首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Feline infectious peritonitis (FIP) is a terminal disease of cats caused by systemic infection with a feline coronavirus (FCoV). FCoV biotypes that cause FIP are designated feline infectious peritonitis virus (FIPV), and are distinguished by their ability to infect macrophages and monocytes. Antigenically similar to their virulent counterparts are FCoV biotypes designated feline enteric coronavirus (FECV), which usually cause only mild enteritis and are unable to efficiently infect macrophages and monocytes. The FCoV spike protein mediates viral entry into the host cell and has previously been shown to determine the distinct tropism exhibited by certain isolates of FIPV and FECV, however, the molecular mechanism underlying viral pathogenesis has yet to be determined. Here we show that the FECV strain WSU 79-1683 (FECV-1683) is highly dependent on host cell cathepsin B and cathepsin L activity for entry into the host cell, as well as on the low pH of endocytic compartments. In addition, both cathepsin B and cathepsin L are able to induce a specific cleavage event in the FECV-1683 spike protein. In contrast, host cell entry by the FIPV strains WSU 79-1146 (FIPV-1146) and FIPV-DF2 proceeds independently of cathepsin L activity and low pH, but is still highly dependent on cathepsin B activity. In the case of FIPV-1146 and FIPV-DF2, infection of primary feline monocytes was also dependent on host cell cathepsin B activity, indicating that host cell cathepsins may play a role in the distinct tropisms displayed by different feline coronavirus biotypes.  相似文献   

3.
An enteric coronavirus that is antigenically closely related to feline infectious peritonitis virus (FIPV) is ubiquitous in the cat population. This virus has been designated feline enteric coronavirus to differentiate it from FIPV. The virus is shed in the feces by many seropositive cats; in catteries it is a cause of inapparent to mildly severe enteritis in kittens 6 to 12 weeks of age. The virus may produce a more severe enteritis in young specific-pathogen-free kittens. Feline enteric coronavirus selectively infects the apical columnar epithelium of the intestinal villi, from the caudal part of the duodenum to the cecum. In severe infections, there are sloughing of the tips of the villi and villous atrophy. Many cats recovering from the disease remain carriers of the virus. Recovered cats, observed for 3 to 24 months, remained healthy and did not develop peritonitis, pleuritis, or granulomatous disease. The relationship of feline enteric coronavirus and FIPV was studied. Although the viruses were antigenically similar, they were distinctly different in their pathogenicities. The enteric coronavirus did not cause feline infectious peritonitis in coronavirus antibody-negative cats inoculated orally or intraperitoneally nor in coronavirus antibody-positive cats inoculated intraperitoneally or intratracheally. Serologic tests, using FIPV, canine coronavirus, and transmissible gastroenteritis virus of swine as substrate antigens in fluorescent antibody procedures may not accurately identify FIPV infection. These tests do not appear to distinguish between FIPV and this feline enteric coronavirus.  相似文献   

