首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
OBJECTIVE: To evaluate protection resulting from use of a modified-live noncytopathic bovine viral diarrhea virus (BVDV) type 1 vaccine against systemic infection and clinical disease in calves challenged with type 2 BVDV. ANIMALS: 10 calves, 5 to 7 months of age. PROCEDURES: Calves were allocated (n = 5/group) to be nonvaccinated or vaccinated SC on day 0 with BVDV 1 (WRL strain). Calves in both groups were challenged intranasally with BVDV type 2 isolate 890 on day 21. Rectal temperatures and clinical signs of disease were recorded daily, and total and differential WBC and platelet counts were performed. Histologic examinations and immunohistochemical analyses to detect lesions and distribution of viral antigens, respectively, were performed. RESULTS: After challenge exposure to BVDV type 2, nonvaccinated calves developed high rectal temperatures, increased respiratory rates, viremia, leukopenia, lymphopenia, and infection of the thymus. Vaccinated calves did not develop high rectal temperatures or clinical signs of respiratory tract disease. Vaccinated calves appeared to be protected against systemic replication of virus in that they did not develop leukopenia, lymphopenia, viremia, or infection of target organs, and infectious virus was not detected in peripheral blood mononuclear cells or the thymus. CONCLUSIONS AND CLINICAL RELEVANCE: The modified-live BVDV type 1 vaccine protected against systemic infection and disease after experimental challenge exposure with BVDV type 2. The vaccine protected calves against infection and viremia and prevented infection of target lymphoid cells.  相似文献   

2.
OBJECTIVE: To evaluate the efficacy of an adjuvanted modified-live bovine viral diarrhea virus (BVDV) vaccine against challenge with a virulent type 2 BVDV strain in calves with or without maternal antibodies against the virus. DESIGN: Challenge study. ANIMALS: 23 crossbred dairy calves. PROCEDURES: Calves were fed colostrum containing antibodies against BVDV or colostrum without anti-BVDV antibodies within 6 hours of birth and again 8 to 12 hours after the first feeding. Calves were vaccinated with a commercial modified-live virus combination vaccine or a sham vaccine at approximately 5 weeks of age and challenged with virulent type 2 BVDV 3.5 months after vaccination. Clinical signs of BVDV infection, development of viremia, and variation in WBC counts were recorded for 14 days after challenge exposure. RESULTS: Calves that received colostrum free of anti-BVDV antibodies and were vaccinated with the sham vaccine developed severe disease (4 of the 7 calves died or were euthanatized). Calves that received colostrum free of anti-BVDV antibodies and were vaccinated and calves that received colostrum with anti-BVDV antibodies and were vaccinated developed only mild or no clinical signs of disease. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that the modified-live virus vaccine induced a strong protective immune response in young calves, even when plasma concentrations of maternal antibody were high. In addition, all vaccinated calves were protected against viral shedding, whereas control calves vaccinated with the sham vaccine shed virus for an extended period of time.  相似文献   

3.
OBJECTIVE: To evaluate the efficacy of a modified-live virus (MLV) combination vaccine containing type 1 and type 2 bovine viral diarrhea virus (BVDV) in providing fetal protection against challenge with heterologous type 1 and type 2 BVDV. DESIGN: Prospective study. ANIMALS: 55 heifers. PROCEDURE: Heifers were vaccinated with a commercial MLV combination vaccine or given a sham vaccine (sterile water) and bred 47 to 53 days later. Heifers were challenged with type 1 or type 2 BVDV on days 75 to 79 of gestation. Clinical signs of BVDV infection, presence of viremia, and WBC count were assessed for 14 days after challenge. Fetuses were collected on days 152 to 156 of gestation, and virus isolation was attempted from fetal tissues. RESULTS: Type 1 BVDV was not isolated in any fetuses from vaccinated heifers and was isolated in all fetuses from nonvaccinated heifers challenged with type 1 BVDV. Type 2 BVDV was isolated in 1 fetus from a vaccinated heifer and all fetuses from nonvaccinated heifers challenged with type 2 BVDV. CONCLUSIONS AND CLINICAL RELEVANCE: A commercial MLV combination vaccine containing type 1 and type 2 BVDV given to the dam prior to breeding protected 100% of fetuses against type 1 BVDV infection and 95% of fetuses against type 2 BVDV infection. Use of a bivalent MLV vaccine in combination with a comprehensive BVDV control program should result in decreased incidence of persistent infection in calves and therefore minimize the risk of BVDV infection in the herd.  相似文献   

