首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
High concentrations of estrogens in the peripheral circulation during late gestation inhibit synthesis of LH and markedly reduce pituitary content of LH at the end of pregnancy in most domestic species. Because blood concentrations of estrogen peak shortly before mid-gestation in the mare and then gradually decrease until parturition, we hypothesized that pituitary content of LH may increase during late gestation. To test this hypothesis 10 horse mares were challenged with a maximally stimulatory dose (2 micrograms/kg) of GnRH on d 240 and 320 of gestation and d 3 after parturition. A separate group of four mares were treated with GnRH on d 2 or 3 estrus. Blood samples were collected at -2, -1, 0, .25, .5, .75, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7 and 8 h relative to injection of GnRH and serum was analyzed for concentration of LH and FSH. Basal serum concentration and total quantity of LH released after GnRH stimulation (assessed by determining the area under the response curve) were not different on d 240 and 320 of gestation or on d 3 after parturition (12.5 +/- 3.5, 5.7 +/- 1.5 and 29.1 +/- 12.1 ng.min/ml, respectively) and were less (P less than .05) than on d 3 of estrus (311.0 +/- 54.0 ng.min/ml). There was little difference in the basal serum concentration of FSH at any of the time points examined. In contrast, GnRH-induced release of FSH continually decreased (P less than .05) from d 240 of gestation (559.8 +/- 88.9 ng.min/ml) to d 3 of estrus (51.8 +/- 6.2 ng.min/ml).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Steroid hormones have a profound influence on the secretion of the gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH). These effects can occur as a result of steroid hormones modifying the secretion of gonadotropin-releasing hormone (GnRH) from the hypothalamus, or a direct effect of steroid hormones on gonadotropin secreting cells in the anterior pituitary gland. With respect to the latter, we have shown that estradiol increases pituitary sensitivity to GnRH by stimulating an increase in expression of the gene encoding the GnRH receptor. Since an estrogen response element (ERE) has not been identified in the GnRH receptor gene, this effect appears to be mediated by estradiol stimulating production of a yet to be identified factor that in turn enhances expression of the GnRH receptor gene. However, the importance of estradiol for enhancing pituitary sensitivity to GnRH during the periovulatory period is questioned because an increase in mRNA for the GnRH receptor precedes the pre-ovulatory rise in circulating concentrations of estradiol. In fact, it appears that the enhanced pituitary sensitivity during the periovulatory period may occur as a result of a decrease in concentrations of progesterone rather than due to an increase in concentrations of estradiol. Estradiol also is capable of altering secretion of FSH and LH in the absence of GnRH. In a recent study utilizing cultured pituitary cells from anestrous ewes, we demonstrated that estradiol induced a dose-dependent increase in secretion of LH, but resulted in a dose-dependent decrease in the secretion of FSH. We hypothesized that the discordant effects on secretion of LH and FSH might arise from estradiol altering the production of some of the intrapituitary factors involved in synthesis and secretion of FSH. To examine this hypothesis, we measured amounts of mRNA for activin B (a factor known to stimulate synthesis of FSH) and follistatin (an activin-binding protein). We found no change in the mRNA for follistatin after treatment of pituitary cells with estradiol, but noted a decrease in the amount of mRNA for activin B. Thus, the inhibitory effect of estradiol on secretion of FSH appears to be mediated by its ability to suppress the expression of the gene encoding activin.  相似文献   

3.
This experiment was conducted to investigate the effect of naloxone (NAL), an opioid receptor antagonist, on pituitary LH secretion in anovulatory Holstein cows during the early postpartum period when cows were expected to be in negative net energy balance. Twenty-three cows (11 primiparous) received either saline (n = 12) or 1 mg/kg BW NAL i.v. (n = 11) on Day 14 or 15 postpartum. Jugular blood samples were collected at 15-min intervals for 2 hr before and 2.5 hr after NAL or saline. All cows received 3 ug gonadotropin releasing hormone (GnRH) at 2.5 hr post-NAL or -saline and blood collection was continued for 1 hr. Mean serum progesterone concentration was 0.33 ± 0.2 ng/ml. Mean net energy balance for all cows was -5.5 ± 0.6 Mcal/day. Naloxone caused a transient increase (P < 0.05) in serum LH concentrations in both primi- and multiparous cows within 45 min after administration. In contrast, serum LH concentrations remained unchanged in saline-treated cows. GnRH increased (P < 0.05) LH and there was no effect of treatment. These results suggest that modulation of LH secretion, at least in part, may be mediated via endogenous opioids in dairy cows before first postpartum ovulation.  相似文献   

4.
