首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Planning for protected area networks is often done on an ad hoc basis, especially in data-poor countries. Afghanistan, a country mired in conflict for the past 30 years, has little of the relevant data to plan a protected area network, and security concerns hinder collection of new data. However, conservation of Afghanistan’s natural resources will be critical to recovery efforts. To assist Afghanistan in planning for its protected area network, we conducted an analysis to identify ecologically important areas for conservation. We overlaid data from ecoregion, floral, and faunal analyses on a grid map of Afghanistan (313 cells each 2500 km2), and used a ranking system to determine those cells containing diverse and/or threatened ecosystems. A color gradation was applied to each cell (white – least diverse to black – most diverse) to produce a map visually depicting ecological diversity across Afghanistan. Those cells with the highest scores were labeled as Priority Zones – defined as areas in which Afghanistan should prioritize conservation activities for protected area designation. Our results formed the basis of the National Protected Area System Plan of Afghanistan, a document setting quantitative protected area targets and outlining a concrete plan of action for the designation of a protected area network. We found the Priority Zone model to be useful in helping Government partners locate areas potentially important for conservation and prioritize activities for protected area designation. This process may be useful for other conflict or post-conflict countries working to establish protected area networks in a data deficient environment.  相似文献   

2.
《Geoderma》2007,137(3-4):466-476
Spatial variation is a typical feature of geochemical variables, providing a challenge for sampling design and environmental monitoring. It is generally qualitatively but not quantitatively described using spatial distribution maps. In this study, the feasibility of quantifying spatial variation is investigated using neighbourhood statistics within a GIS environment, using, as an example, near-total Ni concentrations in the surface soils of Northern Ireland. A total of 6138 topsoil samples were collected at an average sampling density close to 1 sample per km2. At this sampling density it was possible to calculate neighbourhood statistics directly from the raw data. Neighbourhood statistics of local mean, local standard deviation and local coefficient of variation were calculated using window sizes of 3 km × 3 km, 6 km × 6 km, 9 km × 9 km, 12 km × 12 km, 24 km × 24 km and 48 km × 48 km and visualized using GIS mapping techniques. The results showed that the highest soil Ni concentrations were located in the northern part of Northern Ireland where basalt is the main rock type. Lowest soil Ni concentrations were found in the western region of the Province on schist and limestone geologies. The granite area in the south-eastern region of Northern Ireland also displayed low soil Ni values. In terms of assessing the degree of spatial variation, high local standard deviation values were found to be associated with high local mean values thereby limiting the usefulness of local standard deviation as an indicator of spatial variation. This effect did not occur when local coefficient of variation values were used in place of local standard deviation so the coefficient of variation values are recommended as a more appropriate indicator to quantify spatial variation. The strongest spatial variations were observed on the western edge of the basalt area along the boundary of the basalt–sandstone areas and the schist area. Within each rock type, spatial variations were relatively weak and this was most clearly demonstrated in the basalt area. As the window size used for calculation of neighbourhood statistics was increased, so too was the resulting smoothing effect which led to clearer patterns but with loss of detail in the spatial variation observed. Neighbourhood statistics, coupled to a GIS, were found to be an effective way of quantifying and visualizing spatial variation in environmental geochemistry.  相似文献   

3.
Red Lists are used to assess the extinction risk of species based on quantitative IUCN criteria. For the compilation of a new Red List of butterflies in Flanders (north Belgium), we collated ca 800,000 distribution records and applied the IUCN Red List criteria to this small region (ca 135,00 km2). We also explored the effect of spatial resolution on the outcome of the Red List assessment by alternatively using 1 × 1 km2 and 5 × 5 km2 grid cells for geographic range size and trend calculations. We determined conservation hot spots in Flanders based on the Red List status of the species composition in each grid cell. The new Red List classified 20 butterflies (out of 68 resident species) as Regionally Extinct, six as Critically Endangered, five as Endangered, seven as Vulnerable and seven as Near Threatened. The remaining 23 species were classified as Least Concern. Using coarse instead of fine grain grid cells would have classified ten species in a lower Red List category. Compared with the previous Red List, nine species were classified in a lower and 12 in a higher threat category. In total, 218 1 × 1 km2 grid cells were considered as (very) high butterfly conservation priority sites. The application of the new IUCN criteria in a small region such as Flanders resulted in a Red List that offered challenging opportunities for the conservation of butterflies in particular and biodiversity in general.  相似文献   

