首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While it needs yet to be assessed whether or not wind erosion in Western Saxony is a major point of concern regarding land degradation and fertility, it has already been recognized that considerable off‐site effects of wind erosion in the adjacent regions of Saxony‐Anhalt and Brandenburg are connected to the spread of herbicides, pesticides and dust. So far, no wind erosion assessment for Western Saxony, Germany, exists. The wind erosion model previously applied for Germany (DIN standard 19706) is considering neither changes in wind direction over time nor influences of field size. This study aims to provide a first assessment of wind erosion for Western Saxony by extending the existing DIN model to a multidirectional model on soil loss by wind (SoLoWind) with new controlling factors (changing wind directions, soil cover, mean field length and mean protection zone) combined by fuzzy logic. SoLoWind is used for a local off‐site effect evaluation in combination with high‐resolution wind speed and wind direction data at a section of the highway A72. The model attributes 3·6% of the arable fields in Western Saxony to the very‐high‐wind erosion risk class. A relationship between larger fields (greater than 116 ha) and higher proportions (51·7%) of very‐high‐wind erosion risk can be observed. Sections of the highway A72 might be under high risk according to the modelled off‐site effects of wind erosion. The presented applications showed the potential of SoLoWind to support and consult management for protection measures on a regional scale. © 2016 The Authors. Land Degradation and Development published by John Wiley & Sons, Ltd.  相似文献   

2.
The effects of soil bunds on runoff, losses of soil and nutrients, and crop yield are rarely documented in the Central Highlands of Ethiopia. A field experiment was set up consisting of three treatments: (i) barley‐cultivated land protected with graded soil bunds (Sb); (ii) fallow land (F); and (iii) barley‐cultivated land without soil bund (Bc). For 3 years (2007–2009), the effect of soil bunds on runoff, losses of soil and nutrients, and crop productivity was studied. Daily runoff and soil and nutrient losses were measured for each treatment using standard procedures while barley yield was recorded from the cultivated plots. The results showed that Sb brought about significant reduction in runoff and soil losses. Plots with Sb reduced the average annual runoff by 28 per cent and the average annual soil loss by 47 per cent. Consequently, Sb reduced losses of soil nutrients and organic carbon. However, the absolute losses were still high. This implies the need for supplementing Sb with biological and agronomic land management measures to further control soil erosion. Despite these positive impacts on soil quality, Sb do not increase crop yield. Calculated on a per‐hectare basis, Sb even reduce crop yield by about 7 per cent as compared with control plots, which is entirely explained by the reduction of the cultivable area by 8·6 per cent due to the soil bunds. Suitable measures are needed to compensate the yield losses caused by the construction of soil bunds, which would convince farmers to construct these land management measures that have long‐term beneficial effects on erosion control. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Off‐site impacts of soil erosion are of greater social and economic concern in Western Europe than on‐site impacts. They fall into two related categories: muddy flooding of properties and ecological impacts on watercourses because of excessive sedimentation and associated pollutants. Critical to these impacts is the connectedness of the runoff and sediment system between agricultural fields and the river system. We argue that well‐connected systems causing off‐site damage are not necessarily related to areas of high erosion rates; emphasis should therefore be on the way in which connections occur. In temperate, arable systems, important elements of connectivity are anthropogenic in origin: roads, tracks, sunken lanes, field drains, ditches, culverts and permeable field boundaries. Mapping these features allows us to understand how they affect runoff and modify its impacts, to design appropriate mitigation measures and to better validate model predictions. Published maps (digital and paper) do not, by themselves, give sufficient information. Field mapping and observation, aided by remote sensing, are also necessary.  相似文献   