Two experiments were conducted to determine the minimal effective dose during lactation and site of action of N-methyl-d,l-aspartic acid (NMA) for elicitation of release of luteinizing hormone (LH) in female pigs. In the first experiment, three doses of NMA were given to lactating primiparous sows in which endogenous LH was suppressed by suckling of litters. In the second experiment, ovariectomized gilts were pretreated with estradiol benzoate or porcine antisera against GnRH to suppress LH and then given NMA to determine if it elicited secretion of LH directly at the anterior pituitary or through release of GnRH. In experiment 1, 3 lactating sows (17 +/- 1.5 d postpartum) were each given three doses of NMA (1.5, 3.0 and 5.0 mg/kg body weight [BW]; IV) on 3 consecutive days in a Latin Square design. Blood samples were collected every 10 min from -1 to 1 hr from injection of NMA. NMA at 1.5 and 3.0 mg/kg did not affect (p greater than .5) secretion of LH; however, 5 mg NMA/kg elicited a 114% increase (p less than .001) in circulating levels of LH during 1 hr after treatment. In experiment 2, 8 ovariectomized gilts were given either estradiol benzoate (EB; 10 micrograms/kg BW; IM n = 4) to suppress release of GnRH or porcine antiserum against GnRH (GnRH-Ab; titer 1:8,000; 1 ml/kg BW; IV; n = 4) to neutralize endogenous GnRH. Gilts infused with GnRH-Ab were given a second dose of antiserum 24 hr after the first. Gilts were then given NMA (10 mg/kg BW; IV) 33 hr after EB or initial GnRH-Ab. Blood samples were drawn every 6 hr from -12 to 24 hr from EB or GnRH-Ab treatments, and every 10 min from -2 to 2 hr from NMA. Serum LH declined (p less than .001) after EB (from 1.87 +/- .2 ng/ml at 12 hr before EB to 0.46 +/- .02 ng/ml during 24 hr after EB) and GnRH-Ab (from 1.97 +/- .1 to 0.59 +/- .02 ng/ml). In gilts treated with EB, the area under the curve (AUC) for the LH response (ng.ml-1.min) 1 hr after NMA (38.7 +/- 3) was significantly greater (p less than .01) than the 1 hr prior to NMA (21.3 +/- 1.5). Treatment with NMA had no effect (p greater than .5) on secretion of LH in gilts infused with GnRH-Ab.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
An attempt was made to induce precocious puberty in gilts approximately 164 days of age by stimulating a luteinizing hormone (LH) secretory pattern similar to that which occurs before normal onset of puberty. Hourly iv administration of 1 μg synthetic gonadotropin releasing hormone (GnRH) for 7 or 8 days resulted in a mean serum LH concentration of 1.7 ± .3 ng/ml in three treated gilts compared with .9 ± .1 ng/ml in three control gilts (P<.08). Serum LH peak frequency was also greater (P<.05) in treated (3.4 ± .5 peaks/4 hr) than in control gilts (1.2 ± .1 peaks/4 hr), but serum LH peak amplitude was not altered (P>.33) by GnRH treatment. All treated gilts displayed estrus and ovulated within 6 days after treatment began, and all control gilts remained prepuberal throughout the study (P=.05). Only one of the three treated gilts displayed a normal estrous cycle and reovulated after treatment. Precocious ovulation but not puberty was induced in gilts by hourly administration of 1 μg synthetic GnRH, indicating that the pituitary and ovaries of 164-day-old gilts are competent and that final sexual maturation occurs at the hypothalamic level.  相似文献   

6.