4.
To manage America’s 991,479 km2 (245 million acres) of public BLM lands for such mixed uses as natural resource extraction, wildlife, and recreation requires knowledge about effects of habitat alterations. Two of North America’s largest natural gas fields occur in the southern region of the Greater Yellowstone Ecosystem (Wyoming), an area that contains >100,000 wintering ungulates. During a 5-year period (2005–2009), we concentrated on patterns of habitat selection of pronghorn (Antilocapra americana) to understand how winter weather and increasing habitat loss due to gas field development impact habitat selection. Since this population is held below a food ceiling (i.e., carrying capacity) by human harvest, we expected few habitat constraints on animal movements – hence we examined fine-scale habitat use in relationship to progressive energy footprints. We used mixed-effects resource selection function models on 125 GPS-collared female pronghorn, and analyzed a comprehensive set of factors that included habitat (e.g., slope, plant cover type) and variables examining the impact of gas field infrastructure and human activity (e.g., distance to nearest road and well pad, amount of habitat loss due to conversion to a road or well pad) inside gas fields. Our RSF models demonstrate: (1) a fivefold sequential decrease in habitat patches predicted to be of high use and (2) sequential fine-scale abandonment by pronghorn of areas with the greatest habitat loss and greatest industrial footprint. The ability to detect behavioral impacts may be a better sentinel and earlier warning for burgeoning impacts of resource extraction on wildlife populations than studies focused solely on demography. Nevertheless disentangling cause and effect through the use of behavior warrants further investigation.  相似文献   

5.
Tropical deforestation and land use change is often perceived as the major cause of soil loss by water erosion and of sediment load in rivers that has a negative impact on the functioning of hydropower storage reservoirs. The Sumberjaya area in Sumatra, Indonesia is representative for conflicts and evictions arising from this perception. The purpose of this study as part of a Negotiation Support System approach was to assess sediment yield both at plot and catchment scale and to relate it to a variety of possible clarifying factors i.e. land use, geology, soil and topography. Sediment yield at catchment scale per unit area, was found to be 3–10 times higher than soil loss measured in erosion plots. A stepwise regression showed that the dominant factors explaining sediment yield differences at catchment scale in this volcanic landscape were a particular lithology (Old Andesites) and slope angle followed by the silt fraction of the top soil. In lithologically sensitive areas soil loss at the plot scale under monoculture coffee gardens decreases over time from on average 7–11 Mg ha? 1 yr? 1 to 4–6 Mg ha? 1 yr? 1, mainly because of the development of surface litter layers as filters and top soil compaction in the areas without litter, but remains higher than under shade coffee systems or forest. The runoff coefficient under monoculture coffee remains on average significantly higher (10–15%) than under forest (4%) or under shade coffee systems (4–7%). In lithologically stable areas soil loss remained below 1.8 Mg ha? 1 yr? 1 and the runoff coefficient below 2.5% under all land use types, even bare soil plots or monoculture coffee gardens. Less than 20% of the catchment area produces almost 60% of the sediment yield. The reduction of negative off-site effects on e.g. the life time of a storage reservoir would benefit greatly from an improved assessment of the lithologies in volcanic landscapes and the consideration of potential sediment source and sink areas. In lithologically sensitive areas, a shift from sun to shade coffee systems may result in reducing surface runoff and soil loss, although water erosion at the plot scale is not the main contributor to sediment yield at the catchment scale. The quantification of land use effects on dominant erosive processes such as river bank and river bed erosion, landslides and the concentrated flow erosion on footpaths and roads can contribute to more targeted efforts and relevant incentives to reduce (or live with) sediment load of the rivers.  相似文献   

