibers to prepare fiber reinforced composites. Flax fibers, due to their specific strength, have been a hot issue in this field. The focus of this research work is to manufacture flax fiber reinforced low melting point PET composites directly from nonwoven mats. No consolidation methods are applied to the carded nonwoven mats before the hot-press molding. The effects of operating parameters like carding method, molding temperature, molding time, etc. on the mechanical properties of composites have been investigated. Results show it is a facile and cost-saving method to produce composites specifically in the application areas like automobile interior ornament and decoration materials, etc.  相似文献   

17.
The thermal behavior, morphology, ester-interchange reaction of Poly(trimethylene terephthalate) (PTT)/Poly(ethylene terephthalate) (PET) melt blends were investigated over the whole composition range(xPTT/(1-x)PET) using a twinscrew Brabender. The melt blends were analyzed by differential scanning calorimetry (DSC), nuclear magnetic resonance spectroscopy (13C-NMR), and scanning electron microscopy (SEM). Single glass transition temperature (T g ) and cold crystallization temperature (T cc ) were observed in all melt blends. Melt blends were found to be due to the ester-interchange reaction in PTT/PET blend. Also the randomness of copolymer increases because transesterification between PTT and PET increases with increasing blending time. This reaction increases homogeneity of the blends and decreases the degree of crystallinity of the melt blends. In PTT-rich blends, mechanical properties decrease with increase of PET content compared with that of pure PTT. And, in PET-rich blends, tensile modulus decreases with increase of PTT content, but tensile strength and elongation is similar to that of pure PET.  相似文献   

18.
Gelatinized waxy and normal corn starches at various concentrations (20–50%) in water were stored under temperature cycles of 4°C and 30°C (each for 1 day) up to 7 cycles or at a constant temperature of 4°C for 14 days to investigate the effects of temperature cycling on the retrogradation of both starches. Compared to starches stored only at 4°C, both starches stored under the 4/30°C temperature cycles exhibited smaller melting enthalpy for retrogradation (ΔHr), higher onset temperature (To), and lower melting temperature range (Tr) regardless of the starch concentration tested. Fewer crystallites might be formed under the temperature cycles compared to the isothermal storage, but the crystallites formed under temperature cycling appeared more homogeneous than those under the isothermal storage. The effect of starch content on the retrogradation was greater when the starch gels were stored under cycled temperatures. The reduction in ΔHr and the increase in conclusion temperature (Tc) by retrogradation under 4/30°C temperature cycles became more apparent when the starch concentration was lower (20 or 30%). Degree of retrogradation based on melting enthalpy was greater in normal corn starch than in waxy corn starch when starch content was low.  相似文献   

19.
Artificial keratoprostheses are indispensable for visual rehabilitation in patients with end-stage corneal blindness. This study aimed to assess the biocompatibility of polyethylene terephthalate nanofibrous mats and its potential as a novel synthetic keratoprosthesis skirt material for corneal tissue engineering. Nanofibrous mats were prepared by an electrospinning method and were first treated with the CO2 plasma to yield carboxylic groups on the surface; finally, the modified PET mat was cross linked with collagen using water-soluble carbodiimide as a coupling agent. The samples were evaluated by ATR-FTIR, scanning electron microscope (SEM), contact angle, and cell culture. The cross-linking of collagen on PET surface was confirmed by ATR-FTIR spectroscopy and SEM images The 79° difference was obtained in the contact angle analysis, obtained for the collagen-cross-linked nanofibrous mat than the non-modified nanofibrous mat. Cellular investigation showed limbal epithelial progenitor cells (LEPCs) has been better adhesion, cell growth, and proliferation of collagen-crosslinked nanofibrous samples than other samples. The bioavailability of PET fibers with covalently attached collagen was found to be identical to that of PET fibers with covalent attachment is a suitable method for enhancing the biocompatibility of scaffolds special as a good skirt in keratoprosthesis designs.  相似文献   

20.
Textile fibers were obtained from secondary polyethylene terephtalate (PET) and its mixtures with primary PET at initial orientation of 18000–33000 %, rate of additional orientation drawing 3.5–6.5 times and temperature of thermal fixation 363–413 K. The fibers’ tensile strength was found to decrease and elongation at break to increase with the decrease of their linear density under the conditions of fibers formation. For the fibers based on polymer mixtures, the presence of oxidized fragments in the secondary PET limited the compatibility of the two polymers which resulted in deteriorated tensile properties. The linear density (4–16 dtex), tensile strength (30–50 cN/tex) and elongation at break (20–60 %) of the PET fibers obtained were close to these for the industrially produced polymer fibers. The values of the average diameter of the fibers formed and oriented under laboratory conditions allows classifying them between the fine and the coarse textile fibers which makes them suitable for the textile industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号