4.
Calves persistently infected (PI) with Bovine viral diarrhea virus (BVDV) represent an important source of infection for susceptible cattle. We evaluated vaccine efficacy using calves PI with noncytopathic BVDV2a for the challenge and compared tests to detect BVDV in acutely or transiently infected calves versus PI calves. Vaccination with 2 doses of modified live virus vaccine containing BVDV1a and BVDV2a protected the calves exposed to the PI calves: neither viremia nor nasal shedding occurred. An immunohistochemistry test on formalin-fixed ear notches and an antigen-capture enzyme-linked immunosorbent assay on fresh notches in phosphate-buffered saline did not detect BVDV antigen in any of the acutely or transiently infected calves, whereas both tests had positive results in all the PI calves.  相似文献   

5.
OBJECTIVE: To compare degree of viremia and disease manifestations in calves with type-I and -II bovine viral diarrhea virus (BVDV) infection. ANIMALS: 16 calves. PROCEDURE: Colostrum-deprived calves obtained immediately after birth were assigned to 1 control and 3 treatment groups (4 calves/group). Calves in treatment groups were inoculated (day 0) by intranasal instillation of 10(7) median tissue culture infective dose BVDV 890 (type II), BVDV 7937 (type II), or BVDV TGAN (type I). Blood cell counts and virus isolation from serum and leukocytes were performed daily, whereas degree of viremia was determined immediately before and 4, 6, 8, and 12 days after inoculation. Calves were euthanatized on day 12, and pathologic, virologic, and immunohistochemical examinations were performed. RESULTS: Type-II BVDV 890 induced the highest degree of viremia, and type-I BVDV TGAN induced the lowest. Virus was isolated more frequently and for a longer duration in calves inoculated with BVDV 890. A parallel relationship between degree of viremia and rectal temperature and an inverse relationship between degree of viremia and blood cell counts was observed. Pathologic and immunohistochemical examinations revealed more pronounced lesions and more extensive distribution of viral antigen in calves inoculated with type-II BVDV. CONCLUSIONS AND CLINICAL RELEVANCE: Degree of viremia induced during BVDV infection is associated with severity of clinical disease. Isolates of BVDV that induce a high degree of viremia may be more capable of inducing clinical signs of disease. Strategies (eg, vaccination) that reduce viremia may control clinical signs of acute infection with BVDV.  相似文献   

6.
The onset of protection after the administration of a modified-live bovine viral diarrhea virus (BVDV) vaccine was determined. Protection was determined following experimental infection with a virulent type-2 BVDV (strain 1373) in cattle vaccinated 3, 5, or 7 days before BVDV infection. Protection, as measured by reduced virus shedding, lack of leukopenia, reduction in viremia, and reduced mortality, was present as early as 3 days after vaccination with a single dose of modified-live BVDV vaccine. Complete protection was obtained in cattle vaccinated 5 or 7 days before BVDV experimental infection.  相似文献   

