首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seed storability in rice (Oryza sativa L.) is an important agronomic trait. We previously showed a quantitative trait locus of seed storability, qSS‐9, on chromosome 9 in a backcross population of ‘Koshihikari’ (japonica) / ‘Kasalath’ (indica) // ‘Koshihikari’. In this study, fine mapping of the chromosomal location of qSS‐9 was performed. Effect of ‘Kasalath’ allele of qSS‐9 was validated using a chromosome segment substitution line, SL36, which harboured the target quantitative trait loci (QTL) from ‘Kasalath’ in the genetic background of ‘Nipponbare’ under different ageing treatments in different environments. Subsequently, an F2 population from a cross between ‘Nipponbare’ and SL36 was used for fine mapping of qSS‐9. Simultaneously, four subnear isogenic lines (sub‐NILs) that represented different recombination breakpoints across the qSS‐9 region were developed from F3 progeny. Finally, the qSS‐9 locus was located between the Indel markers Y10 and Y13, which delimit a region of 147 kb in the ‘Nipponbare’ genome. These results provide a springboard for map‐based cloning of qSS‐9 and possibilities for breeding rice varieties with strong seed storability.  相似文献   

2.
S. Zhu    C. Wang    T. Zheng    Z. Zhao    H. Ikehashi    J. Wan 《Plant Breeding》2005,124(5):440-445
‘Ketan Nangka’, the donor of the wide compatibility gene (WCG) showed typical hybrid sterility when crossed to a landrace, ‘Bai Mi Fen’, of Yunnan province in China. A genome‐wide analysis was performed for a backcrossed population of ‘Ketan Nangka’/‘Bai Mi Fen’//‘Ketan Nangka’ using a total of 143 simple sequence repeat markers and an expressed sequence tagged marker to cover the entire rice linkage map. As a result, two independent loci were found to cause hybrid sterility via female gamete abortion. The locus on chromosome 4 may correspond to S9, but the other, on chromosome 2, was different from all the previously reported hybrid sterility loci and was designated as S29(t) following the hybrid sterility nomenclature. On the basis of allelic interaction which causes female gamete abortion, two alleles were found: S29kn(t) in ‘Ketan Nangka’ and S29bi(t) in ‘Bai Mi Fen’. In the heterozygote, S29kn(t)/S29bi(t), which was semi‐sterile, female gametes carrying S29bi(t) were aborted. An Aus variety from the Indian subcontinent, ‘Dular’, was found to have a neutral allele, S29n(t). Two molecular markers, RM185 and RM425, linked to S9 and S29(t), respectively, will be useful for marker‐aided transfer of WCGs in hybrid rice breeding.  相似文献   

3.
C. C. Su    J. Wan    H. Q. Zhai    C. M. Wang    L. H. Sun    H. Yasui  A. Yoshimura 《Plant Breeding》2005,124(1):93-95
The brown planthopper (BPH) is one of the most destructive insect pests of rice. Resistant varieties have proved to be one of the most economic and effective measures for BPH management. In this study, an indica rice ‘DV85’ showed resistance to biotype 2 of BPH by bulked seedling test, and a recombinant inbred line (RIL) population derived from a cross between a susceptible rice ‘Kinmaze’ and ‘DV85’ was phenotyped to map genetic factors conferring BPH resistance in ‘DV85′. Composite interval mapping revealed that one quantitative trait locus (QTL) with a LOD score of 10.1 was detected between XNpb202 and C1172 on chromosome 11. This QTL was designated as Qbph11. Qbph11 explained 68.4% of the phenotypic variance of BPH resistance in this population. The allele from the resistant parent ‘DV85’ at Qbph11 reduced the damage caused by BPH feeding and would be very useful in breeding resistant rice varieties via marker‐assisted selection.  相似文献   

4.
QEet.ocs‐5A.1, a quantitative trait locus controlling ear emergence time, has been detected on wheat chromosome 5AL using single chromosome recombinant lines (SCRs) developed from a cross between ‘Chinese Spring’ (CS) (‘Cappelle‐Desprez’ 5A) and CS (Triticum spelta 5A). This locus has little influence on grain yield and its components, and thus has breeding potential for changing ear emergence time without yield reduction. To characterize the phenotypic expression of QEet.ocs.1 and to test its interaction with the Vrn‐A1 gene for vernalization response, six near‐isogenic SCRs differing for these two gene regions were grown together with the parental controls under different vernalization and photoperiod regimes. The T. spelta allele of QEet.ocs.1 accelerated heading time when vernalization and photoperiod were satisfied, demonstrating that the function of this QTL is earliness per se. There was no interaction between Vrn‐A1 and QEet.ocs.1.  相似文献   