4.
Pathogenicity studies of feline coronavirus isolates 79-1146 and 79-1683   总被引:13,自引:0,他引:13  
Two feline coronavirus isolates were characterized by their disease-causing potential in cats. The 79-1683 feline coronavirus isolate caused an inapparent-to-mild enteritis when given oronasally to specific-pathogen-free kittens and was not a cause of feline infectious peritonitis (FIP). Target tissues for the virus were the mature apical epithelium of the small intestine, mesenteric lymph nodes, tonsils, thymus, and (to a lesser extent) the lungs. Inoculated kittens shed high numbers of virus in their feces for 14 to 17 days, but remained infectious to susceptible kittens for longer periods of time, as evidenced by contact-exposure studies. Because the 79-1683 isolate induced only enteritis, it was designated feline enteric coronavirus (FECV) 79-1683. The 79-1146 feline coronavirus isolate induced effusive abdominal FIP in specific-pathogen-free kittens after oronasal and intraperitoneal inoculation. Clinical signs of disease appeared within 12 to 14 days in almost all inoculated kittens. Because this isolate caused FIP, it was designated FIP virus (FIPV) 79-1146. Cross-protective immunity was not induced by the various coronavirus infections. Kittens preimmunized with the UCD strain of FECV (FECV-UCD) or with FECV-79-1683 were not immune to infection with FIPV-79-1146. Likewise, kittens previously inoculated with FECV-79-1683 were not immune to infection with FIPV-UCD1. In fact, preexisting heterologous FECV-79-1683 immunity often accelerated and enhanced the severity of disease caused by inoculation with FIPV-UCD1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Viruses commonly cause gastrointestinal illnesses in dogs and cats that range in severity from mild diarrhoea to malignant neoplasia. Perpetual evolution of viruses is reflected in changing disease patterns, so that familiar viruses are sometimes discovered to cause new or unexpected diseases. For example, canine parvovirus (CPV) has regained the ability to infect felids and cause a panleucopenia-like illness. Feline panleucopenia virus (FPV) has been shown to cause fading in young kittens and has recently been implicated as a possible cause of feline idiopathic cardiomyopathy. Molecular scrutiny of viral diseases sometimes permits deeper understanding of pathogenesis and epizootiology. Feline gastrointestinal lymphomas have not, in the past, been strongly associated with retroviral infections, yet some of these tumours harbour retroviral proviruses. Feline leukaemia virus (FeLV) may play a role in lymphomagenesis, even in cats diagnosed as uninfected using conventional criteria. There is strong evidence that feline immunodeficiency virus (FIV) can also be oncogenic. The variant feline coronaviruses that cause invariably-fatal feline infectious peritonitis (FIP) arise by sporadic mutation of an ubiquitous and only mildly pathogenic feline enteric coronavirus (FECV); a finding that has substantial management implications for cat breeders and veterinarians. Conversely, canine enteric coronavirus (CECV) shows considerable genetic and antigenic diversity but causes only mild, self-limiting diarrhoea in puppies. Routine vaccination against this virus is not recommended. Although parvoviruses, coronaviruses and retroviruses are the most important known viral causes of canine and feline gastrointestinal disease, other viruses play a role. Feline and canine rotaviruses have combined with human rotaviruses to produce new, reassortant, zoonotic viruses. Some companion animal rotaviruses can infect humans directly. Undoubtedly, further viral causes of canine and feline gastrointestinal disease await discovery.  相似文献   

6.
Feline coronavirus is a common infection in cats, as indicated by the high prevalence of antibodies against the virus, especially in multicat households. Approximately 5 to 12 per cent of seropositive cats develop classical feline infectious peritonitis. A survey of kittens born into households of seropositive cats demonstrated the existence of healthy coronavirus carriers. Seronegative animals did not appear to excrete virus. No specific antibody titre could be linked to carrier status and some carrier cats subsequently became seronegative. The management of the kittens strongly influenced whether they became infected, and some degree of protection appeared to be conferred by maternally derived antibody. At present, feline infectious peritonitis virus and feline enteric coronavirus can only be differentiated by their different clinical histories in infected catteries. In this survey, cases of feline infectious peritonitis occurred in kittens from households where the initial presentation had been enteritis and vice versa. Therefore no difference in epidemiology could be found.  相似文献   

7.
Infection with virulent biotypes of feline coronavirus (FCoV) can result in the development of feline infectious peritonitis (FIP), a typically fatal immune mediated disease for which there is currently no effective antiviral treatment. In this study we demonstrate the ability of small interfering RNA (siRNA) mediated RNA interference (RNAi) to inhibit the replication of virulent FCoV strain FIPV WSU 79-1146 in an immortalised feline cell line. A panel of eight synthetic siRNAs targeting four different regions of the FCoV genome were tested for antiviral effects. Efficacy was determined by qRT-PCR of intracellular viral genomic and messenger RNA, TCID50 infectivity assay of extracellular virus, and direct IFA for viral protein expression. All siRNAs demonstrated an inhibitory effect on viral replication in vitro. The two most effective siRNAs, targeting the untranslated 5' leader sequence (L2) and the nucleocapsid gene (N1), resulted in a >95% reduction in extracellular viral titre. Further characterisation of these two siRNAs demonstrated their efficacy when used at low concentrations and in cells challenged with high viral loads. Taken together these findings provide important information for the potential therapeutic application of RNAi in treating FIP.  相似文献   

8.
The infectivity and pathogenicity to newborn pigs of antigenically related coronaviruses from pigs (transmissible gastroenteritis virus; TGEV), cats (feline infectious peritonitis virus; FIPV), and dogs (canine gastroenteritis virus; CGEV) were studied by light, scanning electron, and immunofluorescence microscopy. Hysterectomy-derived, 12-hour-old pigs were orally given tissue culture or frozen preparations of 6 coronavirus strains (3 porcine, 2 feline, and 1 canine). The pigs were killed at regular intervals between 24 and 144 hours after exposure. Virulent TGEV and virulent FIPV produced necrosis of villous epithelium, resulting in villous atrophy in the jejunum and the ileum. Similar, but less extensive and severe lesions, were produced by the 4 other viruses. Coronaviral antigens were identified by immunofluorescence in villous epithelial cells of pigs that had been inoculated with virulent TGEV, attenuated TGEV, virulent FIPV, and tissue culture-adapted FIPV. In contrast, coronaviral antigens were not induced by the small plaque variant TGEV and virulent CGEV in the villous epithelium, but rather in cells of the lamina propria and crypt epithelium.  相似文献   

