首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A soil column method was used to compare the effect of drip fertigation (the application of fertilizer through drip irrigation systems, DFI) on the leaching loss and transformation of urea-N in soil with that of surface fertilization combined with flood irrigation (SFI), and to study the leaching loss and transformation of three kinds of nitrogen fertilizers (nitrate fertilizer, ammonium fertilizer, and urea fertilizer) in two contrasting soils after the fertigation. In comparison to SFI, DFI decreased leaching loss of urea-N from the soil and increased the mineral N (NH4+-N + NO3--N) in the soil. The N leached from a clay loam soil ranged from 5.7% to 9.6% of the total N added as fertilizer, whereas for a sandy loam soil they ranged between 16.2% and 30.4%. Leaching losses of mineral N were higher when nitrate fertilizer was used compared to urea or ammonium fertilizer. Compared to the control (without urea addition), on the first day when soils were fertigated with urea, there were increases in NH4+-N in the soils. This confirmed the rapid hydrolysis of urea in soil during fertigation. NH4+-N in soils reached a peak about 5 days after fertigation, and due to nitrification it began to decrease at day 10. After applying NH4+-N fertilizer and urea and during the incubation period, the mineral nitrogen in the soil decreased. This may be related to the occurrence of NH4+-N fixation or volatilization in the soil during the fertigation process.  相似文献   

2.
Abstract

The potential for using dicyandiamide (DCD) to enhance yield of take‐all‐infested winter wheat (Triticum aestivum L.) was evaluated in six field experiments on four acid soils (pH 5.7–6.2). Ammonium and NO3 concentrations and NH4 +: NO3 ratios in 0–10 and 10–20 cm soil depths were measured for ten weeks after spring topdressing 180 kg N/ha as urea with 0, 13, or 27 kg DCD/ha. Nitrification was strongly inhibited for 6 to 10 weeks by either 13 or 27 kg DCD/ha. Averaged over the ten‐week sampling period, NH4 +: N03 ratios in the 0–10 cm depth of soil were 36: 1 for DCD‐treated plots as compared to 2: 1 for plots receiving only urea. Ratios in DCD‐treated plots were considerably wider than ratios associated with take‐all suppression (10: 1 to 3: 1) in earlier studies. Extractable NH4 + + NO3 concentrations in soil were high in DCD‐treated plots after 30 to 40 days, suggested that DCD had reduced crop uptake of N because of the lower mobility of NH4 + as compared to NO3 . In four of the six studies, grain yields tended to be reduced by DCD. Results suggest that lower rates of DCD and/or application of some NO3 will be necessary if DCD is to be used as a tool for suppressing take‐all.  相似文献   

3.
Simeng LI  Gang CHEN 《土壤圈》2020,30(3):352-362
Overuse of nitrogen (N) fertilizers may lead to many environmental issues via N leaching into groundwater and agricultural runoff into surface water. Biochar, a sustainable soil amendment agent, has been widely studied because of its potential to retain moisture and nutrients. However, recent studies have shown that biochar has a very limited ability to improve the retention of negatively charged nitrite (NO2-) or nitrate (NO3-). Although positively charged ammonium (NH4+) can be better held by biochar, it is usually susceptible to nitrification and can be easily transformed into highly mobile NO2-and/or NO3-. In practice, dicyandiamide (DCD) has been used to inhibit nitrification, preserving N in its relatively immobile form as NH4+. Therefore, it is likely that the effects of DCD and biochar in soils would be synergistic. In this study, the influences of biochar on the effectiveness of DCD as a nitrification inhibitor in a biochar-amended soil were investigated by combining the experimental results of incubation, adsorption isotherm, and column transport with the simulated results of different mathematical models. Biochar was found to stimulate the degradation of DCD, as the maximum degradation rate slightly increased from 1.237 to 1.276 mg kg-1 d-1 but the half-saturation coefficient significantly increased from 5.766 to 9.834 mg kg-1. Considering the fact that the availability of DCD for nitrification inhibition was continuously decreasing because of its degradation, a novel model assuming non-competitive inhibition was developed to simulate nitrification in the presence of a decreasing amount of DCD. Depending on the environmental conditions, if the degradation of DCD and NH4+ in biochar-amended soil is not significant, improved contact due to the mitigated spatial separation between NH4+ and DCD could possibly enhance the effectiveness of DCD.  相似文献   