7.
8.
OBJECTIVE: To determine the effect of maternally derived antibodies on induction of protective immune responses against bovine viral diarrhea virus (BVDV) type II in young calves vaccinated with a modified-live bovine viral diarrhea virus (BVDV) type I vaccine. DESIGN: Blinded controlled challenge study. ANIMALS: 24 neonatal Holstein and Holstein-cross calves that were deprived of maternal colostrum and fed pooled colostrum that contained a high concentration of (n = 6) or no (18) antibodies to BVDV. PROCEDURE: At 10 to 14 days of age, 6 seropositive and 6 seronegative calves were given a combination vaccine containing modified-live BVDV type I. All calves were kept in isolation for 4.5 months. Six calves of the remaining 12 untreated calves were vaccinated with the same combination vaccine at approximately 4 months of age. Three weeks later, all calves were challenged intranasally with a virulent BVDV type II. RESULTS: Seronegative unvaccinated calves and seropositive calves that were vaccinated at 2 weeks of age developed severe disease, and 4 calves in each of these groups required euthanasia. Seronegative calves that were vaccinated at 2 weeks or 4 months of age developed only mild or no clinical signs of disease. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicate that a single dose of a modified-live BVDV type-I vaccine given at 10 to 14 days of age can protect susceptible young calves from virulent BVDV type II infection for at least 4 months, but high concentrations of BVDV-specific maternally derived antibodies can block the induction of the response.  相似文献   

9.
OBJECTIVE: To determine the efficacy of a modified-live virus vaccine containing bovine herpes virus 1 (BHV-1), bovine respiratory syncytial virus (BRSV), parainfluenza virus 3, and bovine viral diarrhea virus (BVDV) types 1 and 2 to induce neutralizing antibodies and cell-mediated immunity in na?ve cattle and protect against BHV-1 challenge. ANIMALS: 17 calves. PROCEDURES: 8 calves were mock-vaccinated with saline (0.9% NaCl) solution (control calves), and 9 calves were vaccinated at 15 to 16 weeks of age. All calves were challenged with BHV-1 25 weeks after vaccination. Neutralizing antibodies and T-cell responsiveness were tested on the day of vaccination and periodically after vaccination and BHV-1 challenge. Specific T-cell responses were evaluated by comparing CD25 upregulation and intracellular interferon-gamma expression by 5-color flow cytometry. Titration of BHV-1 in nasal secretions was performed daily after challenge. Results-Vaccinated calves seroconverted by week 4 after vaccination. Antigen-specific cell-mediated immune responses, by CD25 expression index, were significantly higher in vaccinated calves than control calves. Compared with control calves, antigen-specific interferon-gamma expression was significantly higher in calves during weeks 4 to 8 after vaccination, declining by week 24. After BHV-1 challenge, both neutralizing antibodies and T-cell responses of vaccinated calves had anamnestic responses to BHV-1. Vaccinated calves shed virus in nasal secretions at significantly lower titers for a shorter period and had significantly lower rectal temperatures than control calves. CONCLUSION AND CLINICAL RELEVANCE: A single dose of vaccine effectively induced humoral and cellular immune responses against BHV-1, BRSV, and BVDV types 1 and 2 and protected calves after BHV-1 challenge for 6 months after vaccination.  相似文献   

10.
OBJECTIVE: To compare the efficacy of modified-live virus (MLV) vaccines containing either type 1 bovine viral diarrhea virus (BVDV) or types 1 and 2 BVDV in protecting heifers and their offspring against infection associated with heterologous noncytopathic type 2 BVDV challenge during gestation. DESIGN: Randomized controlled study. ANIMALS: 160 heifers and their offspring. PROCEDURES: After inoculation with a placebo vaccine, 1 or 2 doses of an MLV vaccine containing type 1 BVDV, or 1 dose of an MLV vaccine containing both types 1 and 2 BVDV, heifers were bred naturally and challenge exposed with a type 2 BVDV field isolate between 62 and 104 days of gestation. Pregnancies were monitored; after parturition, virus isolation and immunohistochemical analyses of ear-notch specimens were used to determine whether calves were persistently infected. Blood samples were collected at intervals from heifers for serologic evaluation and virus isolation. RESULTS: Persistent infection was detected in 18 of 19 calves from heifers in the control group and in 6 of 18 calves and 7 of 19 calves from heifers that received 1 or 2 doses of the type 1 BVDV vaccine, respectively. None of the 18 calves from heifers that received the type 1-type 2 BVDV vaccine were persistently infected. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that the incidence of persistent BVDV infection among offspring from dams inoculated with 1 dose of the MLV vaccine containing types 1 and 2 BVDV was decreased, compared with 1 or 2 doses of the MLV vaccine containing only type 1 BVDV.  相似文献   