5.
Molecular and physical mapping of genes affecting awning in wheat   总被引:5,自引:0,他引:5  
P. Sourdille    T. Cadalen    G. Gay    B. Gill  M. Bernard 《Plant Breeding》2002,121(4):320-324
Quantitative trait loci (QTL) for three traits related to awning (awn length at the base, the middle and the top of the ear) in wheat were mapped in a doubled‐haploid line (DH) population derived from the cross between the cultivars ‘Courtot’ (awned) and ‘Chinese Spring’ (awnless) and grown in Clermont‐Ferrand, France, under natural field conditions. A molecular marker linkage map of this cross that was previously constructed based on 187 DH lines and 550 markers was used for the QTL mapping. The genome was well covered (more than 95%) and a set of anchor loci regularly spaced (one marker every 20.8 cM) was chosen for marker regression analysis. For each trait, only two consistent QTL were identified with individual effects ranging from 8.5 to 45.9% of the total phenotypic variation. These two QTL cosegregated with the genes Hd on chromosome 4A and B2 on chromosome 6B, which are known to inhibit awning. The results were confirmed using ‘Chinese Spring’ deletion lines of these two chromosomes, which have awned spikes, while ‘Chinese Spring’ is usually awnless. No quantitative trait locus was detected on chromosome 5A where the B1 awn‐inhibitor gene is located, suggesting that both ‘Courtot’ and ‘Chinese Spring’ have the same allelic constitution at this locus. The occurrence of awned speltoid spikes on the deletion lines of this chromosome suggests that ‘Chinese Spring’ and ‘Courtot’ have the dominant B1 allele, indicating that B1 alone has insufficient effect to induce complete awn inhibition.  相似文献   

6.
S. R. Barman    M. Gowda    R. C. Venu  B. B. Chattoo 《Plant Breeding》2004,123(3):300-302
Analysis of near‐isogenic lines (NILs) indicated the presence of a novel resistance gene in the indica rice cultivar ‘Tetep’ which was highly resistant to the rice blast fungus Magnaporthe grisea.‘Tetep’ was crossed to the widely used susceptible cultivar ‘CO39’ to generate the mapping population. A Mendelian segregation ratio of 3 : 1 for resistant to susceptible F2 plants further confirmed the presence of a major dominant locus, in ‘Tetep’, conferring resistance to the blast fungal isolate B157, corresponding to the international race IC9. Simple sequence length polymorphism (SSLP) was used for molecular genetic analysis. The analysis revealed that the SSLP marker RM 246 was linked to a novel blast resistance gene designated Pi‐tp(t) in ‘Tetep’.  相似文献   

7.
To assist waxy wheat breeding a DNA marker was developed to discriminate mutant and normal alleles at the Wx‐D1 locus. This polymerase chain reaction‐based marker distinguishes the mutant from the normal allele by targeting the previously reported deletion basis of the mutant. The marker codominantly identifies the normal allele of the Wx‐D1 gene from the mutant allele originated from the Chinese landrace ‘Baihoumai’. However, attempts with a number of primer combinations targeting this deletion failed to amplify the corresponding fragment from an unrelated wheat line (NP150) that has a mutant null allele at the same locus. This indicates that NP150 has a different mutant allele from that of ‘Baihoumai’. This marker is a useful tool to identify wheat cultivars with mutant and normal alleles of the Wx‐D1 gene, and is used in marker‐assisted selection of the Wx‐D1 gene in our waxy wheat breeding programme.  相似文献   

8.
Rice stripe virus (RSV) predominantly affects rice. In this study, we attempted to localize the quantitative trait locus (QTL) conferring RSV resistance in the ‘Zenith’ variety, which is known to harbour Stv‐a and Stv‐b. The resistant variety Zenith was crossed with the susceptible variety ‘Ilpum’ to generate a mapping population comprising 180 F2:3 lines for QTL analysis. Contrary to previous findings, we could not detect Stv‐a‐specific QTLs on chromosome 6. Stv‐b‐specific QTL was detected on the long arm of chromosome 11; it was designated qSTV11z. Six F4:5 lines were selected from the F3:4 population and fine‐mapped using insertion/deletion (InDel) markers. qSTV11z was mapped to a 520‐kb region between the InDel markers Sid2 and Indel8. This region included OsSOT1 (candidate gene for STV11) and other previously reported RSV resistance QTLs. The OsSOT1 sequence in Ilpum and Zenith was identical to that of the susceptible variety ‘Koshihikari’, indicating that OsSOT1 is not the candidate gene of qSTV11z. The localization of qSTV11z should provide useful information for marker‐assisted selection and determination of genetic resources in rice breeding.  相似文献   