The transition from anoestrus to oestrus in mares is controlled by photoperiod. The present study examined whether additional daylength would accelerate the mares' response to gonadotrophin-releasing-hormone (GnRH). Nine anoestrous mares were placed under ambient or artificial long lighting on 7th January. The four month experimental period was divided into a three-day sequence which was repeated at 21 day intervals. Ovaries were palpated rectally on Day 1; saline was injected (1 ml intravenously [iv]) on Day 2; GnRH was administered (0.59 microgram/kg bodyweight iv) on Day 3. Blood was taken at -60, 0, 15, 30, 60 and 120 mins relative to saline or GnRH treatment. Serum luteinising hormone (LH) was determined by a homologous equine radioimmunoassay (RIA). Several criteria were employed to define a positive response to GnRH and the results were analysed by Fisher's exact probability test. Treatment with artificial light allowed a response to GnRH within six weeks whereas the mares in ambient lighting took 12 weeks to respond to GnRH. The advancement in the time of response to GnRH under the long photoperiod could be related to changes in pituitary LH content, accelerated follicular activity or alterations in other brain-pituitary hormone levels.  相似文献   

7.
Two experiments were conducted with ewes 9 to 11 days after estrus to determine whether the secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) are controlled differentially. In experiment 1, gonadotropin-releasing hormone (GnRH) was injected (100 (μg/ewe) at time = 0 min into ewes in four treatment groups. The treatment groups (9 ewes/group) were: 1) periodic iv sodium pentobarbital (NaPen) vehicle from 0 min; 2) periodic iv NaPen from 0 min; 3) vehicle iv for 120 min then iv NaPen from 120 min; 4) vehicle iv for 150 min then iv NaPen from 150 min. A surgical plane of anesthesia was maintained from the initiation of NaPen injection until the experiment ended. Jugular blood was sampled at 30-min intervals from ?30 to + 210 min for LH and FSH assays, and profiles of hormone concentrations were compared by time-trend analyses. GnRH released LH (P<.001) and FSH (P<.001), but NaPen did not affect the profiles of hormone concentrations; this indicated that NaPen did not reduce the ability of the pituitary to secrete gonadotropins in response to GnRH. Experiment 2 was a 2x2 factorial with ovariectomy (time = 0 hr) and NaPen as the main effects. One group of ovariectomized (n = 6) and one group of sham ovariectomized (n = 6) ewes were anesthetized only during surgery, while a group of ovariectomized (n = 7) and a group of sham ovariectomized (n = 6) ewes were kept at a surgical plane of anesthesia until 10 hr after surgery. Patterns of LH and FSH were compared in jugular blood collected hourly from 0 hr until 10 hr after surgery and in samples collected at 24 hr intervals from -24 to +72 hr of surgery. After ovariectomy, LH increased (P<.001) hourly and daily, but anesthesia suppressed (hourly, <.001 and daily, P<.005) these increases, which resulted in an interaction (hourly, P<.001 and daily, P<.01) of ovariectomy and anesthesia. FSH after ovariectomy increased hourly and daily (hourly, P<.02 and daily, P<.001), but the effect of anesthesia and interaction of ovariectomy and anesthesia were not significant. Because NaPen did not alter secretion of LH or FSH after exogenous GnRH in experiment 1 while it blocked the postovariectomy increase in LH but not FSH in experiment 2, we concluded that the postovariectomy increase in LH resulted from increased hypothalamic secretion of GnRH. The mechanisms responsible for the postovariectomy increase in FSH secretion are not identical to those for LH. The mechanisms that control the postovariectomy secretion of FSH might involve factors that are not suppressible by NaPen or, alternatively, the differences in LH and FSH release after ovariectomy might reflect the removal of ovarian factors that suppress FSH but not LH secretion in intact ewes.  相似文献   

8.
