首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crossbred cows (n = 1073) from five locations had oestrous cycles synchronized with 100 μg of GnRH IM and insertion of controlled internal drug release device (CIDR) on Day 0 followed by 25 mg of PGF IM and CIDR removal on Day 7. Kamar® patches were placed on all cows at CIDR removal. Cows were observed three times daily for oestrus after PGF administration. In the Ovsynch‐CIDR group, cows detected in oestrus (n = 193) within 48 h after PGF were inseminated using the AM–PM rule. Among these cows, 80 received and 113 did not receive a second GnRH at 48 h after PGF. Cows (n = 345) not detected in oestrus received a second GnRH at 48 h after PGF on Day 9, and fixed‐time AI 16 h after the GnRH on Day 10. In the CO‐Synch‐CIDR group, cows detected in oestrus (n = 224) within 48 h after PGF were inseminated using the AM–PM rule. Among these cows, 79 received and 145 did not receive a second GnRH at 64 h after PGF. Cows (n = 311) not detected in oestrus received a second GnRH on Day 10 at the time of AI, 64 h after PGF. The AI pregnancy rates were not different between the Ovsynch‐CIDR and CO‐Synch‐CIDR groups (p = 0.48). There were no differences in the AI pregnancy rates for cows inseminated at a fixed time (p = 0.26) or at detected oestrus (p = 0.79) between the treatment groups. Among cows inseminated in oestrus, there were no differences in the AI pregnancy rates between cows that received or did not receive the second GnRH (p = 0.47). In conclusion, acceptable AI pregnancy rates can be achieved with or without inclusion of oestrus detection in the Ovsynch‐CIDR and CO‐Synch‐CIDR protocols. Among cows detected in oestrus, cows that received a second GnRH yielded similar pregnancy rates when compared with cows that did not receive the second GnRH.  相似文献   

2.
The study was aimed to assess the influence that short‐term progesterone treatments have on follicular dynamics, oestrus and ovulation in sheep. The treatment was tested thereafter in a field trial to assess its fertility after AI with fresh semen. In a first experiment, 12 ewes without CL were grouped to receive a new (n = 6) or used CIDR (n = 6) for 7 days and blood samples were obtained to follow plasma progesterone profiles. In a second experiment, 39 cycling ewes were synchronized by a 7‐day P4+PGF2α protocol using a new (n = 20) or a 7‐day used CIDR (n = 19). Half of both groups received 400 IU eCG and half remained untreated as controls. Ultrasound ovarian examination and oestrous detection were used to compare follicular dynamics, oestrus and ovulation in both groups. In a third experiment, 288 ewes in 3 farms were synchronized by the short‐term P4+PGF2α+eCG protocol and ewes were AI with fresh semen 24 h after oestrous detection. Lambing performance was used to test the fertility of the treatment. In Experiment 1, ewes with new inserts presented higher P4 concentration than ewes with used inserts throughout the sampling period (p < 0.05) and exhibited a P4 peak at days 1‐2 of the treatment that was not observed in ewes with used inserts. In Experiment 2, ewes treated with new and used inserts show similar ovarian and behavioral traits (p > 0.10). However, ewes treated with eCG show shorter interval to oestrus (p = 0.004) and tend to have larger mature CL (p = 0.06). In Experiment 3, oestrous presentation and lambing performance after AI with fresh semen was considered normal compared to published results. Results suggest that the oestrous synchronization protocol based on P4+PGF2α allows little control of follicular dynamics without compromising fertility after AI with fresh semen provided that eCG is added at the end of the treatment.  相似文献   