9.
10.
Monospecific antisera were prepared in rabbits against canine coronavirus (CCV) and transmissible gastroenteritis virus of pigs (TGEV), and in 24 pigs and 3 cats against TGEV alone. Neutralizing antibody titres were higher for the immunizing than the heterologous virus, although cross-neutralization usually was detected. This confirmed that CCV and TGEV are distinct, but antigenically related coronaviruses. In sera from 41 dogs, CCV-neutralizing titres were on average 2.7 fold higher than TGEV-neutralizing titres, suggesting that CCV was the causal agent. Sera from 29 cats in colonies with feline infectious peritonitis (FIP) and known to contain TGEV-neutralizing antibody, were found to have titres 12.3 fold higher against CCV. The FIP virus (FIPV) is probably more closely related to CCV than TGEV as judged by antigens involved in virus neutralization.Antisera to two isolates of bovine coronavirus, three isolates of haemagglutinating encephalomyelitis virus, seven strains of avian infectious bronchitis virus and the 229E strain of human coronavirus all failed to neutralize CCV and TGEV. Thus CCV, TGEV and probably FIPV fall into a group of antigenically related agents, separable from other members of the family Coronaviridae, by both virus neutralization and immunofluorescence tests.  相似文献   

11.
A plasmid, pG3BS, containing a cDNA clone from the 5' coding region of the peplomer glycoprotein gene appears to be specific for enteric transmissible gastroenteritis virus (TGEV) strains and for live-attenuated TGEV vaccines. This cDNA probe is used to differentiate porcine respiratory coronavirus (PRCV) isolates from TGEV field and vaccine strains by a slot blot hybridization assay. Probe pG3BS also hybridizes to canine coronavirus (CCV) RNA but does not hybridize to antigenically related feline infectious peritonitis virus (FIPV) RNA. The RNAs of 13 enteric TGEV isolates from the United States, Japan, and England, 4 US-licensed live-attenuated TGEV vaccines, and antigenically closely related CCV were detected by pG3BS. The RNAs of FIPV and 3 US isolates of PRCV did not react with pG3BS but were detected by a TGEV-derived plasmid, pRP3. Pigs infected with either PRCV or TGEV test serologically positive for TGEV antibody by the serum neutralization test. Characterization of the virus circulating in a swine herd by the pG3BS probe will differentiate between an enteric TGEV and a respiratory PRCV infection.  相似文献   

12.
We prepared 31 monoclonal antibodies (MAbs) against either FIPV strain 79-1146 or FECV strain 79-1683, and tested them for reactivity with various coronaviruses by indirect fluorescent antibody assay (IFA). Sixteen MAbs which reacted with all of the 11 strains of feline coronaviruses, also reacted with canine coronavirus (CCV) and transmissible gastroenteritis virus (TGEV). In many of them, the polypeptide specificity was the recognition of transmembrane (E1) protein of the virus. We succeeded in obtaining MAbs which did not react with eight strains of FIPV Type I viruses (showing cell-associated growth) but reacted with FIPV Type II (79-1146, KU-1) and/or FECV Type II (79-1683) (showing non-cell associated growth). These MAbs also reacted with CCV or TGEV. These MAbs recognized peplomer (E2) glycoprotein, and many antigenic differences were found in this E2 protein. These results suggest that FIPV Type II and FECV Type II viruses are antigenically closer to TGEV or CCV than to FIPV Type I viruses. Furthermore, the MAb prepared in this study has enabled discrimination between FIPV strain 79-1146 and FECV strain 79-1683, which was thought to be impossible by the previous serological method.  相似文献   

