首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
    
One of the many contentious issues facing the appropriate and accurate assessment of land degradation is the varying emphasis placed on vegetation degradation and soil degradation processes. This has led to the compartmentalization of land degradation assessment methods, depending on the particular perspective adopted. The land degradation assessment method presented here attempts to take into account both vegetation and soil degradation. This methodology is applied to the southern part of the Monduli District of northeast Tanzania, an area typifying the so‐called ‘affected drylands’ of Africa. Three sets of land cover maps synchronized against long‐term rainfall data (1960s, 1991 and 1999) were used to assess land degradation in the area. Utilizing these three sets of land cover maps as a basis for change detection, it is possible to distinguish areas that experienced changes in vegetation due to rainfall variability from those areas that were subject to changes consequent upon anthropological factors. All areas that displayed overall depletion of natural and semi‐natural vegetation due to human factors were deemed to have undergone land degradation, whereas areas that experienced inter‐annual land cover changes due to rainfall variability were classified as experiencing cover change due to ecosystem dynamics. This method provides a complete and appropriate assessment of land degradation in the study area and can be used to improve degradation assessment in other semiarid areas. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
    
Soil organic carbon (SOC) has a high impact on the sustainability of ecosystems, global environmental processes, soil quality and agriculture. Long-term tillage usually leads to SOC depletion. The purpose of this study was to determine the impact of different land uses on water extractable organic carbon (WEOC) fractions and to evaluate the interaction between the WEOC fractions and other soil properties. Using an extraction procedure at 20°C and 80°C, two fractions were obtained: a cold water extractable organic carbon (CWEOC) and a hot water extractable organic carbon (HWEOC). The results suggest that there is a significant impact from different land uses on WEOC. A lower relative contribution of WEOC in SOC and a lower concentration of labile WEOC fractions are contained in arable soil compared to forestlands. Chernozem soil was characterized by a lower relative contribution of WEOC to the SOC and thus higher SOC stability in contrast to Solonetz and Vertisol soils. Both CWEOC and HWEOC are highly associated with SOC in the silt and clay fraction (<53 µm) and were slightly associated with SOC in the macroaggregate classes. The WEOC fractions were highly and positively correlated with the SOC and mean weight diameter.  相似文献   

3.
4.
利用1996年、2005年Landsat TM/ETM+遥感影像和野外调查数据,运用ArcGIS分析土地利用变化,并基于DEM探究松花江流域哈尔滨段土地利用空间格局的时空演变。结果表明:区域土地利用空间位置转换面积小于其数量变化,土地利用变化面积大小顺序为:林地>耕地>草地>水域>未利用地>建设用地;土地利用转化过程以耕地-林地、草地-林地和未利用地-林地为主,其中耕地-林地相互转换最为剧烈,林地、水域和建设用地具有较高的保留率,草地、未利用地和耕地具有较高的转换率;海拔300~600 m、坡度大于25°的区域,以林地-耕地和草地-耕地为主,局部存在滥垦草地、毁林开荒等现象。该区域是黑龙江省重要粮食产区,此研究有助于加强土地资源的保护和实施退耕还林、还草等农林复合经营措施,对缓解人地矛盾、实现土地资源合理利用及维持区域生态平衡具有重要意义。  相似文献   

5.
    