3.
An experiment was conducted to examine the effect of progesterone prior to a GnRH‐PGF2α treatment on oestrus and pregnancy in seasonally anoestrous Awassi ewes. Twenty‐four ewes were randomly assigned to three groups to be pre‐treated with 60 mg medroxyprogesterone acetate sponges (group A), 600 mg progesterone sponges (group B) or blank sponges (group C) for 4 days. All ewes were injected with 100 μg of GnRH 24 h after sponge removal followed, 5 days later, by 20 mg PGF2α injection. Ewes were exposed to three fertile rams at the time of PGF2α injection (day 0, 0 h) and were checked for breeding marks at 6‐h intervals for 5 days. Blood samples were collected from all ewes 1 day (day ?10) prior to sponge insertion, at the time of sponge removal (day ?6), 1 day following sponge removal (day ?5, at the time of GnRH injection) and at the time of PGF2α injection (day 0) for analysis of progesterone. Progesterone concentrations on days ?10 and ?5 were basal and averaged 0.2 ± 0.04 and 0.2 ± 0.2 ng/ml, respectively. Progesterone concentrations on day ?6 were elevated only in group B ewes and were higher (p < 0.0001) than those of groups A and C. Progesterone concentrations on day 0 were higher (p = 0.002) in groups A and B than group C. Oestrous responses occurred only in ewes of groups A and B (p > 0.05). Induced oestrus conception rate was greater (p < 0.01) in group A than groups B and C. Ewes returned to oestrus 17–20 days following day 0 were two of eight, six of eight and three of eight of groups A, B and C, respectively, all of which eventually lambed. The overall lambing rate was 82% in progesterone‐primed ewes compared with only 38% non‐progesterone‐primed ewes (p < 0.05). Progesterone priming apparently sensitizes GnRH‐PGF2α‐treated seasonally anoestrous ewes and increases their response in oestrus and pregnancy rates.  相似文献   

4.
The study evaluated, in early post‐partum anoestrous Nelore cows, if the increase in plasma oestradiol (E2) concentrations in the pre‐ovulatory period and/or progesterone priming (P4 priming) preceding ovulation, induced by hormonal treatment, reduces the endogenous release of prostaglandin PGF2αand prevents premature lysis of the corpus luteum (CL). Nelore cows were subjected to temporary calf removal for 48 h and divided into two groups: GPE/eCG group (n = 10) and GPG/eCG group (n = 10). Animals of the GPE/eCG group were treated with a GnRH agonist. Seven days later, they received 400 IU of eCG, immediately after PGF2α treatment, and on day 0, 1.0 mg of oestradiol benzoate (EB). Cows of the GPG/eCG group were similarly treated as those of the GPE/eCG group, except that EB was replaced with a second dose of GnRH. All animals were challenged with oxytocin (OT) 9, 12, 15 and 18 days after EB or GnRH administration and blood samples were collected before and 30 min after OT. Irrespective of the treatments, a decline in P4 concentration on day 18 was observed for cows without P4 priming. However, animals exposed to P4 priming, treated with EB maintained high P4 concentrations (8.8 ± 1.2 ng/ml), whereas there was a decline in P4 on day 18 (2.1 ± 1.0 ng/ml) for cows that received GnRH to induce ovulation (p < 0.01). Production of 13,14‐dihydro‐15‐keto prostaglandin F2α (PGFM) in response to OT increased between days 9 and 18 (p < 0.01), and this increase tended to be more evident in animals not exposed to P4 priming (p < 0.06). In conclusion, the increase in E2 during the pre‐ovulatory period was not effective in inhibiting PGFM release, which was lower in P4‐primed than in non‐primed animals. Treatment with EB promoted the maintenance of elevated P4 concentrations 18 days after ovulation in P4‐primed animals, indicating a possible beneficial effect of hormone protocols containing EB in animals with P4 priming.  相似文献   

5.
The objective of the present study was to determine whether oestrous detection with the help of oestrous detection aids during the Heatsynch without timed AI protocol is equally effective with the progesterone‐combined protocol in dairy heifers. A total of 148 heifers were randomly assigned to one of the two groups. A group of heifers treated with Heatsynch with heat detection aids (n = 72) received GnRH on day 0, prostaglandin F (PGF) on day 7 and oestradiol benzoate (EB) on day 8, while in controlled internal drug release (CIDR)‐Heatsynch group (n = 76), CIDR was included during a period from GnRH to PGF. Heifers were checked for oestrus twice daily, i.e. from 09:00 to 10:00 hours and from 15:00 to 16:00 hours starting on day 2 for Heatsynch group and on day 8 in CIDR‐Heatsynch group, and continued up to day 12. KAMAR®heat mount detector (KAMAR® Inc., Steamboat Springs, CO, USA) and ALL‐WEATHER® PAINTSTIK® (LA‐CO Industries Inc., Elk Grove Village, IL, USA) were used as heat detection aids. AI was conducted within 1 h after confirming oestrus in 72 heifers, while 19 animals were transferred with embryo 7 days after oestrus according to the request of the owners. Premature oestrus before PGF injection occurred in 18% of Heatsynch group. Of 13 heifers which showed premature oestrus, six were inseminated and two of them conceived. Oestrus detection rate within 12 days after initiation of the protocols did not differ between the two groups (94% vs 95%). There was no difference in the conception rate after first AI (including heifers that were inseminated before PGF injection) and embryo transfer between Heatsynch with heat detection aids and CIDR‐Heatsynch groups (36% vs 44% and 70% vs 56%). It is concluded that the use of heat detection aids to monitor the occurrence of premature oestrus prior to PGF injection in Heatsynch protocol in dairy heifers was equally effective to the inclusion of CIDR.  相似文献   

