首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
F. Chain    G. Riault    E. Jacquot    M. Trottet 《Plant Breeding》2006,125(3):211-216
Barley yellow dwarf disease (BYDD) is one of the main viral diseases of small grain cereals. This disease, reported on numerous plant species of the Poaceae family, is caused by a complex of viral species including the species Barley yellow dwarf virus‐PAV (BYDV‐PAV, family Luteoviridae, genus Luteovirus), frequently found in western Europe. Resistance sources towards BYDD are scarce. Indeed, breeding‐resistant genotypes is a long and expensive process. Thus, estimating the durability of the resistance genes before the achievement of selection would be an asset for breeders. One isolate of BYDV‐PAV has been serially passaged on two hosts, ‘Zhong ZH’ and ‘TC14’, carrying a gene for partial resistance. The resulting viral population showed an increase of the speed of development of the infection in controlled conditions. In this study, these viral populations were evaluated in a 3‐year field trial, including a susceptible host, ‘Rendezvous’, and a host carrying the resistance gene of ‘TC14’ in a ‘Rendezvous’ background, to assess the effect of serial passages in field conditions. Results indicate that isolates issued from serial passages on hosts carrying a gene for partial resistance induced increased damage in field conditions when compared with the initial isolate. Yield losses are mainly due to a decrease of the number of kernels per square metre. The interest on using partial resistance gene to control BYDD is discussed.  相似文献   

2.
Z. S. Lin    D. H. Huang    L. P. Du    X. G. Ye    Z. Y. Xin 《Plant Breeding》2006,125(2):114-119
Among the regenerated plants derived from immature hybrid embryos of wheat–Thinopyrum intermedium disomic addition line Z6 × common wheat variety ‘Zhong8601’, a plant with a telocentric chromosome and barley yellow dwarf virus (BYDV) resistance was obtained. The telocentric chromosome paired with an entire Thinopyrum chromosome to form a heteromorphic bivalent at meiotic metaphase I. Genomic in situ hybridization showed that the telosome originated from Th. intermedium. Two ditelosomic additions and one disomic substitution were identified among the offspring of the plant. Two random amplified polymorphic DNA molecular markers were identified among 150 random primers used to detect the different arms of the alien chromosome. These might be useful for developing translocation lines with BYDV resistance.  相似文献   

3.
I. A. Khan 《Plant Breeding》2000,119(1):25-29
Thirty‐six wheat‐Agropyron intermedium (host) Beauv. [Syn. Trichopyrum intermedium (host) A. Love, Elytrigia intermedia (host) Nevski, Thinopyrum intermedium (host) Barkworth and Dewey] 7A/7Ai‐1 recombinant chromosomes were characterized using DNA markers. Analysis of recombinant chromosomes using 15 restriction fragment length polymorphism probes identified the homoeologous crossover products that had varying length of A. intermedium chromatin introgressed onto chromosome 7A of common wheat. The linear order of the probe loci was established along the lengths of the chromosomes. The short arm recombinants that had A. intermedium chromatin distal to the locus Xpsr108 and proximal to the locus Xpsr119 were resistant to wheat stem rust, indicating that the rust resistance gene (Sr44) was located on the distal part of chromosome arm 4Ai‐1s. The barley yellow dwarf virus (BYDV) resistance gene reported to be present on the long arm of chromosome 7Ai‐1 was found to be ineffective against the BYDV serotype used in the present study.  相似文献   

4.
N. Tian  Z.-Q. Liu 《Plant Breeding》2001,120(1):79-81
In order to develop genie male‐sterile lines with a blue seed marker, male‐sterile plants, controlled by a dominant nuclear gene Ms2, were used as female parents against a 4E disomic addition line ‘Xiaoyan Lanli’(2n= 44, AABBDD+4EII) as the male parent to produce monosomic addition lines with blue seed. Male‐sterile plants from the monosomic addition lines were pollinated with durum wheat for several generations and in 1989 a male‐sterile line with the blue grain gene and the male‐sterile gene Ms2 on the same additional chromosome was detected and named line 89‐2343. Using this line, the blue seed marker was successfully added to a short male‐sterile line containing Ms2 and Rht10. The segregation ratios of male sterility and seed colour as well as the chromosome figurations of different plants indicated that the blue grain genes, Ms2 and Rht10 were located on the same additional chromosome. Cytological analysis showed that the blue marker male‐sterile lines in durum wheat and common wheat were monosomic with an additional chromosome 4E. The inheritance ratio for blue seed male‐sterile plants and white seed male‐fertile plants was 19.7% and 80.3%, respectively, in common wheat. The potential for using blue marker sterile lines in population improvement and hybrid production is discussed.  相似文献   