9.
K. Kato    H. Miura  S. Sawada 《Plant Breeding》1999,118(5):391-394
A homoeologous quantitative trait locus to that of eps5L on barley chromosome 5H was identified in a syntenic region of wheat chromosome 5A. Wheat single chromosome recombinant lines (SCRs) were developed from a cross between ‘Chinese Spring’(‘Cappelle-Desprez’ 5A) and ‘Chinese Spring’(Triticum spelta 5A), these were grown together with the parental controls under different vernalization and photoperiod regimes. The variation for ear emergence time accelerated heading induced by the T. spelta segment indicated an effect associated with the Xcdo412-Xbcd9 interval. Since no differences between the SCRs and controls in responses to vernalization and photoperiod treatments were detected, this effect was identified as an earliness per se gene, Q Eetocs-5 A.2, which may be homoeologous to the eps5L quantitative trait locus of barley. Xbcd926 has been found to be closely linked to the rice flowering time quantitative trait loci, QHd9a or FLTQ2, on chromosome 9, suggesting possible relationships among the quantitative trait loci across wheat, barley and rice genomes.  相似文献   

10.
The naked/hulled kernel trait is controlled in barley by a single gene called nud, on chromosome 7H. The first aim of this work was use bulked segregant analysis to find, new PCR‐based markers linked to nud for marker‐assisted selection (MAS). A new SCAR marker (sJ14) was developed, which is useful for introgressing the naked trait. This, and three other SCARs, were placed on the ‘Proctor’ × ‘Nudinka’ map to detail a 0.9‐cM fragment tagging nud. In order to evaluate the haplotypes around the nud locus, a phenotypically differentiated collection of naked/hulled genotypes was characterized by means of the above markers. Eight different marker haplotypes were found in the breeding germplasm, and a new allele for the marker sKT7 was found. The same barley collection has been surveyed for resistance/susceptibility to leaf stripe (Pyrenophora graminea), in order to investigate any possible association between this and other traits. The naked/hulled seed trait was not associated with resistance/susceptibility to the fungus.  相似文献   

11.
D. H. He    Z. X. Lin    X. L. Zhang    Y. X. Zhang    W. Li    Y. C. Nie    X. P. Guo 《Plant Breeding》2008,127(3):286-294
The interspecific genetic introgression approach has been shown to facilitate the detection and dissection of quantitative trait loci (QTL). A population consisting of 121 F6 recombinant inbred lines was developed by crossing Gossypium hirsutum cv. ‘Handan 208’ and G. barbadense cv. ‘Pima 90’ via single‐seed descent. Genotyping indicated that the mean ‘Pima 90’ allele frequency at each locus was 21%. Phenotyping and phenotypic distribution indicated a trend of return of individual lines’ characters to ‘Handan 208’ coupled with a wide variance for each trait. Significant loci influencing fibre quality were detected by one‐way analysis of variance (anova; P < 0.005) and association analysis [?log10(P) ≥ 3]: five and three markers for fibre length, four and one marker(s) for uniformity, two and one marker(s) for micronaire, 13 and 15 markers for strength, six and 10 markers for elongation, respectively. Two‐way anova based on genotypes of all marker loci combination showed that 807 two‐locus combinations were significant, and two‐way anova based on marker genotypes of QTL markers combination showed five significant digenic interactions (P < 0.01).  相似文献   

12.
Seed longevity in rice is a major determinant in seed production and germplasm preservation. In this paper, a recombinant inbred line (RIL) population consisting of 172 lines derived from the cross between Xiang743 and ‘Katy’ was used to map quantitative trait loci (QTLs) for seed longevity (SL) after seed storage for 18 and 30 months under ambient conditions. Two putative QTLs, qSL‐2 and qSL‐8, were detected and located on chromosomes 2 and 8, respectively. qSL‐2 is an allele from Xiang743 allele and increases seed longevity. qSL‐8 was a novel QTL from ‘Katy’ allele and increases seed longevity. qSL‐8 explained 15.29% and 17.35% of the phenotypic variance after seed storage for 18 and 30 months, respectively. Furthermore, qSL‐8 was validated in a secondary population developed by self‐pollination of a residual heterozygous line (RHL) selected from the RIL population, which explained 25.93% of the phenotypic contribution. These results provide an opportunity for map‐based cloning of qSL‐8. Furthermore, qSL‐8 may be a target for improving seed longevity by marker‐assisted selection (MAS) in rice.  相似文献   