6.
The present study supports that 5‐day short‐term CIDR treatments without administration of eCG are equally effective for inducing oestrus behaviour, preovulatory LH discharge and ovulation in sheep than classical protocols based on 14‐day treatments plus eCG at CIDR withdrawal. However, the implementation of a 5‐day protocol without eCG for fixed‐time artificial insemination would be adapted to a later timing of ovulation (< .05).  相似文献   

7.
The present study compared the occurrence of oestrus behaviour and ovulation in response to the insertion of CIDR devices plus a classical treatment with equine chorionic gonadotrophin (eCG; single dose at CIDR removal) or alternative treatments with gonadotrophin-releasing hormone (GnRH, either in a single dose at 56 hr after CIDR removal, or in one dose at CIDR insertion and another dose at 56 hr after CIDR removal). The appearance of oestrus behaviour during reproductive season ranged between 84% and 95% and all females showing oestrus signs had subsequent ovulations. The response, during seasonal anoestrus, was similar in the group treated with eCG, but less than half of the females in the groups treated with GnRH showed oestrus signs in response to the treatment, although more than 80% of them showed resumption of ovulatory activity after the treatment. In conclusion, protocols based on GnRH administration offer similar yields to eCG-based protocols during the reproductive season but occurrence of oestrus in response to GnRH-based treatments is highly compromised during seasonal anoestrus.  相似文献   

8.
The study investigated, for cycling sheep, synchronizing protocols simultaneously to the standard “P” protocol using progestogens priming with intravaginal devices and gonadotropin. In November 2014, 90 adult Menz ewes were assigned to either the “P” protocol, “PGF” treatment where oestrus and ovulation were synchronized using two injections of prostaglandin 11 days apart or a “GnRH” treatment where the ewes had their oestrus and ovulation synchronized with GnRH (day 0)–prostaglandin (day 6)–GnRH (day 9) sequence. The ewes were naturally mated at the induced oestrus and the following 36 days. Plasma progesterone revealed that 92% of the ewes were ovulating before synchronization and all, except one, ovulated in response to the applied treatments. All “P” ewes exhibited oestrus during the 96‐hr period after the end of the treatments in comparison with only 79.3% and 73.3% for “PGF” and “GnRH” ewes, respectively (< .05). Onset and duration of oestrus were affected by the hormonal treatment (< .05); “GnRH” ewes showed oestrus earliest and had the shortest oestrous duration. Lambing rate from mating at the induced oestrus was lower for “P” than for “PGF” ewes (55.6% and 79.3%, respectively; < .05). The same trait was also lower for “P” than for “PGF” and “GnRH” ewes (70.4%, 89.7% and 86.7%, respectively; < .05) following the 36‐day mating period. Prostaglandin and GnRH analogue‐based protocols are promising alternatives for both controlled natural mating and fixed insemination of Menz sheep after the rainy season when most animals are spontaneously cycling.  相似文献   