Pregnant beef heifers (n = 24) were assigned randomly to four groups and slaughtered at day 1, 15, 30 or 45 postpartum. The day prior to slaughter blood samples were taken from each cow every 15 min for 8 hr. The anterior pituitary gland, preoptic area (POA) and medial basal hypothalamus (HYP) were collected from each cow. Contents of gonadotropin-releasing hormone (GnRH) in extracts of POA and HYP, and luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in extracts of anterior pituitary were quantified by radioimmunoassay. In the anterior pituitary gland, membrane receptors for GnRH were quantified by a standard curve technique and cytosolic receptors for estradiol were quantified by saturation analysis. Concentrations of LH, FSH and prolactin in serum were quantified by radioimmunoassay. Only one cow of eight had a pulse of LH during the 8 hr bleeding period on day 1 postpartum. This increased to 8 pulses in 6 cows on day 30 postpartum. Contents of GnRH in POA (15.0 +/- 3.2 ng) and HYP (14.0 +/- 2.0 ng) did not change significantly during the postpartum period. Pituitary content of LH was low following parturition (.2 +/- .1 mg/pituitary) and increased significantly through day 30 postpartum (1.2 +/- .1 mg/pituitary). Pituitary content of FSH did not change over the postpartum period. Receptors for both GnRH (.9 +/- .2 pmoles/pituitary) and estradiol (5.0 +/- .9/moles/pituitary) were elevated on day 15 postpartum, possibly increasing the sensitivity of the anterior pituitary gland to these hormones and leading to an increased rate of synthesis of LH that restored pituitary content to normal by day 30 postpartum.  相似文献   

9.
Ten gilts on day 6·11 of the estrous cycle (onset of estrus = day 0) were given 115 mg of naloxone (NAL), an opioid antagonist, in saline i.v. (n = 5) or saline Lv. (n = 5). Jugular blood was collected at 15 min intervals for 2 hr before and 4 hr after treatment. Serum LH concentrations were 0.4 ± 0.1 ng/ml before NAL treatment, increased (P<.01) to 4.3 ± 0.7 ng/ml at 15 min following NAL treatment and returned to control concentrations by 75 minutes. Serum PRL concentrations were 5.0 ± 0.1 ng/ml before NAL treatment, increased (P<.05) to 14.8 ± 2.9 ng/ml at 30 min following NAL treatment and returned to control concentrations by 120 minutes. Serum LH and PRL concentrations were 0.5 ± 0.1 ng/ml and 5.2 ± 0.4 ng/ml, respectively, at 15 min following saline treatment and remained unchanged throughout the blood sampling period. Four of the 5 NAL treated gilts responded with an increase in both serum LH and PRL concentrations. The mean of serum progesterone concentrations, quantitated in samples taken every 2 hr, were similar for controls (22.7 ± 1.8 ng/ml) and NAL (26.5 ± 1.4 ng/ml) treated gilts. The gilt which failed to respond to NAL had nondetectable concentrations of serum progesterone and was excluded from analysis. These data indicate that the opioids modulate LH and PRL secretion during the luteal phase of the estrous cycle.  相似文献   

10.
Thirty-five ovariectomized pony mares were used to study the relationships among luteinizing hormone (LH), follicle stimulating hormone (FSH) and prolactin (PRL) concentrations in blood (secretion), in pituitary (storage) and in blood after secretagogue administration, as well as the content of gonadotropin releasing hormone (GnRH) in hypothalamic areas, under various conditions of steroidal and nonsteroidal treatment. Five mares each were treated daily for 21 d with vegetable shortening (controls), testosterone (T; 150 micrograms/kg of body weight, BW), dihydrotestosterone (DHT; 150 micrograms/kg BW), estradiol (E2; 35 micrograms/kg BW), progesterone (P4; 500 micrograms/kg BW), dexamethasone (DEX; 125 micrograms/kg BW) or charcoal-stripped equine follicular fluid (FF; 10 ml). Secretagogue injections (GnRH and thyrotropin releasing hormone, TRH, at 1 and 4 micrograms/kg of BW, respectively) were given one d prior to treatment and again after 15 d of treatment. Relative to controls, treatment with T, DHT and DEX reduced (P less than .05) LH secretion, storage and response to exogenous GnRH, whereas treatment with E2 increased (P less than .05) these same characteristics. Treatment with P4 reduced (P less than .05) only LH secretion. Treatment with T, DHT, E2 and DEX reduced (P less than .05) FSH secretion, whereas treatment with P4 increased (P less than .05) it and FF had no effect (P greater than .1). All treatments increased (P less than .05) FSH storage, whereas only treatment with T and DHT increased (P less than .05) the FSH response to exogenous GnRH. Other than a brief increase (P less than .05) in PRL secretion in mares treated with E2, secretion of PRL did not differ (P greater than .1) among groups. Only treatment with E2 increased (P less than .01) PRL storage, yet treatment with T or DHT (but not E2) increased (P less than .05) the PRL response to exogenous TRH. Content of GnRH in the body and pre-optic area of the hypothalamus was not affected (P greater than .1) by treatment, whereas treatment with T, E2 and DEX increased (P less than .1) GnRH content in the median eminence. For LH, secretion, storage and response to exogenous GnRH were all highly correlated (r greater than or equal to .77; P less than .01). For FSH, only storage and response to exogenous GnRH were related (r = .62; P less than .01). PRL characteristics were not significantly related to one another. Moreover, the amount of GnRH in the median eminence was not related (P greater than .1) to any LH or FSH characteristic.  相似文献   

11.