6.
《CATENA》2005,63(1):85-108
Soil erosion potential of a 58 km2 watershed in the coffee growing region of the Colombian Andes was assessed using the Revised Universal Soil Loss Equation (RUSLE) in a GIS environment. The RUSLE factors were developed from local rainfall, topographic, soil and land use data. Seasonal erosivity factors (R) were calculated for six pluviographic stations (1987–1997) located within 22 km of the basin. Two regression models, one for the wet and one for the dry seasons, were created and used to estimate seasonal erosivity for 10 additional stations with pluviometric data. Erosivity was on average higher in the wet seasons (4686 MJ mm ha 1 h 1 season 1) than the dry ones (2599 MJ mm ha 1 h 1 season 1). Seasonal erosivity surfaces were generated using the local polynomial interpolation method, and showed increases from west to east in accordance with regional elevation. Soil erodibility was calculated from field measurements of water stable aggregates (> 2 mm) and infiltration, which were influenced by land use. Three erodibility scenarios were considered (high, average and low) to represent the variability in infiltration measurements within each land use. The topographic and land cover factors were developed from existing contour and land use data. Model results indicated that in the dry seasons, and under the average erodibility scenario, 534 ha (11%) of the basin's rural area were within the extreme erosion potential category (above 3.5 t ha 1 season 1). During the wet seasons, this area increased to 1348 ha (28%). In general, areas under forest and shrub had low erosion potential values, while those under coffee and pasture varied according to topography. Modeling of probable land use change scenarios indicated that the erosion potential of the basin would decrease as a result of coffee conversion to pasture.  相似文献   

7.
Intensification of human activities has caused drastic losses in semi-natural habitats, resulting as well in declining connectivity between remaining fragments. Successful future restoration should therefore increase both habitat area and connectivity. The first steps in a framework for doing so are addressed here, which involve the mapping of past habitat change. We present a method which is unique in: the large area covered (2500 km2), the high resolution of the data (25 × 25 m), the long period assessed (70 years), and a system for translation of land use maps into Broad Habitat Types using soil surveys.We digitised land use maps from the 1930s for the county of Dorset in southern England. The resulting map was compared to the UK Land Cover Map of 2000. For our example area, land use shifted dramatically to more intensive agriculture: 97% of all semi-natural grasslands were converted into agriculturally-improved grassland or arable land as were large proportions of the heathlands and rough grasslands (?57%). The other important driver of change was afforestation (+25%). The larger habitat areas became fragmented, with average fragment size of different habitats falling by 31–94%. Furthermore, the connectivity between fragments dropped drastically, by up to 98%.Analyses such as those presented here not only quantify the scale and pattern of habitat loss, but are important to inform land-use planning to restore biodiversity by both increasing the available habitat and facilitating dispersal among habitat fragments. We discuss the possible steps for such a framework.  相似文献   

8.
Land use changes in the Amazon region strongly impact soil macroinvertebrate communities, which are recognized as major drivers of soil functions (Lavelle et al., 2006). To explore these relations, we tested the hypotheses that (i) soil macrofauna communities respond to landscape changes and (ii) soil macrofauna and ecosystem services are linked. We conducted a survey of macrofauna communities and indicators of ecosystem services at 270 sites in southern Colombia (department of Caqueta) and northern Brazil (state of Pará), two areas of the Amazon where family agriculture dominates. Sites represented a variety of land use types: forests, fallows, annual or perennial crops, and pastures. At each site we assessed soil macroinvertebrate density (18 taxonomic units) and the following ecosystem service indicators: soil and aboveground biomass carbon stock; water infiltration rate; aeration, drainage and water storage capacities based on pore-size distribution; soil chemical fertility; and soil aggregation. Significant covariation was observed between macrofauna communities and landscape metric data (co-inertia analysis: RV = 0.30, p < 0.01, Monte Carlo test) and between macrofauna communities and ecosystem service indicators (co-inertia analysis: RV = 0.35, p < 0.01, Monte Carlo test). Points located in pastures within 100 m of forest had greater macrofauna density and diversity than those located in pastures with no forest within 100 m (Wilcoxon rank sum test, p < 0.01). Total macroinvertebrate density was significantly correlated with macroporosity (r2 = 0.42, p < 0.01), as was the density of specific taxonomic groups: Chilopoda (r2 = 0.43, p < 0.01), Isoptera (r2 = 0.30, p < 0.01), Diplopoda (r2 = 0.31, p < 0.01), and Formicidae (r2 = 0.13, p < 0.01). Total macroinvertebrate density was also significantly correlated with available soil water (r2 = 0.38, p < 0.01) as well as other soil-service indicators (but with r2 < 0.10). Results demonstrate that landscape dynamics and composition affect soil macrofauna communities, and that soil macrofauna density is significantly correlated with soil services in deforested Amazonia, indicating that soil macrofauna have an engineering and/or indicator function.  相似文献   