4.
Preventing the off‐site effects of soil erosion is an essential part of good catchment management. Most efforts are in the form of on‐site soil and water conservation measures. However, sediment trapping can be an alternative (additional) measure to prevent the negative off‐site effects of soil erosion. Therefore, not all efforts should focus solely on on‐site soil conservation but also on the safe routing of sediment‐laden flows and on creating sites and conditions where sediment can be trapped. Sediment trapping can be applied on‐site and off‐site and involves both vegetative and structural measures. This paper provides an extensive review of scientific journal articles, case studies and other reports that have assessed soil conservation efforts and the sediment trapping efficacy (STE) of vegetative and structural measures. The review is further illustrated through participatory field observation and stakeholders' interview. Vegetation type and integration of two or more measures are important factors influencing STE. In this review, the STE of most measures was evaluated either individually or in such combinations. In real landscape situations, it is not only important to select the most efficient erosion control measures but also to determine their optimum location in the catchment. Hence, there is a need for research that shows a more integrated determination of STE at catchment scale. If integrated measures are implemented at the most appropriate spatial locations within a catchment where they can disconnect landscape units from each other, they will decrease runoff velocity and sediment transport and, subsequently, reduce downstream flooding and sedimentation problems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The potential for wind erosion in South Central Colorado is greatest in the spring, especially after harvesting of crops such as potato (Solanum tuberosum L.) that leave small amounts of crop residue in the surface after harvest. Therefore it is important to implement best management practices that reduce potential wind erosion and that we understand how cropping systems are impacting soil erosion, carbon dynamics, and properties of rangeland sandy soils. We evaluate the effects of cropping systems on soil physical and chemical properties of rangeland sandy soils. The cropping system included a small grain–potato rotation. An uncultivated rangeland site and three fields that two decades ago were converted from rangeland into cultivated center-pivot-irrigation-sprinkler fields were also sampled. Plant and soil samples were collected in the rangeland area and the three adjacent cultivated sites. The soils at these sites were classified as a Gunbarrel loamy sand (Mixed, frigid Typic Psammaquent). We found that for the rangeland site, soil where brush species were growing exhibited C sequestration and increases in soil organic matter (SOM) while the bare soil areas of the rangeland are losing significant amounts of fine particles, nutrients and soil organic carbon (SOM-C) mainly due to wind erosion. When we compared the cultivated sites to the uncultivated rangeland, we found that the SOM-C and soil organic matter nitrogen (SOM-N) increased with increases in crop residue returned into the soils. Our results showed that even with potato crops, which are high intensity cultivated cropping systems, we can maintain the SOM-C with a rotation of two small grain crops (all residue incorporated) and one potato crop, or potentially increase the average SOM-C with a rotation of four small grain crops (all residue incorporated) and one potato crop. Erosion losses of fine silt and clay particles were reduced with the inclusion of small grains. Small grains have the potential to contribute to the conservation of SOM and/or sequester SOM-C and SOM-N for these rangeland systems that have very low C content and that are also losing C from their bare soils areas (40%). Cultivation of these rangelands using rotations with at least two small grain crops can reduce erosion and maintain SOM-C and increasing the number of small grain crops grown successfully in rotation above two will potentially contribute to C and N sequestration as SOM and to the sequestration of macro- and micro-nutrients.  相似文献   

