首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite the well-recognized importance of grain yield in high-oil maize (Zea mays L.) breeding and production, few studies have reported the application of QTL mapping of such traits. An inbred line of high-oil maize designated ‘GY220’ was crossed with two dent maize inbred lines to generate two connected F2:3 populations with 284 and 265 F2:3 families. Our main objective was to evaluate the influence of genetic background on QTL detection of grain yield traits through comparisons between the F2:3 populations. The field experiments were conducted during the spring in Luoyang and summer in Xuchang, Henan, China. Two genetic linkage maps were constructed with a genetic distance of 2111.7 and 2298.5 cM using 185 and 173 polymorphic SSR markers, respectively. In total, 18 and 15 QTL were detected for six grain yield traits in the two populations. Only one common QTL marker was shared between the two populations. A QTL cluster associated with five traits was identified at bin 1.05–1.06, including the shared QTL for 100GW, which demonstrated the largest effect (16.7%). Among the detected QTL, 12 digenic interactions were identified. Our results reflect the substantial influence of dent maize genetic background on QTL detection of grain yield traits.  相似文献   

2.
Three double low (erucic acid and glucosinolates) self-incompatible lines and 22 varieties from different origins were selected to produce 66 hybrids according to a NC II mating design. Field experiments for identification of hybrid performance and heterosis were conducted in two successive rapeseed growing seasons in Wuhan, China. After heterosis identifications, SI-1300 and Eagle were chosen to construct an F2 segregating population. One hundred and eighty four F2:3 lines were planted at Wuhan and Jingmen to test yield traits. F2 plants and the 25 parents were analyzed using simultaneously AFLP (amplified fragment length polymorphism) and SSR (simple sequence repeat) markers. A total of 270 and 718 polymorphic loci were detected in the F2 population and among the 25 parental lines, respectively. Of the 718 polymorphic loci, 178 were significantly correlated to yield traits. With the use of one-way ANOVA, 84 common QTLs were detected for 12 traits at two trial locations. Although the genetic distances based on general/specific heterozygosities and single-locus QTLs showed significant correlations with hybrid performance and heterosis for some yield traits, the determination coefficients were low. The results suggested that neither heterozygosities nor QTLs for yield traits were suitable to predict hybrid performance and heterosis in Brassica napus.  相似文献   

3.
Summary Yield components and yield were studied in F1 barley hybrids produced by hand pollination or male sterility. Grain number exhibited only partial dominance but grain weight showed dominance or overdominance and contributed to the heterotic situation particularly in 2×6-row crosses. For the commercial exploitation of heterosis it is essential that hybrids should be found which show greater dominance for high grain number.  相似文献   

4.
M.A. Rahman  M.S. Saad 《Euphytica》2000,114(1):61-66
Inheritance of yield and yield contributing characters were investigated using generation mean analysis, utilising the means of six basic populations viz., P1, P2, F1, F2, BC1P1 and BC1P2 in four crosses of Vigna sesquipedalis. The analysis reiterated that the importance of dominance (h) gene effects for pod yield/plant and pods/plant as compared to additive (d) gene effects. However, significant and positive additive effects were noticed for pod yield/plant, pods/plant, pod weight and seed weight in different crosses. The three types of gene interactions (additive, dominance and epistasis) were significantly involved for pods/plant in cross KU 7 ×KU 8. Among the digenic epistatic interactions, both additive ×additive (i) and dominance × dominance (l) contributed more for pod yield/plant and pods/plant, however, it varied among the crosses. Populations having earliness can be developed as indicated by reducing dominance effects. Pedigree selection and heterosis breeding is suggested to exploit the fixable and non fixable components of variation respectively in Vigna sesquipedalis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The objective of this investigation was to map QTL controlling oil, protein, and starch concentrations in maize grain and to evaluate their genetic effects. The mapping population included 298 F2:3 family lines containing Beijing high-oil (BHO) maize germplasm. F2 individuals were genotyped with 183 SSR markers to construct a genetic linkage map, which spanned 1,605.7 cM, with an average interval of 8.77 cM. Oil, protein, and starch concentrations in grain among F2:3 families were measured by near-infrared (NIR) analyzer. Using QTL Cartographer, we mapped six QTL associated with oil in grain, six associated with protein, and five associated with starch concentrations. The proportion of phenotypic variation explained by single QTL ranged from 4.34 to 13.13% for oil, from 5.19 to 6.66% for protein, and from 4.14 to 7.85% for starch concentrations. QTL for oil, protein, or starch concentrations were often detected in identical intervals and the direction of their effects were consistent with the sign of their phenotypic correlation. They were considered as common QTL for chemical compositions in maize grain. In this study, we identified three QTL for oil in grain, two QTL for protein, and three QTL for starch concentrations, which were on identical or similar chromosomal locations to those previously mapped with Illinois high-oil (IHO) maize germplasm. These suggests that more diverse germplasm should be necessary to detect additional QTL and to discover more favorable alleles for chemical composition of maize grain.  相似文献   