Five lighthorse mares were actively immunized against gonadotropin releasing hormone (GnRH) conjugated to bovine serum albumin (BSA) to study the involvement of GnRH in luteinizing hormone (LH) and follicle stimulating hormone (FSH) secretion following ovariectomy (OVX) and after administration of testosterone propionate (TP). Five mares immunized against BSA served as controls. Immunizations were started on November 1, and OVX was performed in June (d 1). All mares were treated with TP from d 50 to 59 after OVX. On the day of OVX, concentrations of LH were lower (P less than .05) in GnRH-immunized mares than in BSA-immunized mares and were generally nondetectable; FSH concentrations were reduced (P less than .05) by 50% in GnRH-immunized mares relative to BSA-immunized mares. In contrast to BSA-immunized mares, plasma concentrations of LH or FSH did not increase after OVX in GnRH-immunized mares. The LH response to GnRH analog (less than .1% cross-reactive with GnRH antibodies) on d 50 was reduced (P less than .05) by 97% in GnRH-immunized mares relative to BSA-immunized mares, whereas the FSH response was similar for both groups. Treatment with TP for 10 d reduced (P less than .01) the LH response and increased (P less than .01) the FSH response to GnRH analog in BSA-immunized mares, but it had no effect (P greater than .1) on the response of either gonadotropin in GnRH-immunized mares.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Seventeen seasonally anovulatory light horse mares were treated daily, starting January 5 (d 1), for 28 d with GnRH analog (GnRH-A; 50 ng/kg BW) and(or) thyrotropin-releasing hormone (TRH; 5 microg/kg BW) in a 2 x 2 factorial arrangement of treatments to test the hypothesis that combined treatment may stimulate follicular growth and development. Ovaries were examined via ultrasonography and jugular blood samples were collected every 3 d. Frequent blood samples were collected after treatment injections on d 1, 2, 4, 7, 11, 16, and 22; on d 29, all mares received an i.v. mixture of GnRH, TRH, sulpiride, and EP51389 (a growth hormone secretagogue) to assess pituitary responsiveness. No consistent effects (P > 0.1) of treatment were observed for plasma LH, FSH, prolactin, or thyroxine concentrations in samples collected every 3 d. The only effect on ovarian follicle numbers was a reduction in number of follicles 11 to 19 mm in diameter due to TRH treatment (P = 0.029). No mare ovulated during treatment. On the days of frequent sampling, mean LH (P = 0.0001) and FSH (P = 0.001) concentrations were higher in mares receiving GnRH-A and tended to increase from d 1 through 7. In contrast, mean prolactin (P = 0.001) and thyroid-stimulating hormone (P = 0.0001) concentrations were high in mares receiving TRH on d 1 but rapidly decreased thereafter. When mares were administered the secretagogue mixture on d 29, the LH response was greater (P = 0.0002) in mares that had previously received GnRH-A but the FSH response was not affected (P > 0.1); the prolactin response was greater (P = 0.014) and the TSH response was smaller (P = 0.0005) in mares that had previously received TRH. Surprisingly, an immediate growth hormone response to EP51389 was absent in all mares. In conclusion, daily GnRH-A treatment stimulated plasma LH and FSH concentrations immediately after injection; although no long-term elevation in preinjection concentrations was achieved, the responses gradually increased over time, indicating a stimulation of gonadotropin production and storage. Daily treatment with TRH stimulated plasma TSH and prolactin concentrations, but the response diminished rapidly and was minimal within a few days, indicating a depletion of pituitary stores and little or no stimulation of production. There was no beneficial effect of adding TRH treatment to the daily GnRH-A regimen.  相似文献   

13.