13.
为了比较冠状病毒基因相关性,获得特异基因克隆制备冠状病毒基因芯片,根据发布的基因序列,每种病毒设计4~17对引物,利用火鸡冠状病毒(TCV)原毒和蔗糖密度梯度离心纯化浓缩的犬冠状病毒(CCV)、猫冠状病毒(FCV)、猫传染性腹膜炎病毒(FIPV)、猪传染性胃肠炎病毒(TGEV)、猪呼吸道冠状病毒(PRCV)、牛冠状病毒(BCV)细胞毒,提取总RNA并反转录和PCR扩增。回收PCR产物连接pGEM-T-easy载体并转化大肠杆菌TGI,经PCR鉴定后测序。将所有基因片段的核苷酸序列和推导的氨基酸序列,分别与GenBank有关病毒相关基因片段的核苷酸序列进行分析比较,确定它们的同源性。通过对不同冠状病毒不同基因片段的克隆和测序,发现同一群冠状病毒核苷酸序列间具有较高的同源性。  相似文献   

14.
FELINE infections peritonitis (FIP) is a systemic, fatal, immune-mediated vasculitis caused by a feline coronavirus (FCoV). Historically, FIP virus (FIPV) and feline enteritis by a feline enteric coronavirus (FECV). Recent studies have shown that there is essentially only one FCoV in the field, although laboratory strains may vary in virulence.  相似文献   

15.
Various techniques were used to look for protective, non-cross-reactive antibodies in the sera of cats exposed to virulent feline infectious peritonitis virus (FIPV). Antibodies reactive with feline enteric coronavirus (FECV) from FIPV-exposed cats were adsorbed by several passages over an FECV-Sepharose column. In an ELISA against FECV and FIPV, the activity against both viruses was removed at the same rate; thus, no FIPV-specific antibodies could be identified. By gel electrophoresis-derived ELISA, the responses of cats surviving FIPV exposure were compared with those of cats succumbing to FIPV exposure to determine whether survival could be correlated with an antibody response against a particular virus protein. Results indicated that both groups responded in the same way to the matrix envelope protein and nucleocapsid proteins. Even though the response to peplomer in each group was weak, the survivor group responded better to this protein. Furthermore, the response of this group to the peplomer protein had the highest correlation with virus neutralization titer.  相似文献   

16.
Feline coronaviruses (FCoV) comprise two biotypes: feline enteric coronaviruses (FECV) and feline infectious peritonitis viruses (FIPV). FECV is associated with asymptomatic persistent enteric infections, while FIPV causes feline infectious peritonitis (FIP), a usually fatal systemic disease in domestic cats and some wild Felidae. FIPV arises from FECV by mutation. FCoV also occur in two serotypes, I and II, of which the serotype I viruses are by far the most prevalent in the field. Yet, most of our knowledge about FCoV infections relates to serotype II viruses, particularly about the FIPV, mainly because type I viruses grow poorly in cell culture. Hence, the aim of the present work was the detailed study of the epidemiologically most relevant viruses, the avirulent serotype I viruses. Kittens were inoculated oronasally with different doses of two independent FECV field strains, UCD and RM. Persistent infection could be reproducibly established. The patterns of clinical symptoms, faecal virus shedding and seroconversion were monitored for up to 10 weeks revealing subtle but reproducible differences between the two viruses. Faecal virus, i.e. genomic RNA, was detected during persistent FECV infection only in the large intestine, downstream of the appendix, and could occasionally be observed also in the blood. The implications of our results, particularly our insights into the persistently infected state, are discussed.  相似文献   

17.
Five nonneutralizing monoclonal antibodies (MAb) generated to the virulent Miller strain of transmissible gastroenteritis virus (TGEV) and specific for the S protein were characterized. Competition assays between purified and biotinylated MAb indicated that MAb 75B10 and 8G11 mapped near a new subsite, designated V and 2 MAb, 44C11 and 45A8, mapped to a previously designated subsite D. A fifth MAb mapped between subsites V and E. These MAb were tested with 3 previously characterized MAb to subsites A, E, and F in fixed-cell ELISA and cell culture immunofluorescent assays against 5 reference and 9 field strains of TGEV and 2 US strains (ISU-1 and ISU-3) of porcine respiratory coronavirus (PRCV). Subsites A, E, and F were conserved on all TGEV and PRCV strains examined. The 2 MAb to subsite V, 8G11 and 75B10, reacted only with the Miller TGEV strains (M5C, M6, and M60), except that 75B10 also recognized field strain U328. The MAb 11H8 did not react with 4 field strains or the Purdue strains of TGEV. The 2 MAb to subsite D reacted with all TGEV strains examined, but not with 2 US PRCV strains, 2 European PRCV strains, 1 feline infectious peritonitis virus strain, and 1 canine coronavirus strain. Because of this specificity for TGEV, but not PRCV, these latter 2 subsite D MAb may be useful for the development of competition ELISA to differentiate serologically between TGEV and PRCV infections in swine, similar to the currently used European subsite D MAb.  相似文献   