5.
根据已克隆植物抗病(R)基因编码蛋白质的保守结构设计简并引物,利用同源序列法PCR扩增、克隆到9个具有开放阅读框的中间偃麦草R基因同源片段(Resistance Gene Analogs,RGAs)。利用抗黄矮病材料(含Bdv2)、感黄矮病材料(无Bdv2)进行RFLP分析,筛选到1个NBS类RGA序列TirgaZ1与Bdv2连锁。根据TirgaZ1的序列重新设计1对引  相似文献   

6.
Two disomic barley chromosome addition lines and five translocated chromosome addition lines of common wheat cultivar Shinchunaga were isolated. They were derived from a hybrid plant between Shinchunaga and cultivated barley Nyugoruden (New Golden) by backcrossing with wheat and self pollination. Barley chromosomes added to chromosome arms involved in the translocated chromosomes were identified by C-banding method and by crossing these lines with Chinese Spring/Betzes addition lines. Two disomic addition lines were identified to have chromosome 6 and 7 of barley, respectively. Two of the five translocated chromosome addition lines were clarified to have same chromosome constitution, 42 wheat chromosomes and a pair of translocated chromosomes constituted with a long arm of chromosome 5B of wheat and a short arm of chromosome 7 of barley. The other three lines could not be identified due to chromosome rearrangement. Performances of these seven lines on agronomic characters were examined. Addition of barley chromosome 7 induced early heading, and chromosome 6 showed lated heading. Almost all of the lines except that of chromosome 6 showed short culm length and all showed reduced number of tillers, spikelets and grains per ear, and low seed fertility. These lines would be useful for genetic analyses in wheat and barley and for induction of useful genes of barley into wheat. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Recombination of co‐gliadin components of the allele ‘_/’ at the Gli‐D1 locus and the allele at the respective locus from Aegilops cylindrica was revealed in the common wheat hybrid carrying the introgression from Ae. cylindrica. Gliadins of single seeds from F2 plants of the cross between the winter common wheat variety ‘Albatros Odesskii’ and the common wheat line carrying the introgression from Ae. cylindrica were analyzed by acid polyacrylamide gel electrophor‐esis. The average frequency of recombination detected between the gliadin components was 0.35%.  相似文献   

8.
X. Shen    H. Ohm 《Plant Breeding》2006,125(5):424-429
The objective of this study was to assess the effectiveness of Fusarium head blight (FHB) resistance derived from wheatgrass Lophopyrum elongatum chromosome 7E and to determine whether this resistance can augment resistance in combination with other FHB resistance quantitative trait loci (QTL) or genes in wheat. The ‘Chinese Spring’–Lophopyrum elongatum disomic substitution line 7E(7B) was crossed to three wheat lines: ‘Ning 7840’, L3, and L4. F2 populations were evaluated for type II resistance with the single‐floret inoculation method in the greenhouse. Simple sequence repeat markers associated with Fhb1 in ‘Ning 7840’ and L4 and markers located on chromosome 7E were genotyped in each population. Marker–trait association was analysed with one‐way or two‐way analysis of variance. The research showed that, in the three populations, the average number of diseased spikelets (NDS) in plants with chromosome 7E is 1.2, 3.1 and 3.2, vs. NDS of 3.3, 7.2 and 9.1 in plants without 7E, a reduction in NDS of 2.1, 4.1 and 5.9 in the respective populations. The QTL on 7E and the Fhb1 gene augment disease resistance when combined. The effect of the QTL on 7E was greater than that on 3BS in this experiment. Data also suggest that the FHB resistance gene derived from L. elongatum is located on the long arm of 7E.  相似文献   