Twenty ovariectomized pony mares were used to determine if dihydrotestosterone propionate (DHTP) administration, with or without estradiol benzoate (EB) pretreatment, would have the same effects on follicle stimulating hormone (FSH) and luteinizing hormone (LH) secretion as testosterone propionate (TP) administration. All mares were given an initial injection of gonadotropin releasing hormone (GnRH) to characterize their LH and FSH response, and then two groups of mares (n = 4/group) were administered EB (22 micrograms/kg of body weight), two groups were administered vehicle (safflower oil) and a fifth group was administered TP (175 micrograms/kg of body weight) daily for 10 days. Following a second injection of GnRH, one group of EB-treated mares and one group of oil-treated mares were administered DHTP (175 micrograms/kg of body weight) daily for 10 days; the other EB- and oil-treated mares were administered oil and the TP-treated mares were continued on the same dose of TP for 10 days. A final injection of GnRH was then given. Treatment with EB increased (P less than .01) concentrations of LH in daily blood samples and increased (P less than .05) the LH response to exogenous GnRH. Administration of TP or DHTP reduced (P less than .05) both daily LH concentrations and the LH response to exogenous GnRH. Concentrations of FSH in daily blood samples were reduced (P less than .05) and the FSH response to exogenous GnRH was increased (P less than .05) by administration of EB alone, DHTP alone or TP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
In Exp. 1, 16 long-term ovariectomized pony mares were used to determine the effects of treatment with estradiol benzoate (EB) and dihydrotestosterone (DHT) benzoate alone, and in combination, on secretion of follicle stimulating hormone (FSH) and luteinizing hormone (LH) in daily blood samples and after three consecutive injections of gonadotropin releasing hormone (GnRH). Administration of EB alone, or in combination with DHT, every other day for 11 d reduced (P less than .05) concentrations of FSH and increased (P less than .05) concentrations of LH in daily blood samples, and increased (P less than .05) the secretion of both gonadotropins after administration of GnRH. Treatment with DHT alone had no effect (P greater than .10) on LH or FSH concentrations in daily blood samples and no effect on the LH response to exogenous GnRH. There was no interaction (P greater than .10) between DHT and EB treatment for any hormonal characteristic. In Exp. 2, the control mares and mares treated with DHT in Exp. 1 were equally allotted to treatment with vehicle or testosterone propionate (TP) every other day for six injections, and then GnRH was administered as in Exp. 1. Treatment with TP had no effect (P greater than .10) on LH or FSH concentrations in daily blood samples but increased (P less than .05) the FSH response to exogenous GnRH, confirming our findings in previous experiments. It is concluded that the TP-induced stimulation of FSH secretion after exogenous GnRH in ovariectomized mares may involve estrogens produced from aromatization of the injected androgen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Hypophysial stalk transection (HST) or sham operation (S-HST) was performed on 14 prepuberal gilts, 169 ± 3 days of age and 72.8 ± 3.4 kg body weight (day of surgery = Day 0). Gilts received 1,000 IU of pregnant mare's serum gonadotropin (PMSG) or saline vehicle (V) intramuscularly (im) on Day 2 resulting in the following groups: S-HST + V (n=3), S-HST + PMSG (n=4), HST + V (n=3) and HST + PMSG (n=4). Ovarian morphology and weights were recorded after ovariectomy on Day 6. Gilts were weighed on Day 59 ± 3. Sequential blood samples were collected via jugular vein cannula from 6 S-HST and 6 HST gilts on Day 60 ± 3, and all gilts were necropsied on Day 86 ± 7. Body weight gain and whole pituitary gland weight were greater (P<0.05) for S-HST than HST gilts. Mean serum LH concentration, basal serum LH concentration, frequency of LH peaks and LH peak amplitude were greater (P<0.005) for S-HST than HST gilts. Serum PRL and GH, were similar for both groups. Total ovarian and follicular fluid weights were greater (P<0.05) in S-HST gilts given PMSG than those of the other three groups which did not differ. Therefore, PMSG stimulated follicular growth in S-HST gilts, but failed to stimulate follicular growth in HST gilts. We suggest that a critical basal serum LH and/or FSH concentration must be maintained to support and promote follicular growth and a pulsatile delivery of GnRH to the anterior pituitary gland by an intact brain-pituitary unit may be required to provide this basal serum gonadotropin concentration.  相似文献   

16.