9.
This study was carried out to investigate the efficacy of PGF2α for oestrus synchronization (ES) in Awassi ewes to which were administered the progestagen–PMSG combination, and to evaluate the effect of the exogenous GnRH administration immediately after the artificial insemination (AI) on their pregnancy rate and lambing performance during the breeding season. The ewes (n = 33) were treated with an intravaginal sponge impregnated with 30 mg fluorogestane acetate for 12 days and were injected with 500 IU PMSG at the time of removal of the sponge. The ewes were then divided into three equal groups of 11 ewes each. One millilitre of physiological saline (0.9% NaCl; placebo) was administered to each ewe in Group 1 at the time of second AI. Approximately 4 μg GnRH (busereline) was injected to each ewe in Group 2 immediately after second AI. A total of 150 μg PGF2α (cloprostenole) was injected at the time of sponge removal on day 12 and 4 μg GnRH immediately after the second AI was also treated to each ewe in Group 3. Intracervical AI with diluted fresh semen was performed twice at 12 and 24 h following the onset of oestrus. The injection‐oestrus onset and injection‐oestrus‐end interval in Group 3 was significantly (p < 0.001) shorter than both Groups 1 and 2. Although the pregnancy rates of Groups 2 and 3 (81.8%; 9/11) were numerically higher than of Group 1 (63.6%; 7/11), the difference among the groups was statistically insignificant. The multiple birth rate of Group 3 was found higher than Groups 1 and 2. However, the number of single lambs of Group 1 was also higher than Groups 2 and 3 (p < 0.05). Despite the litter sizes of Groups 2 (1.27; 14/11) and 3 (1.55; 17/11) being numerically higher than Group 1 (0.73; 8/11), the differences among all the groups were statistically insignificant. In conclusion, the administration of PGF2α at the time of removal of the sponge shortens the injection oestrus‐onset and oestrus‐end interval in Awassi ewes treated with progestagen–PMSG. Additionally, exogenous GnRH treatment immediately after the AI increases the multiple birth rate of Awassi ewes synchronized with progestagen–PMSG–PGF2α combination.  相似文献   

10.
The objective of this study was to compare oestrus expression and fertility rate in used and new controlled internal drug releasing (CIDR) device treated anoestrous buffaloes. Furthermore, to determine the timing of ovulation, and fertility rate in estradiol benzoate (EB) and GnRH-administered CIDR-treated anoestrous Nili-Ravi buffaloes. In experiment 1, buffaloes received either a used CIDR (UCIDR, n = 35) or a new CIDR (NCIDR, n = 36) for 7 day and PGF2α on day 6. Oestrous expression was similar (p > 0.05) between UCIDR (88.5%) and NCIDR (96.6%) buffaloes. The pregnancy rate did not differ (p > 0.05) because of treatment (37.1% in UCIDR vs 36.6% in NCIDR). In experiment 2, buffaloes (n = 55) received CIDR device for 7 days and PGF2α, on day 6 and randomly assigned into three treatment groups: (i) CIDR-EB (n = 17) received EB on day 8, (ii) CIDR-GnRH (n = 18) received GnRH on day 9 and (iii) control (n = 20) received no further treatment. Mean interval from CIDR removal to ovulation in CIDR-EB, CIDR-GnRH and CIDR group were 61.3 ± 0.8, 64.9 ± 1.8 and 65.1 ± 16.7 h, respectively. However, the buffaloes in the CIDR-EB and CIDR-GnRH group had lesser variability in the timing of ovulation compared to control. The pregnancy rate of both CIDR-EB group (58%) and CIDR-GnRH group (61%) were tended to be higher (p < 0.1) than control (30%). In conclusion, compared to NCIDR devices, previously UCIDR devices are equally effective to induce oestrus in anoestrous buffaloes resulting optimal pregnancy rate. Administration of EB and GnRH after CIDR removal results in tighter synchrony (less variability) and improved fertility in anoestrous buffaloes. CIDR based synchronization regimens have great potential in fertility improvement in anoestrous buffaloes.  相似文献   

11.

The aim of this study was to evaluate the effect of a co-treatment of follicle-stimulating hormone (FSH) plus equine chorionic gonadotrophin (eCG) on serum insulin and insulin-like growth factor 1 (IGF-1) concentrations, superovulatory response, ovulatory rate, and number and production of embryos in Katahdin breed ewes during the non-breeding season. Twenty Katahdin ewes were synchronized with progestagens (CIDR) and assigned to two superovulation treatments (n = 10): (1): ewes treated with 200 mg ewe−1 of FSH from day 5 to 8 after CIDR insertion at decreasing doses every 12 h (FSH group) and (2) ewes treated as FSH group plus 300 IU of eCG on day 5 after CIDR insertion (FSH + eCG group). Estrous behavior was monitored and direct mating was performed. On days − 7 (CIDR insertion), 0 (CIDR withdrawal), and 7 (embryo recovery), blood samples were collected to determine serum hormone concentrations. Co-treatment with eCG (FSH group) did not affect (P > 0.05) serum hormone levels. Superovulation response, ovulation rate, recovery rate, fertilization, and number of embryos were also similar (P > 0.05) between treatments. Compared with FSH group, FSH + eCG ewes had lower (P < 0.05) number of transferable embryos and higher (P < 0.05) number of oocyte and a tendency to increase the number of degenerated embryos (P = 0.07). Overall results suggest that the administration of eCG is not beneficial either to improve the ovulatory response or the amount of transferable embryos in Katahdin ewes superovulated with a protocol using progesterone and FSH at decreasing doses.