4.
Laboratory incubation study showed that iron pyrites retarded nitrification of urea-derived ammonium (NH4 +), the effect being greatest at the highest level (10000 mg kg–1 soil). Nitrification inhibition with 10000 mg pyrite kg–1 soil, at the end of 30 days, was 40.3% compared to 55.9% for dicyandiamide (DCD). The inhibitory effect with lower rates of pyrite (100–500 mg kg–1) lasted only up to 9 days. Urea+pyrite treatment was also found to have higher exchangeable NH4 +-N compared to urea alone. DCD-amended soils had the highest NH4 +-N content throughout. Pyrite-treated soils had about 7–86% lower ammonia volatilization losses than urea alone. Total NH3 loss was the most with urea+DCD (7.9% of applied N), about 9% more than with urea alone. Received: 11 November 1995  相似文献   

5.
坡缕石包膜对尿素氮行为的影响   总被引:2,自引:1,他引:2  
采用静态吸收和土柱淋溶试验方法,分析对比了3种不同用量坡缕石包膜尿素与普通尿素施入土壤后对尿素氮行为的影响,结果表明:在土壤中施用坡缕石包膜尿素较普通尿素减少10.38%~26.24%的氨挥发损失,减少5.88%~27.74%的氮素(NO3--N+NH4+-N)淋溶损失,20%的坡缕石包膜尿素能显著提高土柱土壤NH4+-N含量,3种坡缕石包膜尿素都能极显著提高土柱土壤NO3--N含量.坡缕石包膜后能减少尿素氨的挥发,降低NH4+-N和NO3--N的淋失,提高土壤NH4+-N和NO3--N含量,以20%的坡缕石包膜尿素的综合生态效应最好.  相似文献   

6.
The effects on nitrification and acidification in three subtropical soils to which (NH4)2SO4 or urea had been added at rate of 250 mg N kg−1 was studied using laboratory-based incubations. The results indicated that NH4+ input did not stimulate nitrification in a red forest soil, nor was there any soil acidification. Unlike red forest soil, (NH4)2SO4 enhanced nitrification of an upland soil, whilst urea was more effective in stimulating nitrification, and here the soil was slightly acidified. For another upland soil, NH4+ input greatly enhanced nitrification and as a result, this soil was significantly acidified. We conclude that the effects of NH4+ addition on nitrification and acidification in cultivated soils would be quite different from in forest soils. During the incubation, N isotope fractionation was closely related to the nitrifying capacity of the soils.  相似文献   

7.
Abstract

Efficient nitrogen (N) fertilizer management for paddy rice production is difficult because of potentially high N losses from denitrification, NH3 volatilization, and leaching. The use of a nitrification inhibitor, by slowing the rate of nitrification of NH4 +‐N sources prior to flooding, offers the potential to reduce denitrification losses that occur after flooding. Dicyandiamide (DCD) is one such nitrification inhibitor. The objective of this series of studies was to evaluate DCD for its effectiveness as a nitrification inhibitor in paddy rice production across an array of soils, management systems, and climate conditions.

Studies were conducted on fine‐ and medium‐textured soils in Arkansas, California, Louisiana, Mississippi, and Texas. Dicyandiamide was coated onto or formulated with urea (7 or 10% of total N as DCD‐N) and applied either broadcast pre‐plant incorporated or broadcast as a topdress application prior to flooding at the 4‐ to 5‐leaf development stage of the rice plant. These treatments were compared with urea applied either pre‐plant incorporated or in multiple applications timed to the peak N demand periods of rice. An array of N rates were used to model the yield response to levels of N. Similar studies utilizing 15N‐enriched urea were also conducted.