Land management in agricultural lands has important effects on soil organic carbon (SOC) dynamics. These effects are particularly relevant in the Mediterranean region, where soils are fragile and prone to erosion. Increasing interest of modelling to simulate SOC dynamics and the significance of soil erosion on SOC redistribution have been linked to the development of some recent models. In this study, the SPEROS‐C model was implemented in a 1.6‐ha cereal field for a 150‐year period covering 100 years of minimum tillage by animal traction, 35 years of conventional tillage followed by 15 years of reduced tillage by chisel to evaluate the effects of changes in land management on SOC stocks and lateral carbon fluxes in a Mediterranean agroecosystem. The spatial patterns of measured and simulated SOC stocks were in good agreement, and their spatial variability appeared to be closely linked to soil redistribution. Changes in the magnitude of lateral SOC fluxes differed between land management showing that during the conventional tillage period the carbon losses is slightly higher (0.06 g C m−2 yr−1) compared to the period of reduced till using chisel (0.04 g C m−2 yr−1). Although the results showed that the SPEROS‐C model is a potential tool to evaluate erosion induced carbon fluxes and assess the relative contribution of different land management on SOC stocks in Mediterranean agroecosystems, the model was not able to fully represent the observed SOC stocks. Further research (e.g. input parameters) and model development will be needed to achieve more accurate results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
采用LBV变形卫星图像对中国亚热带地区土壤灰化进行研究   总被引:1,自引:0,他引:1  
This paper describes a new type of transformed Landsat images (LBV images) and their application in discriminating soil gleization in subtropic region of China,LBV transformaition was worked out by the present author for extracting useful information from original landsat images.Using this method three black and white images,L image ,B image and V image ,were computer generated from original bans of a Landsat scene,which covers a large area of 34 528 km^2 in Hubei and Hunan province in south China.Then a Color composite was produced by these three images .This kind of black-and-white and color images contained rich and definite geographic in formation.By a field work ,the relationship between the colors on the composite and the land use/cover categories on the graound wa established.37 composite colors and 70 ground feature categories an be discriminated altogether,Finally,17 land use/cover categories and 10 subregions suffering from soil gleization were detemined ,and the gleiztion area for the study area was estimated to be 731.3 km^2.  相似文献   

7.
This paper introduces briefly two remote sensing case studies on land use in the subtropic region of China. One is on slope land use in the Yangtze River Three Gorges area. This is a large area of 60497 km2. First of all, geometric correction and supervised classification were conducted for ten scenes of Landsat-5 TM or MSS images. The resolution of the processed images is 50 m × 50 m on ground. By the classification the land use/cover categories in this area were discriminated. Then the croplands including rice fields and upland fields were extracted from the land use/cover maps. Simultaneously the slope grade maps were prepared based on the topographic maps. Overlaying the slope grade maps and the cropland maps, the area and percentage of the croplands in different slope grades were determined. This case study indicated that 71.5% of the uplands was situated on the slope above 150 and 25% on the slope above 250 in this area. It is dangerous, and urgent cultivation or engineering measures should be taken. Another case study is on soil erosion in Linshan County of Guangxi Province. Airphoto interpretation and supervised classification of a Landsat TM image were carried out for discriminating land cover/use categories in an area of 3 557.8 km2. And the soil erosion intensity grades were determined according to the land cover/use maps and slope maps. It wad discovered that the land suffering soil erosion accounted for 2404.0 km2, 67.6% of the total area of the county. Necessary measures to control soil erosion should be taken also.  相似文献   

8.
    
For a quantitative analysis of SOC dynamics it is necessary to trace the origins of the soil organic compounds and the pathways of their transformations. We used the 13C isotope to determine the incorporation of maize residues into the soil organic carbon (SOC), to trace the origin of the dissolved organic carbon (DOC), and to quantify the fraction of the maize C in the soil respiration. The maize‐derived SOC was quantified in soil samples collected to a depth of 65 cm from two plots, one ’︁continuous maize’ and the other ’︁continuous rye’ (reference site) from the long‐term field experiment ’︁Ewiger Roggen’ in Halle. This field trial was established in 1878 and was partly changed to a continuous maize cropping system in 1961. Production rates and δ13C of DOC and CO2 were determined for the Ap horizon in incubation experiments with undisturbed soil columns. After 37 years of continuous maize cropping, 15% of the total SOC in the topsoil originated from maize C. The fraction of the maize‐derived C below the ploughed horizon was only 5 to 3%. The total amount of maize C stored in the profile was 9080 kg ha−1 which was equal to about 31% of the estimated total C input via maize residues (roots and stubble). Total leaching of DOC during the incubation period of 16 weeks was 1.1 g m−2 and one third of the DOC derived from maize C. The specific DOC production rate from the maize‐derived SOC was 2.5 times higher than that from the older humus formed by C3 plants. The total CO2‐C emission for 16 weeks was 18 g m−2. Fifty‐eight percent of the soil respiration originated from maize C. The specific CO2 formation from maize‐derived SOC was 8 times higher than that from the older SOC formed by C3 plants. The ratio of DOC production to CO2‐C production was three times smaller for the young, maize‐derived SOC than for the older humus formed by C3 plants.  相似文献   