Twelve long-term ovariectomized (OVX) pony mares were used to determine the effects of dexamethasone (DEX) or progesterone (PR) on concentrations of follicle stimulating hormone (FSH) and luteinizing hormone (LH) in daily blood samples and after administration of gonadotropin releasing hormone (GnRH). All mares were subsequently administered dihydrotestosterone (DHT) to determine if DEX or PR treatment altered the FSH or LH response to this androgen. Daily blood sampling was started on day 1. After a pretreatment injection of GnRH on day 5, four mares were administered DEX at 125 micrograms/kg of body weight (BW), four mares were administered PR at 500 micrograms/kg of BW and four mares were administered vehicle. Injections were given subcutaneously in vegetable shortening daily through day 14. After a second injection of GnRH on day 15, all mares were administered DHT in shortening at 150 micrograms/kg of BW. Injections of DHT were given daily through day 24. A final injection of GnRH was given on day 25. Treatment of mares with DEX 1) reduced (P less than .01) daily LH secretion and briefly increased (P less than .05) daily FSH secretion and 2) increased (P less than .01) the FSH response to exogenous GnRH. Treatment of mares with PR had no effect on daily LH secretion but increased (P less than .05) daily FSH secretion and increased (P less than .01) the FSH response to exogenous GnRH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The objective was to determine how estradiol (0 vs 1 mg) and changes in the dosage of luteinizing hormone releasing hormone (LHRH; 1,000 ng/steer vs 1 ng/kg body weight) and frequency of LHRH injection (25 vs 50 min) affect LH and follicle stimulating hormone (FSH) release in steers. In steers pretreated with estradiol peak concentrations of LH in serum after LHRH averaged 14.4 ng/ml, which was greater (P less than .001) than peak concentrations in steers given oil (7.4 ng/ml). Increasing the dosage of LHRH from 1 ng/Kg body weight (approximately or equal to 300 ng/steer) to 1,000 ng/steer increased (P less than .001) peak LH values from 7.5 to 14.4 ng/ml. Furthermore, increasing the frequency of LHRH injections from once every 50 min to once every 25 min increased (P less than .001) LH release, but only in steers given estradiol. Estradiol reduced basal concentrations of FSH by 65% and then increased LHRH-induced FSH release by 276% (P approximately .07) relative to values for steers given oil. Only when 1,000 ng LHRH was given every 25 min to steers pretreated with estradiol were LH and FSH release profiles similar to the preovulatory gonadotropin surges of cows in magnitude, duration and general shape. The results demonstrate that increases in the dosage or frequency of LHRH pulses increase LHRH-induced release of LH, but not of FSH. Furthermore, these results are consistent with the hypothesis that in cows, estradiol increases responsiveness of the gonadotrophs to LHRH and then increases the magnitude and frequency of pulses of LHRH secretion beyond basal levels, thereby causing the preovulatory gonadotropin surges.  相似文献   

18.