The studies indicated that use of DCD delayed nitrification and tended to result in rice grain yield increases as compared with urea applied pre‐plant without DCD in drill‐seeded rice; however, proper application of urea in split applications gave more consistent results. In water‐seeded continuously flooded rice culture, use of DCD was advantageous only if the flood was delayed for more than 14 days after urea application. The 15N‐enriched studies indicated that highest N fertilizer recovery was associated with split topdress urea applications; however, addition of DCD resulted in increased immobilization of fertilizer N and release of soil N.  相似文献   

8.
An incubation study investigated the effects of nitrification inhibitors (NIs), dicyandiamide (DCD), and neem oil on the nitrification process in loamy sand soil under different temperatures and fertilizer rates. Results showed that NIs decreased soil nitrification by slowing the conversion of soil ammonium (NH4+)-nitrogen (N) and maintaining soil NH4+-N and nitrate (NO3?)-N throughout the incubation time. DCD and neem oil decreased soil nitrous oxide (N2O) emission by up to 30.9 and 18.8%, respectively. The effectiveness of DCD on reducing cumulative soil N2O emission and retaining soil NH4+-N was inconsistently greater than that of neem oil, but the NI rate was less obvious than temperature. Fertilizer rate had a stronger positive effect on soil nitrification than temperature, indicating that adding N into low-fertility soil had a greater influence on soil nitrification. DCD and neem oil would be a potential tool for slowing N fertilizer loss in a low-fertility soil under warm to hot climatic conditions.  相似文献   

9.
 High molecular weight, anionic polyacrylamide (PAM) is currently being used as an irrigation water additive to significantly reduce soil erosion associated with furrow irrigation. PAM contains amide-N, and PAM application to soils has been correlated with increased activity of soil enzymes, such as urease and amidase, involved in N cycling. Therefore we investigated potential impacts of PAM treatment on the rate at which fertilizer N is transformed into NH4 + and NO3 in soil. PAM-treated and untreated soil microcosms were amended with a variety of fertilizers, ranging from common rapid-release forms, such as ammonium sulfate [(NH4)2SO4] and urea, to a variety of slow-release formulations, including polymerized urea and polymer-encapsulated urea. Ammonium sulfate was also tested together with the nitrification inhibitor dicyandiamide (DCD). The fertilizers were applied at a concentration of 1.0 mg g–1, which is comparable to 100 lb acre–l, or 112 kg ha–1. Potassium chloride-extractable NH4 +-N and NO3 -N were quantified periodically during 2–4 week incubations. PAM treatment had no significant effect on NH4 + release rates for any of the fertilizers tested and did not alter the efficacy of DCD as a nitrification inhibitor. However, the nitrification rate of urea and encapsulated urea-derived NH4 +-N was slightly accelerated in the PAM-treated soil. Received: 16 January 1998  相似文献   

10.
Abstract

Dicyandiamide (DCD) is a nitrification inhibitor that has been proposed for use in drill‐seeded rice. Immobilization of fertilizer NH4 +‐N by soil microorganisms under aerobic conditions has been found to be significantly enhanced in the presence of a nitrification inhibitor. The objective of this laboratory study was to determine if DCD significantly delayed nitrification of urea‐derived N, and if this enhanced immobilization of the fertilizer N in the delayed‐flood soil system inherent to dry‐seeded rice culture. Nitrogen‐15‐labeled urea solution, with and without DCD (1: 9 w/w N basis), was applied to a Crowley silt loam (Typic Albaqualf) and the soil was incubated for 10 weeks in the laboratory. The soil was maintained under nonflooded conditions for the first four weeks and then a flood was applied and maintained for the remaining six weeks of incubation. The use of DCD significantly slowed the nitrification of the fertilizer N during the four weeks of nonflooded incubation to cause the (urea + DCD)‐amended soil to have a 2.5 times higher fertilizer‐derived exchangeable NH4+‐N concentration by the end of the fourth week. However, the higher exchangeable NH4+‐N concentration had no significant effect on the amount of fertilizer N immobilized during this period. Immobilization of the fertilizer N appeared to level off during the nonflood period about the second week after application. After flooding, immobilization of fertilizer N resumed and was much greater in the (urea + DCD)‐amended soil that had the much higher fertilizer‐derived exchangeable NH4 +‐N concentration. Immobilization of fertilizer N appeared to obtain a maximum in the urea‐amended soil (18%) about two weeks after flooding and for the (urea + DCD)‐amended soil (28%) about four weeks after flooding.  相似文献   