9.
土壤有机质(SOM)是陆地生态系统中碳循环的重要源与汇[1-3]。其不仅能提高土壤肥力和生产力,且其对碳的固定也是人类应对大气CO2浓度升高的重要途径[4-5]。在区域尺度上,土壤有机质主要受气候、土地利用方式、地理因素如海拔高度、坡度和质地等差异的影响[6-9]。且不同自然地理条件和社会经济发展水平的区域,其土壤有机质的主要影响因素及其影响程度也会有所差异[10-12]。  相似文献   

10.
    
Climatic effect on lignin and polysaccharides in particle-size fractions of zonal steppe soils, Russia Zonal soils derived from similar parent materials are suitable for investigating the question, whether and how climate affects soil organic matter properties. For this reason we sampled 10 native surface (0—10 cm) and subsurface (ca. 50—60 cm) soil horizons in the native steppe and forest steppe of Russia. Polysaccharides and the vanillyl, syringyl and cinnamyl structural units of lignin (VSC) were determined in the fine earth (< 2 mm) as well as in clay (< 2 μm) and silt (2—20 μm) fractions. As the ratio of mean annual precipitation to potential evaporation (N/V) decreased, the concentrations of polysaccharides tended to decrease in the subsoil horizons. This was indicated most clearly for the silt fractions (r = 0.98**). In contrast, the VSC contents (in g kg—1 organic C) of the subsoils increased as N/V decreased (r = —0.92*), resulting in increasing VSC/polysaccharide ratios of the subsoil horizons with decreasing N/V ratio (r = —0.94*). It is suggested that production of polysaccharides or their transport into the mineral subsoil or both is favored at sites with wide rather than narrow N/V ratio, whereas lignin might be selectively enriched during intense soil organic matter decay at the Southern sites.  相似文献   

11.
    
Relationships between climatic factors and C, N pools in particle-size fractions of steppe soils, Russia Many soils of the Russian steppe are characterized by high soil organic matter contents and similar parent material. Thus, they are suitable for investigations of a climatic impact on C and N pools. We sampled 10 topsoils of the zonal Russian steppe at 0–10 and about 50–60 cm depth intervals. After particle-size fractionation into clay (<2 μm), silt (2–20 μm), fine sand (20–250 μm) organic C and N concentrations were determined in bulk soils and fractions. The results suggest that especially the older organic matter of the subsoil (in the silt fraction) is correlated with climatic factors. Topsoils show less evidence for climatic influences on C and N pools. As the ratio of mean annual precipitation to potential evaporation (=N/V) increases, C/N ratios decrease in all fractions and, thus, in the bulk subsoil. Obviously the degree of soil organic matter alteration was more pronounced in the order Greyzem (N/V = 1.0) > Chernozem, Phaeozem (N/V = 0.89) > Haplic Kastanozem (N/V = 0.6) > Calcic (N/V = 0.34), and Gypsic Kastanozem (N/V = 0.32). The organic carbon contents of the bulk subsoil are highest in the subsoil of the Chernozem and Phaeozem, and decrease with increasing N/V ratio (i.e., increasing heat input and dryness) to the Calcic Kastanozem. This is accompanied by an increasing enrichment of organic carbon in the silt fractions (r = ?0.99 for the correlation of the C enrichment in silt with N/V).  相似文献   

12.
黑土区田块尺度土壤有机质含量遥感反演模型   总被引:9,自引:4,他引:5       下载免费PDF全文
为了对田块尺度土壤有机质进行空间反演并提高模型精度和稳定性,该文以黑龙江省黑土带41.3 hm~2田块为例,获取2016年5月中下旬两期(受限于拍摄周期和天气原因而选择不同卫星影像,2016年5月17日Landsat 8影像和5月25日Sentinel-2A影像)裸土时期遥感影像和4 m分辨率DEM数据;分析单期影像与土壤有机质(soil organic matter,SOM)的关系,两期影像所包含的土壤含水量变化信息与地形因素对SOM预测模型精度的影响,建立基于BP神经网络的SOM遥感反演模型。结果表明:该田块内SOM含量差异较大;利用单期影像预测SOM时,基于红波段和785~899 nm波段建立的预测模型精度(建模均方根误差RMSE 1.033,检验RMSE 1.079)和稳定性(建模决定系数R2 0.677,检验R20.644)较高;两期影像时,基于红波段和1 570~1 650 nm波段建立的预测模型精度(建模RMSE 0.855,检验RMSE 0.898)和稳定性(建模R2 0.792,检验R2 0.797)显著提高;在两期影像模型基础上,加入地形因子作为输入量,模型精度(建模RMSE 0.492,检验RMSE 0.499)和稳定性(建模R2 0.917,检验R2 0.928)进一步提高。研究成果可为土壤碳库估算和农田精准施肥提供理论与技术支持。  相似文献   