9.
Qin  Chen  F. Ahmad    J. Collin    A. Comeau    G. Fedak  C. A. St-Pierre   《Plant Breeding》1998,117(1):1-6
A combination of genomic in situ hybridization (GISH) and meiotic pairing analysis of crosses between a series of 2n= 56 partial amphiploids confirmed that the alien genome of the BYDV-immune Agro-tricum line OK7211542 is derived from Thinopyrum ponticum and not from Thinopyrum intermedium. The evidence from meiotic pairing analysis indicated that the chromosome constitution of OK7211542 is similar to another Agrotricum line, ORRPX, which was derived from a cross of wheat and Th. ponticum, but different from other Agrotricum lines, Zhong 5 and TAF 46 which were derived from the crosses between wheat and Th. intermedium. The GISH analysis confirmed that OK7211542 contained one complete set of 14 Th. ponticum chromosomes, in which no S chromosome was present in the alien genome. GISH also detected a small alien translocation attached to one of the wheat chromosomes, a result that was consistent with the pairing data.  相似文献   

10.
J. Jahier    P. Abelard    M. Tanguy    F. Dedryver    R. Rivoal    S. Khatkar  H. S. Bariana  R. Koebner 《Plant Breeding》2001,120(2):125-128
Previous studies showed that the intermediate level of resistance in bread wheat line ‘VPM1’ to pathotype Ha12 of the cereal cyst nematode could be conferred by an Aegilops ventricosa‐derived gene, CreX, in chromosome arm 2AS, which also carries the rust resistance genes Yrl7, Lr37 and Sr38. Near isogenic lines (NILs) differing for the presence and absence of the Ae. ventricosa‐derived linked genes Yrl7/Lr37/Sr38 were tested with cereal cyst nematode. Lines carrying Yr17 produced significantly fewer nematode cysts than the controls. An infested soil experiment produced better differentiation among resistant and susceptible genotypes. Susceptibility of ‘Trident’ indicated that linkage between CreX and Yr17 is incomplete. Microsatellite markers did not differentiate between ‘Trident’ and CreX‐carrying genotypes. However, Xgwm636 (104) was associated with the presence of Yr17 in all six genetic backgrounds. Since none of the reported cereal cyst nematode resistance genes is located in chromosome 2AS, CreX was designated as Cre5.  相似文献   

11.
12.
C. He  G. R. Hughes 《Plant Breeding》2003,122(4):375-377
Common bunt caused by Tilletia tritici and T. laevis has occurred worldwide and reduces yield and quality in common and durum wheats. The development of DNA markers linked to bunt resistance to race T1 in the cross, ‘Laura’(S) בRL5407’ (R), was carried out in this study based on the single head derived F4:5 and single seed derived F4:6 populations. Bulked segregant analysis was used to identify two random amplified polymorphic DNA (RAPD) markers linked to the gene for resistance to race T1 in the spelt wheat ‘RL5407′. The two markers identified, UBC548590 and UBC274988, flanked the resistance gene with a map distance of 9.1 and 18.2 cM, respectively. The former was linked in repulsion phase to bunt resistance while the later was in coupling phase. The two RAPD markers and the common bunt‐resistance gene all segregated in Mendelian fashion. Use of these two RAPD markers together could assist in incorporating the bunt‐resistance gene from spelt wheat into common wheat cultivars by means of marker‐assisted selection.  相似文献   

13.
Summary One durum wheat line (Triticum durum), cv. 82PCD476, with useful BYDV tolerance or resistance, was singled out of 5 152 lines evaluated between 1979 and 1986. A few other lines such as cv. Boohai and cv. 12th IDSN 227, slightly inferior to cv. 82PCD476, also showed some value. With an hybrid of cv. 12th IDSN227 with the susceptible cv. 84PCY-S531, broad-sense heritability values of 0.37–0.41 were obtained for symptoms and a heritability value of 0.55 was obtained for the total weight of spikes. The weight of spikes was considered as a good indicator of wheat tolerance to BYDV. Although BYDV resistance or tolerance genes are not very common in durum wheat, sources of heritable resistance could be found. However, the resistance ofT. aestivum to BYDV was superior to the one found inT. durum.Cintribution no. 323  相似文献   