18.
犬冠状病毒(canine coronavirus,CCoV)与猫冠状病毒(feline coronavirus,FCoV)同属于冠状病毒科冠状病毒属α属,与其同属的病毒还有猪传染性胃肠炎病毒(porcine transmissible gastroenteritis virus,TGEV)、猪流行性腹泻病毒(porcine epidemic diarrhea virus,PEDV)等。遗传进化分析表明,该种属不同基因型病毒通过基因重组能产生新型变异毒株,为疾病的诊断与防控造成了很大的阻碍。β属冠状病毒包括牛冠状病毒(bovine coronavirus,BCoV)、犬呼吸道冠状病毒(canine respiratory coronavirus,CRCoV)、严重急性呼吸综合征冠状病毒(severe acute respiratory syndrome coronavirus,SARS-CoV)等,其中CRCoV与BCoV同源性较高,该类病毒与α属冠状病毒在基因组结构、致病机制、感染症状等方面差异较大。CCoV与FCoV在全球范围内广泛传播,具有发病率高、死亡率低的特点。由于RNA病毒本身的特点和环境选择压力的影响,这两种病毒不断变异进化,新的强致病力毒株相继出现。经FCoV基因突变演化而来的猫传染性腹膜炎病毒(feline infectious peritonitis virus,FIPV)毒力大大增强,病毒基因组中某些特异性的点突变使得针对宿主的细胞嗜性发生改变,该病毒的致病机制主要依赖于病毒感染后诱导机体产生的抗体依赖性增强作用(ADE)。针对犬猫冠状病毒的流行病学调查及防控不能仅依赖于疫苗免疫单一因素,还应综合考虑病毒毒力、环境条件、宠物自身免疫抵抗力状态等。针对犬猫冠状病毒的诊断应根据临床症状,结合常规血液学检查、血清生化检查和实验室诊断技术来进行全面的鉴定,防止出现假阳性及假阴性结果。  相似文献   

19.
Canine coronavirus (CCoV) and feline coronavirus (FCoV) belong to α-genus coronavirus of coronavirus family,porcine transmissible gastroenteritis virus (TGEV),porcine epidemic diarrhea virus (PEDV) also belong to the same genus.Genetic evolution analysis showed that different genotype of the virus could produce new variant strains through gene recombination,which caused great obstacles to the diagnosis and control of the disease.β-genus coronaviruses include bovine coronavirus (BCoV),canine respiratory coronavirus (CRCoV) and severe acute respiratory syndrome coronavirus (SARS-CoV).Among them,CRCoV has the highest homology with BCoV,but there are great differences in genomic structure,pathogenic mechanism and infection symptoms between this kind of coronavirus and α-coronavirus.CCoV and FCoV are widely spreading around the world,characterized by high morbidity and low mortality.Due to the characteristics of RNA virus and the influence of environmental selection pressure,the viruses continue to mutate and evolve,and new virulent strains appear one after another.The virulence of feline infectious peritonitis virus (FIPV) is greatly enhanced,some specific point mutations in the virus genome change the cellular tropism against the host.The pathogenesis of the virus mainly depends on the antibody-dependent enhancement (ADE) induced by virus infection.The epidemiological investigation and prevention and control of CCoV and FCoV should not only rely on the single factor of vaccine immunity,but also comprehensively consider the virulence of the virus,environmental conditions,pet self-immune resistance, and so on.The identification of CCoV and FCoV should be based on clinical symptoms,combined with routine hematological examination,serum biochemical examination and laboratory diagnosis techniques to prevent false positive and false negative results.  相似文献   

20.
From the reasons that canine coronavirus (CCV) grows more efficiently than feline coronavirus in a cell culture and they are mutually related in their antigenicities, an enzyme-linked immunosorbent assay (ELISA) using CCV-infected feline kidney (CRFK) cells as substrate antigens was developed for detection of anti-coronavirus antibodies in cats. It was indispensable for generating coronavirus-specific ELISA antibody activities that the sample was applied to the mock-infected, normal CRFK cells in parallel with the CCV-infected cells and then the optical density values given by the mock-infected cell antigen were subtracted from those given by the virus-infected cell antigen. On the basis of ELISA antibody titers obtained in sera from the cats experimentally infected with CCV and from the spontaneous feline infectious peritonitis (FIP) cases, the ELISA described in the present study was found to be applicable as a simple and easy serologic test which was able to detect anti-coronavirus antibodies as efficiently as the indirect immunofluorescence assay with homologous FIP virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号