  相似文献   

12.
Conception rates after Ovsynch have been higher in primiparous than in multiparous cows. The objective of this study was to investigate whether this difference might be due to differences in ovulation rate or follicular size. The experiment was conducted with 136 Holstein Frisian cows from a commercial herd in Brandenburg, Germany. All cows were synchronized using Buserelin (GnRH analogue) at day ?10, Tiaprost (PGF2α analogue) at day ?3 and again GnRH at day ?1. Timed artificial insemination (TAI) was carried out 16–20 h after the second dose of GnRH on day 0. Milk samples for analysis of milk progesterone were obtained on days ?17, ?10, ?3 and at TAI. Progesterone concentrations were used to determine the stage of oestrus cycle at the start of the synchronization protocol and to investigate the presence of functional luteal tissue before treatment with PGF2α and TAI. All animals were examined by ultrasound at the second treatment with GnRH, at AI, 8 and 24 h after AI. Overall synchronization rate (proportion of cows with an ovulation within 40 h after GnRH) was 86.8% in primiparous and 88.2% in multiparous cows, respectively. Ovulation occurred earlier in primparous than in multiparous cows (p < 0.05) and ovulatory follicles were smaller. Conception rates were numerically higher in primiparous cows but the difference was not significant. Cows that displayed signs of oestrus on day ?1 and received an additional AI on this day were more likely to conceive than cows that only received TAI 16 to 20 h after GnRH2. It is concluded that ovulation occurs earlier in primiparous than in multiparous cows after Ovsynch. However, a significant relationship between these differences and the probability of conception could not be established.  相似文献   

13.
Synchronization of oestrus and/or ovulation can reduce workload in heifer reproductive management. The objective of this study was to compare two protocols to synchronize oestrus and/or ovulation using GnRH and prostaglandin F2α (PGF2α) in dairy heifers concerning their effect on follicular dynamics and reproductive performance. Four trials were carried out. In trial 1, 282 heifers were treated with GnRH and PGF2α 7 days apart (GP protocol). One group was inseminated on detection of oestrus (IDO 1), and the other group received two timed artificial inseminations (AI) 48 and 72 h after PGF2α administration (TAI 1). In trial 2, 98 heifers were synchronized with the same GP protocol. Heifers in IDO 2 were treated as in IDO 1, heifers in TAI 2 received two TAI 48 and 78 h after PGF2α administration. In trial 3, heifers in IDO 3 (n = 71) were again treated as in IDO 1. Heifers in TAI 3 (n = 166) received a second dose of GnRH 48 h after PGF2α (GPG protocol) and TAI together with this treatment and 24 h later. Trial 4 compared the timing of ovulation after the GP and the GPG protocol, using a subgroup of the heifers from trials 1 to 3. The ovaries of the heifers were scanned via ultrasound at 48, 56, 72, 80, 96 and 104 h after PGF2α administration. Timing of ovulation and size of the ovulatory follicles were compared between the two groups. In trials 1 to 3, conception rates to first service were between 49 and 66%. They did not differ significantly between IDO and TAI groups within or between trials. Pregnancy rates per synchronization were numerically higher in the TAI groups, but the difference was not significant. Conception rates to breeding on spontaneous oestrus in heifers returning to oestrus were higher than that after synchronized oestrus. In trial 4, more heifers ovulated before the end of the observation period in GPG than in GP (96.5% vs 74.7%; p < 0.001). Overall, ovulatory follicles were smaller in GPG (13.1 ± 1.9 mm vs 14.3 ± 1.9 mm; p < 0.001).  相似文献   