9.
《CATENA》2010,80(3):205-213
A major landslide that occurred in 1569 in the Huangtuwa gully catchment within the Rolling Loess Plateau region of China, resulted in the creation of a landslide-dammed lake at the outlet of the small 0.1 km2 tributary valley of the Houxiaotan Gully. All the sediment transported to the outlet of this catchment was deposited in the lake. After about 30 years the dam failed and the lake deposits were dissected as the stream cut down to its former base level. Substantial remnants of the sediment deposits that accumulated over the ca. 30 year period are, however, preserved as terraces near the outlet of the catchment and a vertical section through these sediment deposits was investigated using stratigraphic and pollen tracing techniques. Individual flood couplets could be clearly distinguished and these permitted the establishment of a chronology for the sediment deposits and the estimation of the sediment yields associated with individual events and individual years. Pollen analysis undertaken on samples collected from the individual flood couplets also provided information on the variation of the pollen content of the sediment and the proportion of Artemisia pollen during the period represented by the deposits. Interpretation of the information assembled from the sediment section has made it possible to reconstruct the erosional history of the Houxiaotan catchment during the 31 year period following the landslide. The average sediment yield of the catchment in the late 16th century was very similar to its present-day sediment yield. The sediment yield from the catchment and the relative contribution of the inter-gully areas, as compared to the gully system, declined immediately after the landslide as a result of abandonment of the cultivated land within the catchment. The restoration of cultivation in the catchment after about 17 years resulted in an increase in sediment yield from ca. 9000 t km 2 yr 1 to ca. 30,000 t km 2 yr 1 and a substantial increase in the proportion of sediment contributed by the cultivated inter-gully areas. Scope exists to apply a similar approach to the sediment deposits that accumulated in other former landslide-dammed lakes within the Rolling Loess Plateau region of China, in order to develop an improved understanding of the erosion history of the region.  相似文献   

10.
Leaf area index (LAI) has traditionally been difficult to estimate accurately at the landscape scale, especially in heterogeneous vegetation with a range in LAI, but remains an important parameter for many ecological models. Several different methods have recently been proposed to estimate LAI using aerial light detection and ranging (LIDAR), but few systematic approaches have been attempted to assess the performance of these methods using a large, independent dataset with a wide range of LAI in a heterogeneous, mixed forest. In this study, four modeling approaches to estimate LAI using aerial discrete-return LIDAR have been compared to 98 separate hemispherical photograph LAI estimates from a heterogeneous mixed forest with a wide range of LAI. Among the four approaches tested, the model based on the Beer–Lambert law with a single parameter (k: extinction coefficient) exhibited highest accuracy (r2 = 0.665) compared with the other models based on allometric relationships. It is shown that the theoretical k value (=0.5) assuming a spherical leaf angle distribution and the zenith angle of vertical beams (=0°) may be adequate to estimate effective LAI of vegetation using LIDAR data. This model was then applied to six 30 m × 30 m plots at differing spatial extents to investigate the relationship between plot size and model accuracy, observing that model accuracy increased with increasing spatial extent, with a maximum r2 of 0.78 at an area of 900 m2. Findings of the present study can provide useful information for selection and application of LIDAR derived LAI models at landscape or other spatial scales of ecological importance.  相似文献   