6.
Z. H. Liu    H. L. Xie    G. W. Tian    S. J. Chen    C. L. Wang    Y. M. Hu    J. H. Tang 《Plant Breeding》2008,127(3):279-285
A set of 213 F2:3 families were used to investigate the effects of nitrogen (N) on grain yield and the concentrations of three nutrient components in maize (Zea mays L.) kernels. A genetic linkage map was constructed using 189 SSR (simple sequence repeat) markers, spanning a total of 2003 cM, including 11 linkages, and the families were evaluated under high N and low N conditions at two farm locations. The results indicate that low N conditions may induce an increase in starch concentration, but a decrease in protein levels. Twenty‐six quantitative trait loci (QTL) were detected for four measured traits in the two N treatments at both locations, including eight QTL for grain yield, seven QTL for oil content, six QTL for protein content and five QTL for starch content. The total number of QTL detected for the four measured traits under high N levels was greater than the QTL detected under low N conditions, and several QTL were identified that specifically expressed under different N conditions. These particular QTL could help provide greater understanding of the genetic basis of N‐usage efficiency.  相似文献   

7.
Alfalfa (Medicago sativa L.) is an internationally significant forage crop. Forage yield, lodging resistance and spring vigor are important agronomic traits conditioned by quantitative genetic and environmental effects. The objective of this study was to identify quantitative trait loci (QTL) and molecular markers associated with increased forage yield, resistance to lodging, and spring vigor. A backcross population composed of 128 progeny was developed by crossing the breeding parents DW000577 (lodging susceptible) and NL002724 (lodging-resistant) and back-crossing an individual F1 plant to the maternal parent (i.e. DW000577). A linkage map of NL002724 was developed based upon the segregation of 236 AFLP, SRAP, and SSR markers among the backcross progeny. The markers were distributed among 14 linkage groups, covering an estimated recombination distance of 1497.6 centiMorgans (cM). Replicated clones of both parents and backcross progeny were evaluated in the field for estimated forage yield, lodging, and spring vigor in Washington and Wisconsin during 2007 and 2008. Significant QTL were found for all three traits. In particular, two QTL for lodging resistance were identified that explained ≥14 % of trait variation, and were significant in all years and locations. Major QTL explaining over 25 % of trait variation for forage yield were detected in multiple environments at two separate locations on chromosome III. Several QTL for spring vigor were located in the same or similar positions as QTL for forage yield, possibly explaining the significant correlation between these traits. Molecular markers associated with the aforementioned QTL were also identified.  相似文献   

8.
H. J. Zheng    A. Z. Wu    C. C. Zheng    Y. F. Wang    R. Cai    X. F. Shen    R. R. Xu    P. Liu    L. J. Kong    S. T. Dong 《Plant Breeding》2009,128(1):54-62
A maize genetic linkage map derived from 115 simple sequence repeat (SSR) markers was constructed from an F2 population. The F2 was generated from a cross between a stay-green inbred line (Q319) and a normal inbred line (Mo17). The map resolved 10 linkage groups and spanned 1431.0 cM in length with an average genetic distance of 12.44 cM between two neighbouring loci. A total of 14 quantitative trait loci (QTL) were detected for stay-green traits at different postflowering time intervals and identified by composite interval mapping. The respective QTL contribution to phenotypic variance ranged from 5.40% to 11.49%, with trait synergistic action from Q319. Moreover, maize stay-green traits were closely correlated to grain yield. Additional QTL analyses indicated that multiple intervals of stay-green QTL overlapped with yield QTL.  相似文献   