14.
Two experiments were designed to investigate the administration of intravaginal progesterone in protocols for oestrus and ovulation synchronization in beef heifers. In Experiment 1, cyclic Black Angus heifers (n = 20) received an Ovsynch protocol and were randomly assigned to receive (CIDR‐Ovsynch) or not (Ovsynch) a progesterone device between Days 0 and 7. Treatment with a controlled internal drug release (CIDR) device significantly increased the size of the dominant follicle prior to ovulation (12.8 ± 0.4 CIDR‐Ovsynch vs 11.4 ± 0.4 Ovsynch) (p < 0.02). Plasma progesterone concentrations throughout the experiment were affected by the interaction between group and day effects (p < 0.004). In Experiment 2, cyclic Polled Hereford heifers (n = 382) were randomly assigned to one of the six treatment groups (3 × 2 factorial design) to receive a CIDR, a used bovine intravaginal device (DIB), or a medroxiprogesterone acetate (MAP) sponge and GnRH analogues (lecirelin or buserelin). All heifers received oestradiol benzoate plus one of the devices on Day 0 and PGF on Day 7 pm (device withdrawal). Heifers were detected in oestrus 36 h after PGF and inseminated 8–12 h later, while the remainder received GnRH 48 h after PGF and were inseminated on Day 10 (60 h). The number of heifers detected in oestrus on Day 8 and conception rate to AI on Day 9 were higher (p < 0.01) in the used‐DIB than in the CIDR or MAP groups, while the opposite occurred with the pregnancy rate to FTAI on Day 10 (p < 0.01). There was no effect of progesterone source, GnRH analogue or their interaction on overall pregnancy rates (64.9%). Progesterone treatment of heifers during an Ovsynch protocol resulted in a larger pre‐ovulatory follicle in beef heifers. Progesterone content of intravaginal devices in synchronization protocols is important for the timing of AI, as the use of low‐progesterone devices can shorten the interval to oestrus.  相似文献   

15.
This study compared artificial insemination pregnancy rate (AI‐PR) between 14‐day CIDR‐GnRH‐PGF2α‐GnRH and CIDR‐PGF2α‐GnRH synchronization protocol with two fixed AI times (56 or 72 hr after PGF2α). On day 0, heifers (= 1311) from nine locations assigned body condition score (BCS: 1, emaciated; 9, obese), reproductive tract score (RTS: 1, immature, acyclic; 5, mature, cyclic) and temperament score (0, calm; and 1, excited) and fitted with a controlled internal drug release (CIDR, 1.38 g of progesterone) insert for 14 days. Within herd, heifers were randomly assigned either to no‐GnRH group (= 635) or to GnRH group (= 676), and heifers in GnRH group received 100 μg of GnRH (gonadorelin hydrochloride, IM) on day 23. All heifers received 25 mg of PGF2α (dinoprost, IM) on day 30 and oestrous detection aids at the same time. Heifers were observed for oestrus thrice daily until AI. Within GnRH groups, heifers were randomly assigned to either AI‐56 or AI‐72 groups. Heifers in AI‐56 group (= 667) were inseminated at 56 hr (day 32 PM), and heifers in AI‐72 group (= 644) were inseminated at 72 hr (day 33 AM) after PGF2α administration. All heifers were given 100 μg of GnRH concurrently at the time AI. Controlling for BCS (< .05), RTS (< .05), oestrous expression (< .001), temperament (< .001) and GnRH treatment by time of insemination (< .001), the AI‐PR differed between GnRH treatment [GnRH (Yes – 60.9% (412/676) vs. No – 55.1% (350/635); < .05)] and insemination time [AI‐56 – 54.6% (364/667) vs. AI‐72 – 61.8% (398/644); (< .01)] groups. The GnRH treatment by AI time interaction influenced AI‐PR (GnRH56 – 61.0% (208/341); GnRH72 – 60.9% (204/335); No‐GnRH56 – 47.9% (156/326); No‐GnRH72 – 62.8% (194/309); < .001). In conclusion, 14‐day CIDR synchronization protocol for FTAI required inclusion of GnRH on day 23 if inseminations were to be performed at 56 hr after PGF2α in order to achieve greater AI‐PR.  相似文献   