6.
Soil erosion is one form of land degradation, which is caused by the interacting effects of numerous factors such as biophysical characteristics and socio‐economic condition of a particular watershed. Previous erosion studies focused on the use of soil erosion models (e.g. USLE, EUROSEM, SLEMSA etc.), which have been developed under local conditions (e.g. United States, Europe, Africa, etc) and mostly use only biophysical factors as inputs to the models. In this study, a methodology that integrates both biophysical and socio‐economic aspects into a framework for soil erosion hazard assessment using principal component analysis (PCA) is described. The analysis is done at the land unit level. With the particular conditions of the study area that is characterized by Inceptisols and Alfisols soil types, nine different land uses with mixed vegetation and forest area dominant in the steep slope, high annual rainfall (>2500 mm), high population with mostly low income and low education, were considered. These were used in formulating a soil erosion hazard index (EHI) equation which relates a number of key factors consisting of biophysical and socio‐economic variables, namely soil texture, slope steepness, land cover, soil conservation practices, income and farmers' knowledge. Weighting and scoring of these key factors were used to develop the EHI equation and to calculate an index value of erosion hazard for every land unit. Results indicate that more than 60% of the area has erosion hazard ranging from moderate to very severe, and most of the land units with high erosion hazard were found at the mountain areas. It was also found that erosion hazard was severe in areas with high silt content, followed by high rainfall and steep slope, low crop cover without any soil conservation practices coupled with lack of awareness on soil erosion and low income. The key factors identified and level of erosion hazard obtained can be used to formulate conservation measures in critical areas which are prone to soil erosion. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Soil and water conservation measures like bench terraces can reduce erosion in highland crop production. A cost‐benefit analysis for 11 cases of bench terraces was undertaken on the basis of both measured data and data obtained from farmers. It showed that the profitability of bench terraces was lower than believed by farmers. Whether terracing was financially attractive to a farmer, depended on his personal opportunity cost of labour. For most farmers an opportunity cost of labour below the market wage could be justified, as they had only temporarily off‐farm work. Considering these opportunity costs, the labour input in bench terracing was in most cases worthwhile. The costs and benefits of bench terraces were both much higher than the value of external project incentives. The incentives barely influenced the profitability of the bench terraces. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
In this study emissions of N2O from arable soils are summarized using data from long‐term N2O monitoring experiments. The field experiments were conducted at six sites in Germany between 1992 and 1997. The annual N‐application rate ranged from 0 to 350 kg N ha—1. Mineral and organic N‐fertilizer applications were temporarily split adapted to the growth stage of each crop. N‐fertilizer input and N‐yield by the crops were used to calculate the In/Out‐balance. The closed chamber technique was applied to monitor the N2O fluxes from soil into the atmosphere. If possible, plants were included in the covers. Annual N2O emission values were based on flux rate measurements of an entire year. The annual N2O losses ranged from 0.53 to 16.78 kg N2O‐N ha—1 with higher N2O emissions from organically fertilized plots as compared to minerally fertilized plots. Approximately 50% of the total annual emissions occurred during winter. No significant relationship between annual N2O emissions and the respective N‐fertilization rate was found. This was attributed to site‐ and crop‐specific effects on N2O emission. The calculation of the N2O emission per unit N‐yield from winter cereal plots indicates that the site effect on N2O emission is more important than the effect of N‐fertilization. From unfertilized soils at the sites Braunschweig and Timmerlah a N‐yield of 60.0 kg N ha—1 a—1 and N2O emissions of 2 kg N ha—1 a—1 were measured. This high background emission was assigned to the amount and turnover of soil organic matter. For a crop rotation at the sites Braunschweig and Timmerlah the N In/Out‐balance over a period of four years was identified as a suitable predictor of N2O emissions. This parameter characterizes the efficiency of N‐fertilization for crop production and allows for N‐mineralization from the soil.  相似文献   

9.
Wind erosion is not as significant or a widespread problem in Europe as in dryer parts of the world, but it can cause major damage in small areas. The hazard is greatest in the lowlands of northwestern Europe with more than 3 million ha at high-potential wind erosion risk. Crop damage and off-site damage have prompted farmers and policymakers to pay more attention to wind erosion control. A great variety of measures have been developed in the last decades. Most farmers, however, only use measures to protect their high value crops. In existing policies, little attention is paid to the off-site effects and long-term effects of wind erosion. There are no direct policy measures at a European level to control soil erosion, and few measures exist in individual Member States. Agricultural or environmental EC policies offer different policy tools to approach the wind erosion problems related to agricultural practices. Tools like subsidies for the re-afforestation of arable land can help regional policy makers with the implementation of wind erosion control measures. A case study concerning the ‘Code of Good Agricultural Practice’ shows that regional differences result in different control measures that fits best given the physical, social and economic context. The formulation of the practical details of such code should therefore remain a task of the local or regional government. The main objectives of a Code of Good Agricultural Practice could be formulated at national or European level.  相似文献   