11.
This study demonstrated that the modified-live bovine viral diarrhea virus (BVDV) type 1 and 2 fractions of a multivalent vaccine protected pregnant heifers and their fetuses against virulent BVDV types 1 and 2 challenge exposures at 370 days after vaccination. All BVDV vaccinated heifers inoculated with either BVDV type 1 or 2 at approximately 62 to 94 days of gestation delivered fetuses or calves that were negative for BVDV by ear-notch immunohistochemistry and virus isolation and serum neutralization on a prenursing serum sample. In comparison, eight of nine and 10 of 10 fetuses or calves from non-BVDV-vaccinated heifers were considered persistently infected following exposure to BVDV type 1 and type 2, respectively.  相似文献   

12.
Bovine viral diarrhea virus (BVDV) persistently infected (PI) calves represent significant sources of infection to susceptible cattle. The objectives of this study were to determine if PI calves transmitted infection to vaccinated and unvaccinated calves, to determine if BVDV vaccine strains could be differentiated from the PI field strains by subtyping molecular techniques, and if there were different rates of recovery from peripheral blood leukocytes (PBL) versus serums for acutely infected calves. Calves PI with BVDV1b were placed in pens with nonvaccinated and vaccinated calves for 35 d. Peripheral blood leukocytes, serums, and nasal swabs were collected for viral isolation and serology. In addition, transmission of Bovine herpes virus 1 (BHV-1), Parainfluenza-3 virus (PI-3V), and Bovine respiratory syncytial virus (BRSV) was monitored during the 35 d observation period. Bovine viral diarrhea virus subtype 1b was transmitted to both vaccinated and nonvaccinated calves, including BVDV1b seronegative and seropositive calves, after exposure to PI calves. There was evidence of transmission by viral isolation from PBL, nasal swabs, or both, and seroconversions to BVDV1b. For the unvaccinated calves, 83.2% seroconverted to BVDV1b. The high level of transmission by PI calves is illustrated by seroconversion rates of nonvaccinated calves in individual pens: 70% to 100% seroconversion to the BVDV1b. Bovine viral diarrhea virus was isolated from 45 out of 202 calves in this study. These included BVDV1b in ranch and order buyer (OB) calves, plus BVDV strains identified as vaccinal strains that were in modified live virus (MLV) vaccines given to half the OB calves 3 d prior to the study. The BVDV1b isolates in exposed calves were detected between collection days 7 and 21 after exposure to PI calves. Bovine viral diarrhea virus was recovered more frequently from PBL than serum in acutely infected calves. Bovine viral diarrhea virus was also isolated from the lungs of 2 of 7 calves that were dying with pulmonary lesions. Two of the calves dying with pneumonic lesions in the study had been BVDV1b viremic prior to death. Bovine viral diarrhea virus 1b was isolated from both calves that received the killed or MLV vaccines. There were cytopathic (CP) strains isolated from MLV vaccinated calves during the same time frame as the BVDV1b isolations. These viruses were typed by polymerase chain reaction (PCR) and genetic sequencing, and most CP were confirmed as vaccinal origin. A BVDV2 NCP strain was found in only 1 OB calf, on multiple collections, and the calf seroconverted to BVDV2. This virus was not identical to the BVDV2 CP 296 vaccine strain. The use of subtyping is required to differentiate vaccinal strains from the field strains. This study detected 2 different vaccine strains, the BVDV1b in PI calves and infected contact calves, and a heterologous BVDV2 subtype brought in as an acutely infected calf. The MLV vaccination, with BVDV1a and BVDV2 components, administered 3 d prior to exposure to PI calves did not protect 100% against BVDV1b viremias or nasal shedding. There were other agents associated with the bovine respiratory disease signs and lesions in this study including Mannheimia haemolytica, Mycoplasma spp., PI-3V, BRSV, and BHV-1.  相似文献   