9.
The study on the genetic basis of heterosis has received significant attention in recent years. In this study, using a set of introgression lines (ILs) and corresponding testcross F1 populations, we investigated heterotic loci (HL) associated with six yield-related traits in both Oryza sativa L. subsp. indica and japonica. A total of 41 HL were detected on the basis of mid-parent heterosis values with single-point analysis. The F1 test-cross population showed superiority in most yield-related traits and was characterized by a high frequency of overdominant HL. Thirty-eight of the 41 HL were overdominant, and in the absence of epistasis, three HL were dominant, suggesting that heterotic effects at the single-locus level mainly appeared to be overdominant in rice. Twenty-four HL had a real positive effect, suggesting that they are viable candidates for the improvement of rice yield potential. Compared with the quantitative trait loci (QTLs) detected in the ILs, only six out of the 41 (14.6%) HL were detected in QTL analysis under the same statistical threshold, indicating that heterosis and trait performance may be conditioned by different sets of loci.  相似文献   

10.
High-oil maize (Zea mays L.) has special value in animal feed and human food. Two hundred and eight-four and 265 F2:3 families developed from two crosses between one high-oil maize inbred and two normal dent maize inbreds were evaluated for grain oil and starch contents under two environments. Using composite interval mapping, 1–6 QTL for each trait were detected under each environment and in combined analysis in both populations. Only one common QTL across two environments in each population and across two populations were found for starch content. Among the detected QTL, nine digenic interactions with small effects were identified. Comparison of single-trait QTL and the results of multiple-trait QTL mapping showed that oil content might be complicatedly correlated with starch content. Although single-trait QTL with the same parental effects for both traits and oil-starch QTL were all detected at the same genetic bin 6.04 as the cloned high-oil QTL (qHO6) with no unfavorable effects on grain weight, our results did reflect the difficulty to realize simultaneous improvement on grain oil and starch contents. Of course, these results should be validated in further experiments under more environments using RILs, NILs and other permanent populations.  相似文献   

11.
In jute (Corchorus olitorius), quantitative trait loci (QTL) analysis was conducted to study the genetics of eight fibre yield traits and two fibre quality traits. For this purpose, we used a mapping population consisting of 120 recombinant inbred lines (RILs) and also used a linkage map consisting of 36 SSR markers that was developed by us earlier (Das et al. 2011). The RIL population was derived from the cross JRO 524 (coarse fibre) × PPO4 (fine fibre) following single seed descent. Using single-locus analysis involving composite interval mapping, a total of 21 QTLs were identified for eight fibre yield traits whereas for fibre quality (fibre fineness), only one QTL was detected. The QTL for fibre fineness explained 8.31–10.56% of the phenotypic variation and was detected in two out of three environments. Using two-locus analysis involving QTLNetwork, as many as 11 M-QTLs were identified for seven fibre yield traits (excluding top diameter) and one M-QTL was identified for fibre fineness which accounted for 4.57% of the phenotypic variation. For six fibre yield traits, we detected 16 E-QTLs involved in nine QQ epistatic interactions. For fibre fineness, four E-QTLs involved in two QQ epistatic interactions and for fibre strength, six E-QTLs involved in three QQ epistatic interactions were identified. Eight out of the 11 M-QTLs observed for the fibre yield traits were also involved in QE interactions; for fibre fineness and fibre strength, no QE interactions were observed.  相似文献   

12.
A durum wheat recombinant inbred line population developed from PDW 233 × Bhalegaon 4 cross was analyzed in five environments to understand the genetic network responsible for test weight (TW), thousand kernel weight (TKW), grain yield (YLD), spike length (SL), spikelets per spike (SPS), kernels per spike (KER) and kernel weight per spike (KWS). Genotype, environment and their interactions were main sources of variance for all the traits. TW and TKW were influenced by 11 main effect QTL and 6 digenic epistatic interactions detected on chromosomes 2A, 2B, 4B and 7A. Grain yield was influenced by three epistatic interactions and five main effect QTL, of which two on chromosome 2A were most consistent. A major QTL for spike length was observed on chromosome 3B. QTL for spike characters were distributed over 9 chromosomes. All the traits showed significant influence of digenic epistasis (QQ) and, to a certain extent, QTL × environment interactions (QQE). Therefore, while breeding for complex traits like kernel characters and grain yield components, these interactions should also be considered important. The consistent QTL on chromosome 2A between the marker interval Xgwm71.2Xubc835.4 with pleiotropic effect on TW and TKW, may be utilized in early generation selection to improve TW and TKW and thereby the milling potential of the durum wheat.  相似文献   