14.
Marker-based selection of Ep-D1b has been used successfully to incorporate Pch1, the gene for eyespot resistance on chromosome 7D, into commercial wheat. However, attempts to transfer resistance conferred by Pch1 (on chromosome 7A) through selection for Ep-A1b have not always been successful. Linkage relations among eyespot resistance gene Pch2, a gene encoding for an isozyme of endopeptidase, Ep-A1b, and RFLP marker Xpsr121 on chromosome 7A were determined using 80 homozygous recombinant substitution lines. The recombinant lines were derived from eyespot susceptible ‘Chinese Spring’ hybridized with a resistant disomic substitution line of ‘Cappelle Desprez’ that has chromosome 7A substituted into ‘Chinese Spring’. Segregations of Pch2, Ep-A1b and Xpsr121 fit an expected 1:1 single-locus ratios based on χ2 tests. Linkage analysis revealed that Pch2 was not tightly linked to Ep-Alb (15% recombination). However, close linkage (3.8% recombination) existed between Ep-A1b and Xpsr121. The order of these loci is Pch2-Xpsr121-Ep-A1b. Unlike Pch1 and Ep-D1b, where little or no recombination is found, Pch1 and Ep-A1b showed considerable recombination and therefore linkage cannot be utilized efficiently in marker-based selection.  相似文献   

15.
D. K. Santra    C. Watt    L. Little    K. K. Kidwell    K. G. Campbell 《Plant Breeding》2006,125(1):13-18
The endopeptidase marker Ep‐D1b and Sequence Tag Site (STS) marker XustSSR2001–7DL were reported to be closely associated with the most effective resistance gene (Pch1) in wheat (Triticum aestivum L.) for strawbreaker foot rot [Pseudocercosporella herpotrichoides (Fron) Deighton]. Our objectives were to: (i) develop an efficient assay method for Ep‐D1b in wheat; (ii) correlate endopeptidase zymograms to strawbreaker foot rot reactions of various wheat genotypes; and (iii) compare the utility of Ep‐D1b and XustSSR2001–7DL for predicting disease response. An improved method of assaying for the Ep‐D1b marker using roots from a single seedling was developed, which is a 2.5‐fold improvement over the previous method. Thirty‐eight wheat genotypes with known reactions to strawbreaker foot rot were analysed for Ep‐D1b and the STS marker. Six distinct endopeptidase zymograms were identified among these 38 genotypes tested, and three of these patterns were novel. The endopeptidase marker was 100% accurate for predicting strawbreaker foot rot disease response, whereas the STS marker predicted the correct phenotype with approximately 90% accuracy. The endopeptidase marker Ep‐D1b was more effective and was more economical for use in marker‐assisted selection strategies for Pch1 in our laboratory compared with the STS marker.  相似文献   

16.
Greenbug and Russian wheat aphid (RWA) are two devastating pests of wheat. The first has a long history of new biotype emergence and recently. RWA resistance has just started to break down. Thus, it is necessary to find new sources of resistance that will broaden the genetic base against these pests in wheat. Seventy‐five doubled haploid recombinant (DHR) lines for chromosome 6A from the F1 of the cross between “Chinese Spring’ and the “Chinese Spring (Synthetic 6A) (Triticum dicoccoides × Aegilops tauschii)” substitution line were used as a mapping population for testing resistance to greenbug biotype C and to a new strain of RWA that appeared in Argentina in 2003. A quantitative trait locus (QTL) (br antixenosis to greenbug was significantly associated with the marker loci Xgwm1009 and Xgwm1185 located in the centromere region of chromosome 6A. Another QTL which accounted for most of the antixenosis against RWA was associated with the marker loci Xgwm1291 and Xiinni1150. both located on the long arm of chromosome 6A. This is the first report of greenbug and RWA resistance genes located on chromosome 6A. It is also the first report of antixenosis against the new strain of RWA. As most of the RWA resistance genes present in released cultivars have been located in [he D‐ genome, it is highly desirable to find new sources in other genomes to combine the existing resistance genes with new sources.  相似文献   