13.
Germplasms consisting of 64 wild barley accessions (Hordeum vulgare ssp. spontaneum) were examined for polymorphisms in α‐amylase using both isoelectric focusing (IEF) and thermostability assays. Wide variation was found for the high pI α‐amylase with 20 IEF band patterns identified. Enzyme activity and thermostability assays showed large differences among α‐amylase isoenzymes. Two wild accessions Tel‐Shoket CPI 77146‐32 and Afiq CPI 77128‐41 showed superior enzyme activity and thermostability compared with commercial varieties such as ‘Baudin’, ‘Flagship’ or ‘Navigator’. The functionality of the Tel‐Shoket allele was validated in backcross lines with ‘Flagship’ as the recurrent parent. The Tel‐Shoket allele at the amy1 locus increased α‐amylase thermostability at 75°C by 8.4% and α‐amylase activity in kilned malt by 18.7%. The introgression of the wild allele also led to significant improvements in fermentability, hot water extract and viscosity. Gene sequencing showed that there are three single nucleotide polymorphisms in the Tel‐Shoket amy1 sequence, which can be used as diagnostic markers for the selection of this allele in breeding programmes.  相似文献   

14.
Variegated leaf colour is an important agronomic trait that affects the market value of ornamental kale (Brassica oleracea L. var. acephala). The red leaf phenotype in kale is due to anthocyanin accumulation. To investigate the pattern of inheritance of this trait, we constructed an F2 population by crossing ‘Y005‐15’, a double haploid with red leaves, with a white‐leaved double haploid, ‘Y011‐13‐38’, followed by self‐pollination. An F2 population consisting of 4284 individuals was used to study the inheritance of this trait, which showed that the character was controlled by a dominate gene. All of the 1050 white leaf trait plants in the F2 were used for mapping and developing markers linked to Re gene. Results showed that Re was mapped to a locus on linkage group C09 of Brassica oleracea, and the locus was mapped between six SSR markers (C9Z1, C9Z16‐1, C9Z90, C9Z94, C9Z96 and C9Z99), with a genetic distance of 6.7, 1.0, 0.3, 2.0, 2.1 and 0.4 cM from Re gene, respectively. These results may facilitate marker‐assisted selection of the red leaf trait in kale breeding as well as map‐based cloning of the red leaf trait gene.  相似文献   

15.
N. Saka    T. Tsuji    T. Toyama    M. Yano    T. Izawa    T. Sasaki 《Plant Breeding》2006,125(2):140-143
The chromosomal location of the resistance gene for green rice leafhopper (GRLH), an injurious insect for rice, has been determined and RFLP markers closely linked to this gene have been identified. The susceptible japonica rice variety ‘Nipponbare’ was crossed with a resistant japonica rice line ‘Aichi42’, in which green rice leaf hopper resistance had been introduced from an indica variety ‘Rantaj‐emas2’, and the 100 F2 plants obtained were used for linkage analysis. The green rice leafhopper resistance gene, Grh3(t), was mapped between RFLP markers C288B and C133A on chromosome 6 and co‐segregated with C81. Of the RFLP markers tightly linked to Grh3(t), C81 was converted to a SCAR marker and C133A to a cleaved amplified polymorphic sequence marker that could distinguish the heterozygous genotype to establish an effective marker‐aided selection system for the GRLH resistance gene.  相似文献   

16.
Basmati rice is highly susceptible to bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae. Transfer of BB resistance genes from non‐Basmati sources to Basmati through cross‐hybridization requires strict monitoring for recovery of the desirable Basmati quality traits in the recombinants, which show complex inheritance pattern. We integrated background analysis using mapped microsatellite markers with foreground selection to identify superior lines that combine useful genes from a non‐Basmati BB resistance donor line IRBB55 with grain and cooking quality characteristics of the popular Basmati rice variety ‘Pusa Basmati 1’ (PB 1) employing backcross pedigree strategy. Foreground selection using linked markers ensured presence of two genes, xa13 and Xa21 for BB resistance from IRBB55, and the recurrent parent PB 1 allele for the waxy locus giving intermediate amylose content and maintainer allele at fertility restorer locus in the BC1F5 recombinants. Background analysis enabled selection of recombinants with recurrent parent genome to the extent of 86.3% along with the quality traits. The extent of introgression of non‐Basmati donor chromosome segments in the superior selections was estimated to be < 7.8 Mb and < 6.7 Mb in the xa13 and Xa21 linked genomic regions, respectively. Association mapping identified three quantitative trait loci, one each for 1000‐grain weight, fertile grains/panicle and cooked kernel length. The backcross‐pedigree breeding strategy facilitated recovery of additional desirable characteristics from the donor in some of the selections. The elite selection Pusa 1460‐01‐32‐6‐7‐67 with maximum genomic background and quality characteristics of the recurrent Basmati parent gave resistance reaction against BB, similar to that of the non‐Basmati resistant check variety and recorded an yield advantage of 11.9% over the best check in the multiplication agronomic trial in the Basmati growing region of India. This line, which has been released as a new variety in the name of ‘Improved Pusa Basmati 1’ for commercial cultivation in India, is an example of successful application of marker assisted selection to variety development.  相似文献   