13.
A partial resistance to maize mosaic virus (MMV) and maize stripe virus (MStV) was mapped in a RILs population derived from a cross between lines MP705 (resistant) and B73 (susceptible). A genetic map constructed from 131 SSR markers spanned 1399 cM with an average distance of 9.6 cM. A total of 10 QTL were detected for resistance to MMV and MStV, using composite interval mapping. A major QTL explaining 34–41% of the phenotypic variance for early resistance to MMV was detected on chromosome 1. Another major QTL explaining up to 30% of the phenotypic variation for all traits of resistance to MStV was detected in the centromeric region of chromosome 3 (3.05 bin). After adding supplementary SSR markers, this region was found to correspond well to the one where a QTL of resistance to MStV already was located in a previous mapping study using an F2 population derived from a cross between Rev81 and B73. These results suggested that these QTL of resistance to MStV detected on chromosome 3 could be allelic in maize genome.  相似文献   

14.
棉花的产量及产量构成因子性状是以复杂的方式遗传,遗传力较低并易受环境条件影响。经典数量遗传学指出,上位性是复杂性状的遗传基础。本研究以湘杂棉2号F8和F9世代重组自交系为材料,调查了3个环境下的产量及产量构成因子性状,并构建了遗传连锁图。旨在定位产量及产量构成因子性状的上位性QTL并分析QTL与环境的互作效应。所有产量及产量构成因子性状均检测到上位性QTL,共检测到16对加性互作QTL(AA),涉及的位点中仅4个有单位点效应,这反映了上位性的复杂性及其对产量和产量构成因子性状的重要贡献。共检测到17对QTL加性和环境互作(AE),以及14对上位性QTL与环境的互作,表明环境因素对产量和产量构成因子性状起重要影响作用。研究结果还表明上位性效应作为湘杂棉2号的遗传基础起着重要作用。对各性状在不同环境的优良基因型进行了预测。综合优良家系(GSL)和特定环境下的优良家系(SL)的性状表现高于两亲本,表明湘杂棉2号重组自交系各性状都有提高的潜力。由于QTL加性和环境互作以及上位性QTL与环境互作的影响,预测的优良家系基因型会随着环境的改变而不同,表明应针对特定环境开展棉花育种。  相似文献   

15.
陆地棉主要农艺与纤维品质性状的双列杂交分 析   总被引:2,自引:2,他引:0  
 本文利用加性-显性与环境互作的遗传模型(ADE模型),分析8个陆地棉亲本及其F1在不同环境下的农艺和纤维品质性状,在估算遗传方差分量、遗传效应的基础上,分析各类性状间的遗传相关性,并预测F1和F2的杂种优势,为棉花杂种优势利用和新品种选育提供了较有价值的信息。研究表明,农艺与纤维品质性状的遗传主要受加性、显性和加性与环境互作效应控制。遗传相关分析表明,皮棉产量与纤维品质性状的显性相关系数值较大,利用杂种优势在早期世代可以得到协同改良,纤维品质性状间易实现协同改良。杂种优势分析表明,F1和F2的皮棉产量均具有显著的超亲优势,纤维品质性状的杂种优势不明显。  相似文献   

16.
Hybrid breeding is a widely discussed alternative for triticale. Heterosis as well as general (GCA) and specific combining ability (SCA) effects were estimated for eight agronomic traits. The experiment comprised 24 F1 hybrids, produced by a chemical hybridizing agent, together with their six female and four male parents, grown in drilled plots in two locations. In comparison with the mid‐parent values, hybrids averaged a 6.4 dt/ha (10.1%) higher grain yield, 8.4% more kernels per spike, a 6.8% higher 1000‐kernel weight, 9.7% lower falling number (FN) and 4.4% greater plant height. SCA effects for grain yield were significant and ranged from 4.5 to 6.9 dt/ha for grain yield. Together with GCA x location interactions, they explained most of the variation. For 1000‐kernel weight, GCA effects were predominant. SCA and interactions with location accounted for most of the variation in FN, whereas interactions were negligible for plant height. Correlations between mid‐parent and hybrid performance and between GCA and per se performance of parents were tight for all traits except grain yield, which allows for pre‐selection of parental lines. Although the amount of heterosis in triticale at present is closer to wheat than to rye, by selecting parents for combining ability and identifying heterotic patterns, grain yield heterosis of up to 20% appears sufficiently encouraging to embark on hybrid breeding.  相似文献   