10.
Data on quantification of erosion rates in alpine grasslands remain scarce but are urgently needed to estimate soil degradation. We determined soil‐erosion rates based on 137Cs in situ measurements. The method integrates soil erosion over the last 22 y (time after the Chernobyl accident). Measured erosion rates were compared with erosion rates modeled with the Universal Soil Loss Equation (USLE). The comparison was done in order to find out if the USLE is a useful tool for erosion prediction in steep mountainous grassland systems. Three different land‐use types were investigated: hayfields, pasture with dwarf shrubs, and pasture without dwarf shrubs. Our test plots are situated in the Urseren Valley (Central Switzerland) with a mean slope steepness of 37°. Mean annual soil‐erosion rates determined with 137Cs of the investigated sites ranged between the minimum of 4.7 t ha–1 y–1 for pastures with dwarf shrubs to >30 t ha–1 y–1 at hayfields and pastures without dwarf shrubs. The determined erosion rates are 10 to 20 times higher compared to previous measurements in alpine regions. Our measurements integrated over the last 22 y, including extreme rainfall events as well as winter processes, whereas previous studies mostly reported erosion rates based on summer time and short‐term rainfall simulation experiments. These results lead to the assumption that heavy‐rainfall events as well as erosion processes during winter time and early spring do have a considerable influence on the high erosion amounts that were measured. The latter can be confirmed by photographs of damaged plots after snowmelt. Erosion rates based on the USLE are in the same order of magnitude compared to 137Cs‐based results for the land‐use type “pasture with dwarf shrubs”. However, erosion amounts on hayfields and pasture without dwarf shrubs are underestimated by the USLE compared to 137Cs‐based erosion rates. We assume that the underestimation is due to winter processes that cause soil erosion on sites without dwarf shrubs that is not considered by the USLE. Dwarf shrubs may possibly prevent from damage of soil erosion through winter processes. The USLE is not able to perform well on the affected sites. Thus, a first attempt was done to create an alpine factor for the USLE based on the measured data.  相似文献   

11.
A key point in designing grass‐arable rotations is to find the right balance between the number of cultivations and the length of the grass phase. In a field experiment, we investigated the effect of cropping history (grazed unfertilized grass–clover and fertilized [300 kg N per hectare] ryegrass, proportion of grassland and previous fertilizer use) on crop growth and nitrate leaching for 2 years following grassland cultivation. In the final year, the effect of perennial ryegrass as a catch crop was investigated. The nitrogen fertilizer replacement value (NFRV) of grassland cultivation was higher at 132 kg N per hectare in the rotation with 75% grassland compared with on average 111 kg N per hectare in rotations with 25 and 38% grassland and the NFRV of ryegrass in the rotation was higher than that of grass–clover. Nitrate leaching following cultivation was not affected by the proportion of grassland in the crop rotation or sward type. However, there was a considerable effect of having a ryegrass catch crop following the final barley crop as nitrate leaching was reduced from 60 to 9 kg N per hectare. When summarizing results from the crop rotations over a longer period (1997–2005), management strategy adopted in both the grassland and arable phases appeared to be the primary instrument in avoiding nutrient losses from mixed crop rotations, irrespective of grass proportion. In the arable phase, the huge potential of catch crops has been demonstrated, but it is also important to realize that all parts of the grass‐arable crop rotations must be considered potentially leaky.  相似文献   

12.
Maps of land‐use classes and soil series were analysed to identify areas having specific priorities with respect to agricultural land‐use analysis. Remote sensing data supported by field investigations was used to generate land‐use and soil maps. Present relationships between soils and associated land cover/use are analysed and patterns in these relationships are identified using GIS techniques. Relationships observed on the basis of a priori knowledge of the area and the available statistics are compared and these relationships in the field and through interviews with farmers are correlated. This allows three land‐use analysis objectives to be formulated: crop management improvement; crop selection; and conservation. The results can be used to focus the efforts of planning and extension services in the area. The method was tested using a participatory rural appraisal in eighteen villages in which the areas for the three land‐use analysis objectives were identified. The findings are that the areas identified for crop management improvement require knowledge about management practices for a specific crop to optimize yield and water use. Most areas identified for crop selection are occupied by smallholder subsistence farmers with insufficient water for irrigation, and a lack of contact with the extension service. In these areas, identifying suitable crops to minimize risk and allow subsistence for the resource‐poor farmers may be the priority. In areas identified for conservation the question to be addressed is whether to grow a crop at all, or to encourage alternative activities. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
GIS‐based modeling of soil‐crop interactions and hydrological processes is a valuable instrument to assess land‐use effects on N pollution of water resources from the agricultural sector. A case study is presented using spatial information on soils, climatic zones, land use, and distribution of agri‐environmental measures within the federal State of Brandenburg (Germany) to assess the reduction effect of EU‐funded measures on N pollution of water resources. In a first step, the area was classified concerning the risk for groundwater and surface‐water pollution. For this, spatially distributed model calculations of the soil‐solution exchange frequency were intersected to a vulnerability map for groundwater derived from geological data and zones of different transit times from the root zone into surface waters. In a second step, model calculations of water and N dynamics in the soil‐crop system for different crop and management systems were performed to calculate nitrate leaching from the root zone and to estimate the effect of present agri‐environmental measures to reduce N pollution on groundwater and surface waters. The results indicated that 75% of the agri‐environmental measures were placed in areas with low impact on groundwater and surface waters. Therefore, the effectiveness of the agri‐environmental measures concerning water‐protection aims was moderate.  相似文献   