17.
The genetics of resistance to green leafhopper, Nephotettix virescens (Distant), in rice varieties ‘IR36’ and ‘Maddai Karuppan’ and breeding line ‘IR20965‐11‐3‐3’ was studied. The reactions of F1 hybrids, F2 populations and F3 lines from the crosses of test varieties with the susceptible variety ‘TN1’ revealed that resistance in ‘IR36’ and ‘Maddai Karuppan’, is governed by single recessive genes while resistance in ‘IR20965‐11‐3‐3’ is controlled by a single dominant gene. Allele tests with the known genes for resistance to green leafhopper revealed that the recessive gene of ‘IR36’ is different from and inherited independently of Glh1, Glh2, Glh3, Glh4, Glh5, Glh8 and Glh9t. This gene is designated as glh10t. The recessive gene of ‘Maddai Karuppan’ and the dominant gene of ‘IR20965‐11‐3‐3’ are also non‐allelic to Glh1, Glh2, Glh3, Glh4, Glh5 and Glh8t. Thus, the dominant gene of IR20965‐11‐3‐3 is designated as Glh11t. The allelic relationships of the recessive gene of ‘Maddai Karuppan’ with glh8 and glh10t should be investigated.  相似文献   

18.
Cold tolerance is a complex trait, and QTL pyramiding is required for rice breeding. In this study, a total of seven QTLs for cold tolerance in the Japonica rice variety ‘Nipponbare’ were identified in an F2:3 population. A stably inherited major QTL, called qCTS11, was detected in the region adjacent to the centromere of chromosome 11. In a near‐isogenic line population, the QTL was further dissected into two linked loci, qCTS11.1 and qCTS11.2. Both of the homozygous alleles of qCTS11.1 and qCTS11.2 from ‘Nipponbare’ showed major positive effects on cold tolerance. Through pyramiding the linked QTLs in the cold‐sensitive Indica rice cultivar ‘93‐11’, we have developed a new elite, high‐yielding Indica variety with cold tolerance.  相似文献   

19.
Yield is a complex trait. To improve it, the accumulation of the favourable alleles of valuable genes is required for each yield‐related trait. In this study, we used two high‐yielding rice cultivars developed in Japan, indica‐type ‘Takanari’ and japonica‐type ‘Momiroman’, for a genetic analysis of the sink capacity‐related traits. An F2 population showed transgressive segregation for the number of spikelets per panicle. Quantitative trait locus (QTL) analysis detected four QTLs for the trait. Two of the QTLs were most likely identical to previously cloned GN1a and APO1, and their Takanari alleles had positive effects. The Momiroman alleles of the other two QTLs had positive effects, and one of these QTLs was most likely identical to SPIKE/GPS. The QTL on the long arm of chromosome 3 appeared to be novel; it clustered with QTLs for grain length and days‐to‐heading. Substitution mapping revealed that the close linkage of QTLs caused the clustering. These results suggest that the combination of the favourable alleles of detected QTLs could lead to greater sink capacity than that of the parental cultivars.  相似文献   

20.
Maize is an important food and feed crop worldwide. Phytic acid (PA), in maize kernel, is an antinutritional factor. PA chelates mineral cations and causes mineral deficiency in humans and phosphorous deficiency in animals. The undigested PA excreted by monogastric animals causes phosphorous eutrophication. Therefore, development of low‐phytate maize is indispensable. The low‐phytate locus (lpa2 allele) has been transferred from low‐phytate mutant line ‘EC 659418’ into an elite inbred UMI 395 through marker‐assisted backcross breeding (MABB). The MABB involved three backcrosses followed by two selfing steps, including ‘foreground selection’, that is, selecting lines with lpa2 allele with the help of a codominant SSR marker ‘umc2230’ and ‘background selection’, that is, selecting plants having genetic background similar to that of the recurrent parent using 50 codominant SSR markers. Two low‐phytate lpa2 lines with genome similar (>90% similarity) to that of recurrent parent have been identified. These lines can be used as parent in future hybridization programmes for obtaining low‐phytate high‐yielding maize hybrids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号