17.
陆地棉衣分差异群体产量及产量构成因素   总被引:14,自引:5,他引:9  
 以衣分差异较大的陆地棉品种为材料,构建了包含188个F2单株的作图群体,应用6111对SSR引物对亲本进行了分子标记筛选,结果仅获得了123个多态性位点,其中88个位点构建了总长为666.7 cM、平均距离为7.57 cM的遗传图谱,覆盖棉花基因组的14.9%。通过复合区间作图法对F2单株和F2∶3家系进行QTL检测,共鉴定出了18个控制产量及产量构成因素变异的QTLs,包括2个衣分QTLs、4个子棉产量QTLs、4个皮棉产量QTLs、2个衣指QTLs、3个单株铃数QTLs、2个铃重QTLs和1个子指QTL。 解释的表型变异分别为\{6.9%\}~16.9%、5.6%~16.2%、4.8%~15.6%、7.7%~13.3%、8.2%~11.6%、6.1%~7%和6.6%。不同QTLs在相同染色体区段上的成簇分布表明与产量性状相关的基因可能紧密连锁或一因多效。产量及产量构成因素QTLs的遗传方式主要以显性和超显性效应为主。检测到的主效QTLs可以用于棉花产量及产量构成因素的分子标记辅助选择。  相似文献   

18.
B. Kjær  J. Jensen 《Euphytica》1996,90(1):39-48
Summary The positions of quantitative trait loci (QTL) for yield and yield components were estimated using a 85-point linkage map and phenotype data from a F1-derived doubled haploid (DH) population of barley. Yield and its components were recorded in two growing seasons. Highly significant QTL effects were found for all traits at several sites in the genome. A major portion of the QTL was found on chromosome 2. The effect of the alleles in locus v on thousand grain weight and kernels per ear explained 70–80% of the genetic variation in the traits. QTL × year interaction was found for grain yield. Several different QTL were found within the two-rowed DH lines compared to those found in the six-rowed DH lines. Epistasis between locus v and several loci for yield and yield components indicates that genes are expressed differently in the two ear types. This may explain the difficulties of selecting high yielding lines from crosses between two-rowed and six-rowed barley.Abbreviations DH doubled haploid - QTL quantitative trait locus/loci - RAPD random amplified polymorphic DNA - RFLP restriction fragment length polymorphism - T. Prentice Tystofte Prentice - V. Gold Vogelsanger Gold  相似文献   

19.
Improving maize starch content is of great importance for both forage and grain yield. In this study, 13 starch degradability traits were analysed including percentage of the seedling area, floury endosperm, hard endosperm of total grain area, percentage of the floury endosperm surface and vitreousness ratio surface hard: floury endosperm surface, etc. We mapped quantitative trait loci (QTL) in a biparental population of 309 doubled haploid lines based on field phenotyping at two locations. A genetic linkage map was constructed using 168 SSR (simple sequence repeat) markers, which covered 1508 cM of the maize genome, with an average distance of 9.0 cM. Close phenotypic and genotypic correlations were found for all traits, and were all statistically significant (p = 0.01) at two locations. Major QTL for more than two traits were detected, especially in two regions in bins 4.05–4.06 and 7.04–7.05, associated with 13 and 9 traits, respectively. This study contributes to marker‐assisted breeding and also to fine mapping candidate genes associated with maize starch degradability.  相似文献   

20.
Stay-green maize genotypes have been associated with tolerance to biotic and abiotic stresses, including tolerance to drought, and to stalk and root lodging, but there is limited information on its inheritance. Thus, this research was conducted to study the inheritance of the stay-green trait using both conventional analysis and QTL mapping of the Design III in a tropical maize population developed from two inbred lines genetically divergent for this trait. Two-hundred and fifty F2 plants were genotyped with 177 microsatellite markers, and their backcrossed progenies to both parental inbreds were evaluated at three locations. Ten plants per plot were assessed 120 days after sowing and the plot means scores for stay-green, adjusted for days to silking emergence, were used for analysis. The additive variance was larger than the dominance variance, the genetic by location interaction variance presented a high magnitude, and the heritability coefficient on a plant-basis a low magnitude. Seventeen QTL were mapped, most of them were clustered on four chromosomes and accounted for by 73.08 % of the genetic variance. About half of the QTL interacted with location, and the average level of dominance was partial dominance. The additive effects were larger than the dominance effects; the latter were not unidirectional, so that heterosis could not be exploited in crosses. Procedures for marker-assisted selection to increase the level of stay-green are discussed and an approach is suggested for using both stable and non-stable QTL in a marker-assisted backcross program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号