17.
K.V. Prabhu    S. K. Gupta    A. Charpe  S. Koul 《Plant Breeding》2004,123(5):417-420
A sequence characterized amplified region (SCAR) marker tagged to an Agropyron elongatum‐derived leaf rust resistance (Lr) gene Lr19 was validated on 18 known alien Lr gener in near‐isogenic lines (NILs) in the variety ‘Thatcher’, along with three wheat cultivers carrying Lr24 and two carrying Lr19. The marker was expressed only in the Lr24 lines confirming that the marker tagged the geneLr24. The monomorphic expression of the SCAR marker in 10NIL pairs for Lr19 and Lr24 revealed that each NIL pair possessed the same gene, Lr24. The donor parents used in the NIL pairs for Lr19 (‘Sunstar*6/C80‐1′) and Lr24 (‘TR380‐14*7/3Ag#14′) amplified the same fragment. Nonsegregation for leaf rust in the F2 population of the cross between the above donor parents confirmed the presence of the same gene in the two parents. Apparently, a genuine parent stock of ‘Sunstar*6/C80‐1’ was not involved in the development of the NIL pairs for Lr19 due to an improper maintence bredding protocol either at source or destination which went undetected in the absence of signs of virulence for either gene in the region.  相似文献   

18.
K. Werner    B. Pellio    F. Ordon  W. Friedt 《Plant Breeding》2000,119(6):517-519
Based on the RAPD marker OP‐C04H910 which is closely linked to the barley mild mosaic virus (BaMMV) resistance gene rym9 derived from the variety ‘Bulgarian 347’ the marker STS‐C04H910 cosegregating with OP‐C04H910 and generating a single additional band on plants carrying the recessive resistance encoding allele has been developed. Furthermore, the simple sequence repeats (SSRs) WMS6 and HVM67 have been integrated into the genetic map of the rym9 region on chromosome 4HL. Because of their close linkage to rym9 and distinct banding pattern STS‐C04H910 and HVM67 are well‐suited for marker‐ assisted selection, enhanced backcrossing procedures and pyramiding of resistance genes.  相似文献   

19.
W. Tadesse    S. L. K. Hsam    F. J. Zeller 《Plant Breeding》2006,125(4):318-322
A total of 50 wheat (Triticum aestivum L.) cultivars were evaluated for resistance to tan spot, using Pyrenophora tritici‐repentis race 1 and race 5 isolates. The cultivars ‘Salamouni’, ‘Red Chief’, ‘Dashen’, ‘Empire’ and ‘Armada’ were resistant to isolate ASC1a (race 1), whereas 76% of the cultivars were susceptible. Chi‐squared analysis of the F2 segregation data of hybrids between 20 monosomic lines of the wheat cultivar ‘Chinese Spring’ and the resistant cultivar ‘Salamouni’ revealed that tan spot resistance in ‘Salamouni’ was controlled by a single recessive gene located on chromosome 3A. This gene is designated tsn4. The resistant cultivars identified in this study are recommended for use in breeding programmes to improve tan spot resistance in common wheat.  相似文献   

20.
U. Vahl    G. Müller  W. E. Weber 《Plant Breeding》2001,120(5):445-447
The doubled haploid (DH) wheat line ‘dh 5841’ carrying two translocations from rye, 5DL.5RS and 1BL.1RS, has been crossed to the subline of wheat cultivar ‘Amadeus 7143’ with a 1BL.1RS translocation. The resulting F1 hybrid IJ 98 with a heterozygous 5DL.5DS‐5DL.5RS chromosome pair has been used to produce doubled haploids. A total of 57 DH lines were obtained from plantlets regenerated in anther culture after successful colchicine treatment and seed set. These lines were identified regarding the constitution of chromosome 5D (5DL.5DS or 5DL.5RS) by means of isoenzyme marker analysis. Thirty DH lines possessed the 5DL.5DS chromosome, while the remaining 27 lines carried the 5DL.5RS translocation. For some of these lines, the 5DL.5RS chromosome was cytologically confirmed by C‐banding. Furthermore, the DH lines were evaluated for their high molecular weight glutenin subunit composition. All possible combinations for the four independent loci —Skdh, Glu‐Al, Glu‐B1 and Glu‐D1— were detected in only 57 DH lines and no segregation distortion was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号