14.
Impact of very low crop residues cover on wind erosion in the Sahel   总被引:1,自引:0,他引:1  
In the Sahel, with average annual precipitation in the order of 500 mm yr− 1, wind erosion occurs mainly on cultivated millet fields whose surfaces are only partially covered by crop residues. The impact of these residues on wind erosion was not clearly established. The objective of this study is thus to quantify the actual amount of crop residues in traditional Sahelian fields and to determine their impacts on wind erosion by reference to a bare surface throughout the seasonal cycle over several years.  相似文献   

15.
基于土壤粒度和大风日数的风蚀风险预报   总被引:3,自引:3,他引:3  
为寻求一种较为简便、广泛适用的土壤潜在风蚀风险评价方法体系,选取内蒙古中西部的吉兰太戈壁、乌兰布和半固定沙地、毛乌素沙地、武川农田和希拉穆仁草原5种典型风蚀试验区,基于数字图像技术,获取地表不可蚀颗粒含量,结合地区大风日数资料,建立土壤潜在风蚀风险指数方程,并进行实地验证。结果表明:吉兰太戈壁、灌丛地表已经处于粗化过程后期,抗风蚀能力较强,平均抗风蚀指数分别为91.40%和81.40%。由于灌丛群落的存在,乌兰布和沙漠半固定沙地土壤颗粒空间分布差异明显,导致土壤抗风蚀能力呈现不同程度的差异。毛乌素沙地风成沙物质颗粒较细,抗风蚀指数仅为13.40%,极易起沙。应用土壤潜在风蚀风险方程实地表征所得结果与实际情况吻合,与人类活动关系最为密切的农田、草原土壤潜在风蚀风险最高。研究结果可实现科学、有效地预测地表潜在风蚀风险,为干旱、半干旱地区风蚀荒漠化监测提供理论依据和技术支撑。  相似文献   