11.
运用^15N尿素示踪技术,以壤质草甸棕壤和春小分别作供试土壤和作物进行盆栽试验,结果表明,与单^15N尿素或^15N尿素+氢素+氢醌(HQ)相比,配施双氰胺(DCD)尤其与HQ组合可使土壤保持较高的^15N回收率,其中有^15N占相当大的比例,在小麦孕穗期前,上述两处理可有效地保持尿素解后土壤中NH^ 4 -^15N含量,并显著降低(NO^ 3 NO^-2)-^15N的富集;促进肥料^15N固持-矿化的周转,HQ与DCD配合施用对尿素施用后土壤中残留^15N量及有机^15N的再矿化和NH^ 4-^15N含量具有一定的协同作用。  相似文献   

12.
Aerobic incubations to estimate net nitrogen (N) mineralization typically involve periodic leaching of soil with 0.01 M calcium chloride (CaCl2), so as to remove mineral N that would otherwise be subject to immobilization. A study was conducted to evaluate the accuracy of leaching for analysis of exchangeable ammonium (NH4+)-N and nitrate + nitrite (NO3?+ NO2)-N, relative to conventional extractions using 2 M potassium chloride (KCl). Ten air-dried soils were used, five each from Illinois and Brazil, that had been amended with NH4+-N (1 g kg?1) and NO3-N (0.6 g kg?1). Both methods were in good agreement for inorganic N analysis of the Brazilian Oxisols, whereas leaching was significantly lower by 12–48% in recovering exchangeable NH4+-N from Illinois Alfisols, Mollisols, and Histosols. The potential for underestimating net N mineralization was confirmed by a 12-wk incubation experiment showing 9–86% of mineral N recoveries from three temperate soils as exchangeable NH4+.  相似文献   

13.
Extensive use of chemical fertilizers in agriculture can induce high concentration of ammonium nitrogen(NH4+-N) in soil. Desorption and leaching of NH4+-N has led to pollution of natural waters. The adsorption of NH4+-N in soil plays an important role in the fate of the NH4+-N. Understanding the adsorption characteristics of NH4+-N is necessary to ascertain and predict its fate in the soil-water environment, and pedotransfer functions(PTFs) could be a convenient method for quantification of the adsorption parameters. Ammonium nitrogen adsorption capacity, isotherms, and their influencing factors were investigated for various soils in an irrigation district of the North China Plain. Fourteen agricultural soils with three types of texture(silt, silty loam, and sandy loam) were collected from topsoil to perform batch experiments. Silt and silty loam soils had higher NH4+-N adsorption capacity than sandy loam soils.Clay and silt contents significantly affected the adsorption capacity of NH4+-N in the different soils. The adsorption isotherms of NH4+-N in the 14 soils fit well using the Freundlich, Langmuir, and Temkin models. The models’ adsorption parameters were significantly related to soil properties including clay,silt, and organic carbon contents and Fe2+ and Fe3+ ion concentrations in the groundwater. The PTFs that relate soil and groundwater properties to soil NH4+-N adsorption isotherms were derived using multiple regressions where the coefficients were predicted using the Bayesian method. The PTFs of the three adsorption isotherm models were successfully verified and could be useful tools to help predict NH4+-N adsorption at a regional scale in irrigation districts.  相似文献   

14.
The effect of urea and urea mixed with different doses of two nitrification inhibitors, dicyandiamide (DCD) and karanjin [a furanoflavonoid, extracted from seeds of the karanja (Pongamia glabra Vent.) tree], on methane (CH4) consumption was examined in a Typic Ustochrept (alluvial inceptisol) soil, collected from a field under rice-wheat rotation. The soil, fertilized with urea (100 mg N kg-1 soil) and urea combined with different doses of the two inhibitors, DCD and karanjin (each added at 5%, 10%, 15%, 20% and 25% of applied N), was incubated at 25°C, at field capacity moisture content for 35 days. The methane consumption rate ranged between 0.2 and 1.7 µg CH4 kg-1 soil day-1 with little temporal variation (CV =10–31%). It was significantly higher in the control (no fertilizer-N) than other treatments except for a few cases, while total CH4 consumption in the incubation period was significantly higher in the control than other treatments. Methane consumption rate was found to be negatively and positively correlated with soil NH4 + and NO2 - + NO3 - content, respectively. Mean CH4 consumption rate, as well as total CH4 consumption, was lower on the addition of karanjin due to slower nitrification and higher conservation of NH4 + released from applied urea. Addition of urea led to a 17% reduction of total CH4 consumption while urea combined with karanjin and DCD had 50–64% and 19–34% reduction, respectively. Karanjin was a more effective nitrification inhibitor than DCD during the incubation period.  相似文献   