16.
Objectives were to evaluate risk factors affecting ovulatory responses and conception rate to the Ovsynch protocol. Holstein cows, 466, were submitted to the Ovsynch protocol [day 0, GnRH‐1; day 7, prostaglandin (PG) F; day 9, GnRH‐2] and 103 cows were inseminated 12 h after GnRH‐2. Information on parity, days in milk at GnRH‐1, body condition, milk yield, exposure to heat stress, pre‐synchronization with PGF and the use of progesterone insert from GnRH‐1 to PGF was collected. Ovaries were scanned to determine responses to treatments. Overall, 54.7%, 10.6%, 2.2%, 81.1%, 9.0%, 91.5% and 36.9% of the cows ovulated to GnRH‐1, multiple ovulated to GnRH‐1, ovulated before GnRH‐2, ovulated to GnRH‐2, multiple ovulated to GnRH‐2, experienced corpus luteum (CL) regression and conceived, respectively. Ovulation to GnRH‐1 was greater in cows without a CL at GnRH‐1, cows with follicles >19 mm and cows not pre‐synchronized with PGF 14 days before GnRH‐1. Multiple ovulations to GnRH‐1 increased in cows without CL at GnRH‐1 and cows with follicles ≤19 mm at GnRH‐1. Ovulation before GnRH‐2 was greater in cows without CL at PGF. Ovulation to GnRH‐2 increased in cows that received a progesterone insert, cows with a CL at GnRH‐1, cows with follicles not regressing from the PGF to GnRH‐2, cows with larger follicles at GnRH‐2, cows that ovulated to GnRH‐1 and cows not pre‐synchronized. Multiple ovulations after GnRH‐2 increased in cows with no CL at GnRH‐1, multiparous cows and cows that multiple ovulated to GnRH‐1. Conception rate at 42 days after AI increased in cows with body condition score > 2.75 and cows that ovulated to GnRH‐2. Strategies that optimize ovulation to GnRH‐2, such as increased ovulation to GnRH‐1, should improve response to the Ovsynch protocol.  相似文献   

17.
This study aimed to evaluate the effectiveness of hormonal treatments on ovarian activity and reproductive performance in Barki and Rahmani ewes during non‐breeding season. Forty‐eight multiparous ewes, 24 Barki and 24 Rahmani ewes were divided into two groups, 12 lactating and 12 dry ewes for each breed. Controlled internal drug release (CIDR) device was inserted in all ewes for 14 days in conjunction with intramuscular 500 IU equine chronic gonadotrophin (eCG) at day of CIDR removal. Data were analysed using PROC MIXED of SAS for repeated measures. Breed, physiological status and days were used as fixed effects and individual ewes as random effects. Barki ewes recorded higher (p < .05) total number of follicles, number of large follicles, serum estradiol concentration and estradiol: progesterone (E2:P4) ratio compared to Rahmani ewes. Lactating ewes recorded higher (p < .05) number of small follicles and lower concentration of total antioxidant capacity (TAC) compared to dry ewes. Number and diameter of large follicles recorded the highest (p < .05) values accompanied with disappearance of corpora lutea at day of mating. Serum progesterone concentration recorded lower (p < .05) value at day of mating and the highest (< .05) value at day 35 after mating. CIDR‐eCG protocol induced 100% oestrous behaviour in both breeds, but Rahmani ewes recorded longer (< .05) oestrous duration compared to Barki. Conception failure was higher (< .05) in Barki compared to Rahmani ewes. In conclusion, CIDR‐eCG protocol was more potent in improving ovarian activity in Barki compared to Rahmani ewes, but this protocol seems to induce hormonal imbalance in Barki ewes that resulted in increasing conception failure compared to Rahmani ewes.  相似文献   