13.
县域土壤有机质动态变化及其影响因素分析   总被引:12,自引:5,他引:12  
本文以河北省曲周县为例, 采用 1980 年和 1999 年两次全县的土壤肥力监测以及农户调查数据和统计数据, 系统分析了过去 20 年中土壤有机质的动态及其与之相关的农作管理方式的变化。 结果显示, 在过去的近 20 年 间, 曲周县土壤表层的有机质含量呈现增长的趋势, 导致这种变化的农作管理方式有化肥施用量的大幅度提升、秸 秆还田量的增加、盐碱地的开垦利用、灌溉面积和复种指数的提高以及主要种植模式和种植作物的土壤有机质处 于正平衡状态。 然而当前的生产管理方式尽管有利于土壤有机质积累, 但是也带来了一系列的生态环境问题。 实 施保护性耕作、降低化肥用量、提高秸秆还田量和有机肥的用量成为今后农业生产管理方式调整的主要方向。  相似文献   

14.
研究了平原高沙土在保持1990年作物单产水平、保持一定单产增长率条件下,不同种植制度、不同培肥措施下的有机质消长规律,提出了提高土壤有机质的技术途径:优化种植制度不仅产量高,而且土壤理化性状得以改善;合理耕作可增加土壤黏粒含量,提高高沙土肥力水平;采用有机肥与无机肥相结合的培肥措施,通过稻麦留高茬和玉米秸秆还田,可直接提高土壤肥力;提高根茬产量,增加自然回归.  相似文献   

15.
不同土地利用方式对土壤养分及肥力的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
以山东省临沂市四种典型土地利用方式为例,分析不同土地利用方式对土壤养分及肥力的影响.结果表明:不同土地利用方式对有机质(OM)含量具有显著影响,而对pH、全磷(TP)、全氮(TN)、全钾(TK)和土壤颗粒组成无显著影响.不同土地利用方式土壤OM含量由高到低顺序为:水田>未利用地>林地>旱地;TN含量由高到低顺序为:未利用地>林地>水田>旱地;TP含量由高到低顺序为:未利用地>旱地>林地>水田;TK含量由高到低顺序为:林地>水田>旱地>未利用地.相关分析表明,旱地各养分之间的相关系数要大于水田、林地和未利用地,不同土地利用方式对TP和TN之间的相关系数无影响.主成分分析表明,旱地、水田、林地和未利用地综合肥力指标F值大小顺序为:水田(0.86)>林地(0.78)>旱地(0.51)>未利用地(0.43).  相似文献   

16.
目前,水土保持已进入较大区域的集中连片治理阶段,遥感是该阶段水土流失研究的重要技术手段。研究遥感技术在区域水土保持中的应用,首先要摸清遥感在该领域的研究现状。介绍了遥感在国内外区域水土保持中的应用状况,提出了区域水土流失遥感研究存在的问题,并对今后的研究方向提出了建议。  相似文献   

17.
18.
    