15.
Abstract

Degradation of dicyandiamide (DCD) was assayed in laboratory studies at 8, 15, and 22 C in a Decatur silt loam and in a Norfolk loamy sand. Dicyandiamide was very short lived at 22 C, with half‐lives of 7.4 and 14.7 days in the Decatur and Norfolk soils, respectively. In the Norfolk soil at 8 C, half‐life increased to 52.2 days. In a nitrificaton study of both soils at 22 C, 80 mg (NH4)2SO4‐N kg‐1 of soil was applied with 20 mg DCD‐N kg‐1 of soil and 100 mg kg‐1 (NH4)2S04‐N was added with 5% nitrapyrin. Distinct lag phases preceded zero order nitrification with the inhibitor treatments. Lag periods were 2 and 2.6 times the half life of DCD in the degradation study for Decatur and Norfolk soils, respectively. Like most nitrification inhibitors, the effectiveness of DCD decreases with increasing temperature. In the Norfolk loamy sand, nitrification inhibition by DCD was equal to nitrapyrin for up to 42 days, but in Decatur silt loam, DCD was less potent to nitrapyrin as a nitrification inhibitor.  相似文献   

16.
氮在紫色土中的移动和水稻氮素利用率的研究   总被引:12,自引:2,他引:10  
利用养分渗漏池研究了紫色土中氮肥品种、用量对氮素移动、淋失和水稻氮肥利用率的影响。结果表明:淹水期间淋失的氮素基本形态是NH4+-N,主要分布在土壤表层,并随时间而下移;NH4+-N 淋失量与降雨量呈显著正相关;氯化铵促进了NH4+-N 的淋失,但其氮肥利用率比尿素高8 个百分点,说明水稻上可酌施含氯化肥;增施氮肥增加了NH4+-N 的淋失量,减少了氮肥利用率,建议水稻施氮控制在150kg/hm2。  相似文献   

17.

Purpose

The nitrification inhibitor dicyandiamide (DCD) has been shown to be highly effective in reducing nitrate (NO3 ?) leaching and nitrous oxide (N2O) emissions when used to treat grazed pasture soils. However, there have been few studies on the possible effects of long-term DCD use on other soil enzyme activities or the abundance of the general soil microbial communities. The objective of this study was to determine possible effects of long-term DCD use on key soil enzyme activities involved in the nitrogen (N) cycle and the abundance of bacteria and archaea in grazed pasture soils.

Materials and methods

Three field sites used for this study had been treated with DCD for 7 years in field plot experiments. The three pasture soils from three different regions across New Zealand were Pukemutu silt loam in Southland in the southern South Island, Horotiu silt loam in the Waikato in the central North Island and Templeton silt loam in Canterbury in the central South Island. Control and DCD-treated plots were sampled to analyse soil pH, microbial biomass C and N, protease and deaminase activity, and the abundance of bacteria and archaea.

Results and discussion

The three soils varied significantly in the microbial biomass C (858 to 542 μg C g?1 soil) and biomass N (63 to 28 μg N g?1), protease (361 to 694 μg tyrosine g?1 soil h?1) and deaminase (4.3 to 5.6 μg NH4 + g?1 soil h?1) activity, and bacteria (bacterial 16S rRNA gene copy number: 1.64?×?109 to 2.77?×?109 g?1 soil) and archaea (archaeal 16S rRNA gene copy number: 2.67?×?107 to 3.01?×?108 g?1 soil) abundance. However, 7 years of DCD use did not significantly affect these microbial population abundance and enzymatic activities. Soil pH values were also not significantly affected by the long-term DCD use.