18.
Ovsynch is a program developed to synchronize ovulation for timed breeding. In this paper, the authors investigate whether controlled internal drug release (CIDR)-based protocols prevent premature ovulation before timed-artificial insemination (AI) when Ovsynch is started a few days before luteolysis in cycling beef cows. Nine beef cows at 16 days after oestrus were treated with (1) Ovsynch, i.e. gonadotropin releasing hormone (GnRH) analogue on day 0, prostaglandin (PG) F(2alpha) analogue on day 7 and GnRH analogue on day 9 with timed-AI on day 10, (n=3); (2) Ovsynch+CIDR (Ovsynch protocol plus a CIDR for 7 days from day 0, n=3), or (3) oestradiol benzoate (OB)+CIDR+GnRH (OB on day 0 in lieu of the first GnRH treatment, followed by the Ovsynch+CIDR protocol, n=3). In the Ovsynch group (1) plasma progesterone concentrations fell below 0.5 ng/mL earlier (day 5) than in both CIDR-treated groups (2) and (3), where this occurred on day 8. Plasma oestradiol-17beta concentrations peaked on day 8 in the Ovsynch group and on day 9 in both CIDR-treated groups. The dominant follicle ovulated on day 10 in the Ovsynch group and on day 11 in both CIDR-treated groups. Thus, both CIDR-based protocols prevented premature ovulation before timed-AI in Ovsynch when the protocol was started a few days before luteolysis. This reflects the fact that progesterone levels remained high until the beef cattle were treated with PGF(2alpha).  相似文献   

19.
The primary objective of this study was to determine whether a single measurement of intravaginal electrical resistance (VER), using the commercially available Ovatec® probe, can discriminate between dioestrus and oestrus in Bos indicus females, which had been treated to synchronize oestrus. Santa Gertrudis heifers (n = 226) received one of three oestrous synchronization treatments: double PGF 10 days apart, 8‐day controlled internal drug release (CIDR) treatment or CIDR pre‐synchronization + PGF 10 days after CIDR removal. The heifers were inseminated within 12 h following observed oestrus, or, if not observed, at a fixed time approximately 80 h, following the last synchronization treatment. They were palpated per rectum for signs of pregnancy 9 weeks after artificial insemination (AI). Vaginal electrical resistance measurements were taken at the completion of synchronization treatments (presumed dioestrus), immediately prior to AI (oestrus), and then at 3 and 9 weeks post‐AI. Mean VER differed between presumed dioestrus and oestrus (113.7 vs 87.4, p < 0.001). The area under the receiver operating characteristics (ROC) curve was 0.925, indicating that VER was highly discriminatory between dioestrus and oestrus. Vaginal electrical resistance at time of AI was negatively associated with odds of conception when all inseminations were included in the analyses [odds ratio (OR) = 0.97; 95% CI 0.95–1.00; p = 0.018], but not when fixed time AIs were excluded (OR = 1.00; 95% CI 0.97–1.03; p = 0.982). Mean VER readings differed between pregnant and non‐pregnant animals at both 3 weeks (120.5 vs 96.7, p < 0.001) and 9 weeks (124.0 vs 100.3, p < 0.001) post‐AI. However, 3‐ and 9‐week VER measurements were not highly discriminatory between pregnancy and non‐pregnancy (area under ROC curve = 0.791 and 0.736, respectively). Mean VER at time of AI for animals diagnosed in oestrus differed between each of the oestrous synchronization treatments (84.7, 73.6 and 78.9, groups 1–3 respectively, p < 0.001). These findings suggest that measurement of VER may improve accuracy of oestrus diagnoses when selecting cattle for AI following oestrous synchronization programmes involving tropically adapted cattle.  相似文献   

20.
A preliminary trial was performed to evaluate the ability of sustained release preparations of estradiol-17β or progesterone plus estradiol-17β to synchronize estrus in cyclic mares. Group 1 mares were treated with a 50 mg intramuscular (IM) injection of sustained release estradiol-17β, while group 2 mares were treated with estradiol plus 1.5 g of sustained release progesterone. All mares received an IM injection of 10 mg of prostaglandin-F2α (PGF2α) 10 days after steroid treatment. Mares were examined by transrectal ultrasonography on Days 1 and 10 of treatment and then at ≤2 day intervals to monitor follicle size. Once a follicle ≥30 mm diameter and uterine edema were detected, 0.5 mg of the GnRH analog histrelin was administered IM. Mares were examined daily thereafter to detect ovulation. Group 1 mares did not exhibit ovulation synchrony (ovulations occurred 12-22 days after steroid treatment), whereas ovulation synchrony was satisfactory in group 2 mares (interval to ovulation being 20.4 ± 1.5 days, range 17-22 days). Using sustained release preparations of progesterone plus estradiol-17β, with PGF2α administered on Day 10, could eliminate the need for daily injections of steroid preparations in oil when synchronizing estrus and ovulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号