13.
OBJECTIVE: To compare antibody responses, feedlot morbidity and mortality rates, feedlot performance, and carcass value for calves vaccinated with 1 of 2 vaccination strategies and for unvaccinated control calves. DESIGN: Randomized controlled clinical trial. ANIMALS: 451 beef steers and heifers. PROCEDURES: Calves were vaccinated with a modified-live infectious bovine rhinotracheitis virus (IBRV), bovine viral diarrhea virus types 1 (BVDV1) and 2 (BVDV2), parainfluenza type 3 virus, and bovine respiratory syncytial virus vaccine and Mannheimia haemolytica and Pasteurella multocida bacterin-toxoid at approximately 67 and 190 days of age (group 1; n = 151) or at approximately 167 and 190 days of age (group 2; 150) or were not vaccinated (control; 150). Serum antibody titers were measured at approximately 2, 67, 167, 190, and 232 days of age. Morbidity and mortality rates, feedlot performance, and carcass value were recorded for 361 calves shipped to feedlots. RESULTS: Percentages of calves seroconverting to IBRV, BVDV1, and BVDV2 were significantly higher for groups 1 and 2 than for the control group. Mean treatment costs were significantly lower for vaccinated than for control calves, and mean mortality rate was significantly higher for control calves than for group 1 calves. Feedlot performance and carcass value did not vary significantly among groups. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that vaccination of beef calves with a 5-antigen modified-live virus vaccine at 67 and 190 days of age was as effective in terms of immunologic responses as was vaccination at 167 and 190 days of age.  相似文献   

14.
OBJECTIVE: To determine whether passively acquired antibodies prevent development of a protective immune response to live virus in calves. ANIMALS: 18 calves. PROCEDURES: Calves were caught immediately after birth and tested free of bovine viral diarrhea virus (BVDV) and serum antibodies against BVDV. Within 48 hours, 12 calves were fed colostrum that contained antibodies against BVDV and 6 calves received BVDV antibody free milk replacer. Three milk replacer fed and 6 colostrum fed calves were exposed to virulent BVDV2-1373 at 2 to 5 weeks of life when passively acquired serum antibody titers were high. After serum antibody titers against BVDV had decayed to undetectable concentrations (at 7 to 9 months of age), the 3 remaining milk replacer fed calves, 6 colostrum fed calves previously exposed to BVDV2-1373, and 6 colostrum fed calves that had not been exposed to the virus were inoculated with BVDV2-1373. RESULTS: Passively acquired antibodies prevented clinical disease in inoculated colostrum fed calves at 2 to 5 weeks of life. Serum antibody titers did not increase in these calves following virus inoculation, and serum antibody titers decayed at the same rate as in noninoculated colostrum fed calves. Inoculated colostrum fed calves were still protected from clinical disease after serum antibody titers had decayed to nondetectable concentrations. Same age colostrum fed calves that had not been previously exposed to the virus were not protected. CONCLUSIONS AND CLINICAL RELEVANCE: A protective immune response was mounted in calves with passive immunity, but was not reflected by serum antibodies titers. This finding has implications for evaluating vaccine efficacy and immune status.  相似文献   

15.
A field trial was conducted to compare the serological responses in calves to eight commercial vaccines against infectious bovine rhinotracheitis virus (IBRV), parainfluenza-3 virus (PI3V), bovine respiratory syncytial virus (BRSV), and/or bovine viral diarrhea virus (BVDV). Calves given IBRV, P13V, BRSV, and BVDV vaccines had significantly higher antibodies to these viruses than unvaccinated controls; however, serological responses to killed BVDV vaccines were low. Calves with preexisting antibodies to IBRV, PI3V, BRSV, and the Singer strain of BVDV had lower seroconversion rates following vaccination than calves that were seronegative initially.

Serological responses in calves to IBRV, PI3V, BRSV, and BVDV differed among various commercial vaccines. Antibody titers to IBRV were higher in calves vaccinated with modified-live IBRV vaccines than in those vaccinated with killed IBRV vaccines. Following double vaccination with modified-live IBRV and PI3V vaccines, seroconversion rates and antibody titers to IBRV and PI3V were higher in calves vaccinated intramuscularly than in those vaccinated intranasally. Calves given Cattlemaster 4 had significantly higher titers to BRSV and PI3V, and lower titers to BVDV, than calves given Cattlemaster 3, suggesting that the addition of BRSV to Cattlemaster 4 caused some interaction among antigens.