Conclusions

These results support the hypothesis that DCD is a specific enzyme inhibitor for ammonia oxidation and does not affect other non-target microbial and enzyme activities. The DCD nitrification inhibitor technology, therefore, appears to be an effective mitigation technology for nitrate leaching and nitrous oxide emissions in grazed pasture soils with no adverse impacts on the abundance of bacteria and archaea and key enzyme activities.  相似文献   

18.
蔡祖聪 《土壤学报》2003,40(2):239-245
用15N分别标记尿素和KNO3,研究了淹水条件下 ,黄泥土和红壤性水稻土的无机氮转化过程及尿素和KNO3对氮素转化过程的影响。结果表明 ,淹水条件下 ,土壤中存在15NH 4 的成对硝化和反硝化过程。红壤性水稻土15NH 4 硝化只检测到15NO- 2 ,但有反硝化产物15N2 生成 ,因此 ,很可能存在着好气反硝化过程。15NO- 3浓度的下降符合一级反应方程 ,黄泥土的速率常数几乎是红壤性水稻土的 1 0倍。反硝化过程和DNRA过程共同参与15NO- 3的还原。加入尿素提高土壤pH ,增加黄泥土DNRA过程对反硝化过程的基质竞争能力 ,但反硝化过程仍占绝对优势。加入尿素或KNO3改变土壤pH是导致对无机氮转化影响有所不同的主要原因 ,浓度的作用较为次要。  相似文献   

19.
 Nitrification inhibition of soil and applied fertilizer N is desirable as the accumulation of nitrates in soils in excess of plant needs leads to enhanced N losses and reduced fertilizer N-use efficiency. In a growth chamber experiment, we studied the effects of two commercial nitrification inhibitors (NIs), 4-amino 1,2,4-triazole (ATC) and dicyandiamide (DCD), and a commonly available and economical material, encapsulated calcium carbide (CaC2) (ECC) on the nitrification of soil and applied NH4 +-N in a semiarid subtropical Tolewal sandy loam soil under upland [60% water-filled pore space (WFPS)] and flooded conditions (120% WFPS). Nitrification of the applied 100 mg NH4 +-N kg–1 soil under upland conditions was retarded most effectively (93%) by ECC for up to 10 days of incubation, whereas for longer periods, ATC was more effective. After 20 days, only 16% of applied NH4 +-N was nitrified with ATC as compared to 37% with DCD and 98% with ECC. Under flooded soil conditions, nitrates resulting from nitrification quickly disappeared due to denitrification, resulting in a tremendous loss of fertilizer N (up to 70% of N applied without a NI). Based on four indicators of inhibitor effectiveness, namely, concentration of NH4 +-N and NO3 -N, percent nitrification inhibition, ratio of NH4 +-N/NO3 -N, and total mineral N, ECC showed the highest relative efficiency throughout the 20-day incubation under flooded soil conditions. At the end of the 20-day incubation, 96%, 58% and 38% of applied NH4 +-N was still present in the soil where ECC, ATC and DCD were used, respectively. Consequently, nitrification inhibition of applied fertilizer N in both arable crops and flooded rice systems could tremendously minimize N losses and help enhance fertilizer N-use efficiency. These results suggest that for reducing the nitrification rate and resultant N losses in flooded soil systems (e.g. rice lowlands), ECC is more effective than costly commercial NIs. Received: 25 May 2000  相似文献   

20.

Purpose  

The oxidation of ammonium (NH4+) to nitrate (NO3) in the soil is an important biogeochemical process, which has major environmental implications as it can contribute to NO3 leaching and nitrous oxide (N2O) emissions. Nitrification inhibitors have been used to slow down this process to reduce NO3 leaching and N2O emissions from agricultural land. The objective of this study was to determine the effectiveness of a liquid formulation of 3,4-Dimethylpyrazole phosphate (DMPP) compared with a dicyandiamide (DCD) solution in inhibiting the growth of ammonium-oxidizing bacteria (AOB) and ammonium oxidizing archaea (AOA) and slowing down the rate of NH4+ oxidation in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号