Sexually mature gilts (n = 20) were actively immunized against GnRH. Primary and booster immunizations of GnRH conjugated to bovine serum albumin induced production of antibodies in all gilts. Nineteen of the gilts became acyclic with suppressed concentrations of gonadotropins and estradiol. Intravenous challenges with 100 micrograms GnRH and 5 micrograms D-(Ala6, des-Gly-NH2(10)) ethylamide GnRH (a GnRH agonist that did not cross-react with antibodies produced by the gilts) caused release of LH and FSH, indicating maintenance of secretory capacity of pituitary gonadotropes in the immunized animals. Gilts were given 100 ng GnRH agonist at 2-h intervals for 72 h (n = 4) or 144 h (n = 10) or did not receive agonist (n = 5). Blood samples were taken every 6 h, and detectable concentrations of LH were observed in 42% and 52% of samples taken from gilts treated with or without agonist. In contrast, serum concentrations of FSH and estradiol were undetectable. Reproductive tracts and anterior pituitaries were taken from gilts at the conclusion of pulsatile administration of GnRH agonist or at 144 h for controls. Pituitary concentration of LH and FSH, uterine wet and dry weight, and size of the uterus were similar among groups. Paired ovarian weights for treated gilts pulsed with GnRH agonist for 72 h were heavier (P less than .05); however, ovaries from all immunized gilts were atrophied without follicular structures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
In vitro responsiveness of the horse anterior pituitary (AP) gonadotropes to single and multiple GnRH challenges was examined. The pituitaries were collected from reproductively sound mares in estrus (n = 5) and diestrus (n = 5). Uniform 0.5 mm AP slices were subdivided using a 3 mm biopsy punch and then bisected for use in the perifusion chamber. Four bisected sections per chamber were perifused at 0.5 ml/min at 37 C for 560 min in Medium 199 saturated with 95% 0(2)/5% CO2. Ten minute fractions were collected after an initial 2 hr equilibration period. Four different treatment regimes of GnRH (10(-10) M) were evaluated: (A) three consecutive 10 min GnRH pulses separated by 80 and 100 min, respectively; (B) a single 120 min GnRH infusion; (C) a 10 min GnRH pulse followed 80 min later by a 120 min GnRH infusion and (D) two 10 min GnRH pulses separated by 60 min followed 80 min later by a 120 min GnRH infusion. Estimated total pituitary LH content was higher in estrous than diestrus mares (p less than 0.05). The total amount of LH released in response to GnRH tended to be greater in estrus than diestrus (p less than 0.1), whereas the percentage of LH released in estrus and diestrus was similar. An increase in the area under the LH response curve was noted with each successive 10 min pulse of GnRH during both estrus and diestrus (p less than 0.05), demonstrating a self-priming effect of GnRH. In addition, a significant increase in the peak LH amplitude (p less than 0.05) and the slope to peak amplitude (p less than 0.05) were observed for the 120 min GnRH pulse in regime C and D indicating that prior exposure to short-term pulses of GnRH increased the acute LH secretory response. These results suggest that in the cycling mare (1) the responsiveness of the pituitary (amount of LH released as percent of total LH) is similar in both estrus and diestrus, however, the magnitude of the LH response (total microgram amount of LH released) differs with the stage of the estrous cycle, being highest in estrus, and appears to be related, in part, to pituitary LH content and (2) GnRH self-priming occurs independently of the stage of the estrous cycle. Furthermore, we have demonstrated that the pulsatile mode of GnRH can act directly on the anterior pituitary to dictate the pulsatile release pattern of LH in the cycling mare.  相似文献   

20.
Nutritionally induced anovulatory cows were ovariectomized and used to determine the relationships between dose, frequency, and duration of exogenous gonadotropin-releasing hormone (GnRH) pulses and amplitude, frequency, and concentrations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in serum. In Experiment 1, cows were given pulses of saline (control) or 2 micrograms of GnRH infused i.v. during a 0.1-, 1.25-, 5-, 10-, or 20-min period. Concentrations of LH and FSH during 35 min after GnRH infusion were greater than in control cows (P < 0.01), and FSH concentrations were greater when GnRH infusions were for 10 min or less compared with 20 min. In Experiment 2, the effect of GnRH pulse frequency and dose on LH and FSH concentrations, pulse frequency, and pulse amplitude were determined. Exogenous GnRH (0, 2, or 4 micrograms) was infused in 5 min at frequencies of once every hour or once every 4th hr for 3 d. There was a dose of GnRH x frequency x day effect on LH and FSH concentrations (P < 0.01), indicating that gonadotropes are sensitive to changes in pulse frequency, dose, and time of exposure to GnRH. There were more LH pulses when GnRH was infused every hour, compared with an infusion every 4th hr (P < 0.04). Amplitudes of LH pulses were greater with increased GnRH dose (P < 0.05), and there was a frequency x dose x day effect on FSH pulse amplitude (P < 0.0006). We conclude that LH and FSH secretion in the bovine is differentially regulated by frequency and dose of GnRH infusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号