16.
Shallow landslides occur globally on soil‐mantled hilly and mountainous terrain. In New Zealand, they are a nation‐wide problem, particularly on pastoral hill country grazed by livestock. On these landscapes, trees are planted at low densities, often <70 stems per hectare (sph), to reduce landslide occurrence, but there has been limited quantification of their effectiveness in this role. This study determined the reduction in landslide occurrence at 65 sites planted with spaced trees (53 × Populus, 6 × Salix, 6 × Eucalyptus) following rainstorm events. Sites had a mean slope angle of 27 degrees and soils were predominantly silt or sand‐loams. Tree density across all sites was 32–65 sph, height was 8–43 m, canopy radius was 1–10 m and trunk diameter was 18–99 cm. Trees reduced landslide occurrence by 95 per cent compared to paired pasture control sites (0·4 per cent vs. 7·9 per cent scar area, respectively), and scars occurred on fewer sites with trees than pasture (10 vs. 45). For the 10 tree sites with scars, their area was <3·5 per cent, except at one site where it was 11·3 per cent. There were no significant differences between species in their effectiveness in reducing landslide occurrence. Analyses were partially successful in discriminating between sites with and without shallow landslides and identified some attributes with potentially useful discriminatory power. Aspect, mean slope angle and tree density did not feature significantly in the analyses because they were homogeneous across site groups. The study verified the large benefit from wide‐spaced tree planting on sites susceptible to shallow landslides. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Field trials have demonstrated the potential of soil conservation technologies but have also shown significant spatial–temporal yield variability. This study considers the Pan‐European Soil Erosion Risk Assessment – Desertification Mitigation Cost‐Effectiveness modelling approach to capture a greater range of climatic conditions to assess the potential effect of an improved agricultural management practice emerged from field trials as a promising strategy for enhancing food security and reducing soil and land degradation. The model considers the biophysical and socio‐economic benefits of the improved soil conservation technique (T3) – residue mulch combined with pigeon pea hedges and an organic amendment, against a local baseline practice (T0). The historic rainfall statistics and 50‐year rainfall realizations provide a unique time series of rainfall and an envelope of the potential crop yield. Envelopes of potential biomass production help express the agricultural risk associated with climate variability and the potential of the conservation measures to absorb the risk, highlighting the uncertainty of a given crop yield being achieved in any particular year. T3 elevates yield under both sub‐humid and semi‐arid climates with greater security for sub‐humid areas even though risk of crop failure still exists. The technology offered good potential to increase yields by 20% in 42% of the dryland area in Santiago Island and reduce erosion by 8·6 Mg ha−1, but in terms of cost‐effectiveness, it might be prohibitively expensive for farmers lacking inputs. The findings can enable the assessment of policy options at larger scale or influence adoption of improved conservation measures under the climatic variability of the Cabo Verde drylands and resilience to future climate change. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
About two-thirds of the Iran’s area is located in the arid and semiarid region. Lack of soil moisture and vegetation is poor in most areas can lead to soil erosion caused by wind. So that the annual suffered severe damage to large areas of rich soils. Modeling studies of wind erosion in Iran is very low and incomplete. Therefore, this study aimed to wind erosion modeling, taking into three factors: wind speed, vegetation and soil types have been done. Wind erosion sensitivity was modeled using the key factors of soil sensitivity, vegetation cover and wind erodibility as proxies. These factors were first estimated separately by factor sensitivity maps and later combined by fuzzy logic into a regional-scale wind erosion sensitivity map. Large areas were evaluated by using publicly available datasets of remotely sensed vegetation information, soil maps and meteorological data on wind speed. The resulting estimates were verified by field studies and examining the economic losses from wind erosion as compensated by the state insurance company. The spatial resolution of the resulting sensitivity map is suitable for regional applications, as identifying sensitive areas is the foundation for diverse land development control measures and implementing management activities.  相似文献   

19.
Considerable masses of soil may be lost from arable land during the harvest of crops such as sugar beet, potato and chicory roots, as soil adhering to these crops, soil clods and rock fragments are exported from the field (together with the crop) to places such as headlands, farmsteads and crop‐processing factories. This soil erosion process is referred to as soil losses due to crop harvesting (SLCH). These soil losses range from a few to tens of tonnes per hectare and per harvest and are thus the same order of magnitude as soil losses caused by water, wind or tillage erosion. However, only a few studies have incorporated SLCH as a soil erosion process. We investigated the variability of soil losses due to sugar beet harvesting at the field plot scale and the importance of controlling factors related to soil, agronomic practices and crop characteristics. Twenty‐six field parcels, distributed over the Belgian sugar beet growing area, were sampled during the harvesting seasons 2002, 2003 and 2004. Soil losses ranged between 1 and 30 Mg ha−1 harvest−1 with an average of 4 Mg ha−1 harvest−1. Gravimetric soil moisture content at harvest was by far the most important controlling factor and was positively and exponentially related to SLCH. Differences in SLCH between harvesting seasons could not be explained by the factors investigated in this study, which indicates that other factors also play a role in SLCH variability.  相似文献   

20.
Evaluating the economic damage caused by soil erosion is important. In addition to increasing the awareness of the problem among farmers and policy makers, evaluation of the economic damage caused by erosion can promote the implementation of more sustainable soil management practices. In the present study, we describe a new approach to evaluate incentives for the adoption of agri‐environment measure (AEM) in degraded and eroded vineyards. To estimate this incentive, the replacement cost (RC) and the loss of income are calculated when the vineyard is managed with conventional tillage versus a cover crop (AEM). Our findings show that the incentive could range from the loss of income due to AEM adoption to the ecosystem service benefit (RCCRCAEM). In our case study, the incentive ranged from 315 € ha−1 (loss of income) to 1,088 € ha−1 (ecosystem service benefit). Within this range, the incentive amount is determined according to efficiency criteria based on vineyard slope. We also present a conceptual model of public spending efficiency that should help policy makers decide how to allocate the incentives so as to maximize the economic return associated with ecosystem services. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号