  相似文献   

16.
OBJECTIVE: To determine whether a single intranasal dose of modified-live bovine respiratory syncytial virus (BRSV) vaccine protects calves from BRSV challenge and characterize cell-mediated immune response in calves following BRSV challenge. ANIMALS: 13 conventionally reared 4- to 6-week-old Holstein calves. PROCEDURES: Calves received intranasal vaccination with modified live BRSV vaccine (VC-group calves; n = 4) or mock vaccine (MC-group calves; 6) 1 month before BRSV challenge; unvaccinated control-group calves (n = 3) underwent mock challenge. Serum virus neutralizing (VN) antibodies were measured on days -30, -14, 0, and 7 relative to BRSV challenge nasal swab specimens were collected for virus isolation on days 0 to 7. At necropsy examination on day 7, tissue specimens were collected for measurement of BRSV-specific interferon gamma (IFN-gamma) production. Tissue distribution of CD3+ T and BLA.36+ B cells was evaluated by use of immunohistochemistry. RESULTS: The MC-group calves had significantly higher rectal temperatures, respiratory rates, and clinical scores on days 5 to 7 after BRSV challenge than VC-group calves. No difference was seen between distributions of BRSV in lung tissue of VC- and MC-group calves. Production of BRSV-specific IFN-gamma was increased in tissue specimens from VC-group calves, compared with MC- and control-group calves. Virus-specific IFN-gamma production was highest in the mediastinal lymph node of VC-group calves. Increased numbers of T cells were found in expanded bronchial-associated lymphoid tissue and airway epithelium of VC-group calves. CONCLUSIONS AND CLINICAL RELEVANCE: An intranasal dose of modified-live BRSV vaccine can protect calves against virulent BRSV challenge 1 month later.  相似文献   

17.
OBJECTIVE: To determine whether single-fraction and combination modified-live bovine respiratory syncytial virus (BRSV) vaccines commercially licensed for parenteral administration could stimulate protective immunity in calves after intranasal administration. DESIGN: Randomized controlled trial. ANIMALS: 39 calves. PROCEDURES: Calves were separated from dams at birth, fed colostrum with a minimal concentration of antibodies against BRSV, and maintained in isolation. In 2 preliminary experiments, 9-week-old calves received 1 (n = 3) or 2 (3) doses of a single-component, modified-live BRSV vaccine or no vaccine (8 control calves in each experiment), and were challenged with BRSV 21 days after vaccination. In a third experiment, 2-week-old calves received combination modified-live virus (MLV) vaccines with or without BRSV and calves were challenged with BRSV 8 days later. Calves were euthanized, and lung lesions were measured. Immune responses, including serum and nasal antibody and nasal interferon-alpha concentrations, were assessed. RESULTS: BRSV challenge induced signs of severe clinical respiratory tract disease, including death and pulmonary lesions in unvaccinated calves and in calves that received a combination viral vaccine without BRSV. Pulmonary lesions were significantly less severe in BRSV-challenged calves that received single or combination BRSV vaccines. The proportion of calves that shed virus and the peak virus titer was decreased, compared with control calves. Protection was associated with mucosal IgA antibody responses after challenge. CONCLUSIONS AND CLINICAL RELEVANCE: Single and combination BRSV vaccines administered intranasally provided clinical protection and sparing of pulmonary tissue similar to that detected in response to parenteral delivery of combination MLV and inactivated BRSV vaccines previously assessed in the same challenge model.  相似文献   