Black Mollisols are typically rich in charred organic matter, however, little is known about the zonal distribution of black C (BC) in steppe soils. In this study, we used benzene polycarboxylic acids (BPCA) as specific markers for BC in particle‐size fractions of depth profiles in several zonal soils (Greyzem, Phaeozem, Chernozem, Kastanozem) of the Russian steppe. In addition, liquid‐state 13C‐NMR spectra were obtained on the alkaline‐soluble soil organic matter (SOM). The results showed that both the content and depth distribution of BC varies in the different soil types; the concentration of BC in the bulk top soils being closely related to the aromaticity of the SOM (r2 = 0.98 for the native topsoils, 0.83 for top‐ and subsurface soils). Especially the Chernozems were rich in aromatic SOM, which partly contained more than 17% BC of total C, most of which being allocated in the mineral fractions. Long‐term arable cropping did not reduce the BC contents of the surface soil, though it did promote the enrichment of BC in the silt fractions. The same shift was detected as soil depth increased. We conclude that BC is not fully inert in these soils, but apparently can be preserved in the silt as decomposition of SOM increased, i.e., it accumulates exactly in that fraction, which has been formerly assigned to contain old, aromatic C.  相似文献   

19.
    
Dissolved organic matter (DOM) is important for the cycling and transport of carbon (C) and nitrogen (N) in soil. In temperate forest soils, dissolved organic N (DON) partly escapes mineralization and is mobile, promoting loss of N via leaching. Little information is available comparing DOC and DON dynamics under tropical conditions. Here, mineralization is more rapid, and the demand of the vegetation for nutrients is larger, thus, leaching of DON could be small. We studied concentrations of DOC and DON during the rainy seasons 1998–2001 in precipitation, canopy throughfall, pore water in the mineral soil at 5, 15, 30, and 80 cm depth, and stream water under different land‐use systems representative of the highlands of northern Thailand. In addition, we determined the distribution of organic C (OC) and N (ON) between two operationally defined fractions of DOM. Samples were collected in small water catchments including a cultivated cabbage field, a pine plantation, a secondary forest, and a primary forest. The mean concentrations of DOC and DON in bulk precipitation were 1.7 ± 0.2 and 0.2 ± 0.1 mg L–1, respectively, dominated by the hydrophilic fraction. The throughfall of the three forest sites became enriched up to three times in DOC in the hydrophobic fraction, but not in DON. Maximum concentrations of DOC and DON (7.9–13.9 mg C L–1 and 0.9–1.2 mg N L–1, respectively) were found in samples from lysimeters at 5 cm soil depth. Hydrophobic OC and hydrophilic ON compounds were released from the O layer and the upper mineral soil. Concentrations of OC and ON in mineral‐soil solutions under the cabbage cultivation were elevated when compared with those under the forests. Similar to most temperate soils, the concentrations in the soil solution decreased with soil depth. The reduction of OC with depth was mainly due to the decrease of hydrophobic compounds. The changes in OC indicated the release of hydrophobic compounds poor in N in the forest canopy and the organic layers. These substances were removed from solution during passage through the mineral soil. In contrast, organic N related more to labile microbial‐derived hydrophilic compounds. At least at the cabbage‐cultivation site, mineralization seemed to contribute largely to the decrease of DOC and DON with depth, possibly because of increased microbial activity stimulated by the inorganic‐N fertilization. Similar concentrations and compositions of OC and ON in subsoils and streams draining the forested catchments suggest soil control on stream DOM. The contribution of DON to total dissolved N in those streams ranged between 50% and 73%, underscoring the importance of DOM for the leaching of nutrients from forested areas. In summary, OC and ON showed differences in their dynamics in forest as well as in agricultural ecosystems. This was mainly due to the differing distribution of OC and ON between the more immobile hydrophobic and the more easily degradable hydrophilic fraction.  相似文献   

20.
王大鹏  杨艳超 《水土保持研究》2010,17(5):187-189,194
研究土地利用/覆盖变化的规律和机制对认识人类活动在全球变化中的作用机制具有重要意义。利用1979年的MSS影像和2004年的TM影像资料,运用目视解译方法,获取土地利用信息,使用GIS软件的空间叠加分析功能,获取土地利用/覆盖变化数据。分析表明:在1979-2004年25 a间台儿庄区的土地利用/覆盖状况发生了显著变化,主要表现在农田、林地转变为居民地及其他用地,交通运输用地的增加;并且农田、林地用地的减少是区域内变化速度最显著的土地利用类型;土地利用的集约化程度一直在不断提高。加强耕地保护力度,合理控制建设用地规模,科学开展城市用地规划是确保今后台儿庄区土地可持续利用的合理途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号