18.
The objective of this study was to demonstrate the efficacy of a modified-live virus (MLV) vaccine in protecting fetuses from infection with type 1 or type 2 Bovine viral diarrhea virus (BVDV) when pregnant heifers were challenged at approximately 170 d of gestation with noncytopathic field isolates. The 83 pregnant heifers had been bred naturally 4 wk after vaccination. Fetuses were collected 60 d after BVDV type 2 challenge, and newborn calves were collected before colostrum intake after BVDV type 1 challenge. Protection was determined by measuring the serum neutralizing (SN) antibody response in the fetus or calf and by virus isolation from thymus, lung, spleen, and kidney tissue samples. There was a measurable SN antibody response to BVDV in all the fetuses and calves of the control heifers, which had received a placebo vaccine. However, only 4 of 22 calves and 7 of the 28 fetuses of the MLV-vaccinated heifers demonstrated SN antibody after BVDV challenge. Type 1 BVDV was isolated from tissue samples of 5 of the 12 calves of control heifers and none of 22 calves of the MLV-vaccinated heifers challenged with type 1 BVDV. Type 2 BVDV was isolated from tissue samples of 17 of the 18 fetuses of the control heifers and 2 of the 28 fetuses of the MLV-vaccinated heifers challenged with type 2 BVDV. The results of this study demonstrate that the MLV vaccine reduces the fetal infection rate by at least 82% for BVDV type 1 and by 75% for BVDV type 2 when heifers are exposed to highly fetotrophic BVDV at 170 d of gestation.  相似文献   

19.
The purpose of this study was to produce an attenuated bovine viral diarrhea virus (BVDV) type 2 strain as a tool for identifying potential virulence markers in the BVDV2 genome. The attenuation of the virulent strain, BVDV2-24515, was accomplished by in vivo and in vitro passage. The strain was initially used to infect an elk (Cervus elaphus) [J. Wildl. Dis. 35 (1999) 671], re-isolated at 7 days post-inoculation from serum, and then subsequently passaged 56 times in cell culture. Two groups of calves were inoculated intranasally with either BVDV2-24515 or the putative attenuated virus, designated BVDV2-LATT. Calves inoculated with BVDV2-24515 had cumulative clinical scores which ranged from 6 to 53. Clinical signs in these calves consisted of anorexia, depression, dehydration, diarrhea (±bloody), and pneumonia. Several calves developed leukocytopenia, primarily a neutrocytopenia, and presented lesions of enteritis or pneumonia at necropsy. In contrast, cattle inoculated with BVDV2-LATT had cumulative clinical scores which ranged from 0 to 2. This was not significantly different from that of controls which received no virus (range: 0–1). Calves inoculated with BVDV2-LATT produced high neutralizing antibody titers against BVDV2. Thus, in addition to its potential use as a tool for identifying virulence markers, the attenuated virus is also worthy of further study as a candidate virus for inclusion in a modified-live vaccine.  相似文献   

20.
Objective-To determine whether administration of 2 doses of a multivalent, modified-live virus vaccine prior to breeding of heifers would provide protection against abortion and fetal infection following exposure of pregnant heifers to cattle persistently infected (PI) with bovine viral diarrhea virus (BVDV) and cattle with acute bovine herpesvirus 1 (BHV1) infection. Design-Randomized controlled clinical trial. Animals-33 crossbred beef heifers, 3 steers, 6 bulls, and 25 calves. Procedures-20 of 22 vaccinated and 10 of 11 unvaccinated heifers became pregnant and were commingled with 3 steers PI with BVDV type 1a, 1b, or 2 for 56 days beginning 102 days after the second vaccination (administered 30 days after the first vaccination). Eighty days following removal of BVDV-PI steers, heifers were commingled with 3 bulls with acute BHV1 infection for 14 days. Results-After BVDV exposure, 1 fetus (not evaluated) was aborted by a vaccinated heifer; BVDV was detected in 0 of 19 calves from vaccinated heifers and in all 4 fetuses (aborted after BHV1 exposure) and 6 calves from unvaccinated heifers. Bovine herpesvirus 1 was not detected in any fetus or calf and associated fetal membranes in either treatment group. Vaccinated heifers had longer gestation periods and calves with greater birth weights, weaning weights, average daily gains, and market value at weaning, compared with those for calves born to unvaccinated heifers. Conclusions and Clinical Relevance-Prebreeding administration of a modified-live virus vaccine to heifers resulted in fewer abortions and BVDV-PI offspring and improved growth and increased market value of weaned calves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号