11.
In order to reduce widespread degradation in desertification prone areas, there is an urgent need to understand the mechanisms controlling human-induced degradation processes in semi-arid ecosystems. Southeast Spain is known as one of the most arid regions of Europe, and its landscape is marked by sparsely vegetated degraded hillsides. Large areas of dry cultivation have been abandoned since the early part of the twentieth century, and irrigated cultivation is now expanding rapidly. In this study, modern erosion rates for two mountain ranges belonging to the Betic Cordillera were assessed by direct measurements of the accumulated sediment volumes behind 20 checkdams. The volume of sediment deposited behind the checkdams ranges between 4 and 920 m3, for catchments with a drainage area varying between 1.5 and 317 ha. Our measurements indicate that mean annual catchment-wide erosion rates in these mountain ranges are generally low. The observed erosion rates are well below maximum tolerable annual soil loss rates for the Mediterranean region, as 90% of the catchments have mean annual erosion rates below 2 t ha? 1 y? 1. Our erosion data from 20 small catchments in the Betic range are lower than the results of previous erosion studies in southeast Spain that were conducted in the Neogene intramontane basins. This study deals with erosion rates on thin soils developed on metamorphic rocks, which are not often the subject of study in the Mediterranean region. In the ephemeral stream systems in the Betic range, the spatial pattern of the vegetation cover within the catchment in relation to the concentrated flow lines appears to be crucial. Our data question the direct association of steep, sparsely vegetated hillsides with enhanced soil erosion rates, and suggest that the main erosion problems are currently not located in these steep, sparsely vegetated environments of the Betic mountain ranges.  相似文献   

12.
As Earth continues to warm globally, there is a need to conduct ecosystem plot warming experiments under conditions as representative of open fields in the future as possible. One promising approach is to use hexagonal arrays of infrared heaters such as described by [Kimball, B.A., Conley, M.M., Wang, S., Lin, X., Luo, C., Morgan, J., Smith, D., 2008. Infrared heater arrays for warming ecosystem field plots. Global Change Biology 14, 309–320]. However, their plots were only 3 m in diameter (7.1 m2), which limits the stature of vegetation to shorter than about 1 m and also limits the amount of plant material that can destructively harvested. Therefore, we tested a larger hexagonal 5-m diameter array of infrared heaters, which provided a near tripling of useable area (19.6 m2). The number of heaters was tripled from 6 to 18, and their height above the vegetative (wheat) canopy was scaled with the diameter (0.4 times diameter = 2.0 m). Distributions of down-going thermal radiation and of the resultant warming of the vegetation were quite uniform across the plot. Moreover, the same equation previously determined from 3-m diameter plots to describe the thermal radiation efficiency as a function of wind speed was still applicable. Thus, no problems were encountered in tripling the area of the infrared heater-warmed plots.  相似文献   

13.
《Soil & Tillage Research》2007,93(1):117-125
In rainfed semiarid areas of northwestern China, alfalfa (Medicago sativa L.) is usually cultivated in flat fields with spaced rows. The yield of the crop is normally low because of insufficient moisture in the soil. The purpose of this study was to examine the effect of soil ridging and plastic film, covering the ridges, on rainwater harvest and alfalfa yield and to identify the optimal design of the ridge-furrow system. In this system the ridges served as the runoff area and the furrows as the infiltration area, where alfalfa was grown. Three ridge width (RW) measured at the bottom of the ridge, namely 30, 45 and 60 cm, were tested under the condition of the ridge-furrow systems with or without plastic film covering the ridge. These treatments were compared with the flat soil (FS) planting system, having neither ridge nor plastic cover. No matter what RW (or in the case of FS spacing between planting belts), the width of furrow (planting belt) was the same as 0.6 m. Soil moisture was measured at 7–10 day intervals, in 10 cm increments, to soil depth of 2 m. Rainwater harvests were measured from two additional plots without planting, representing the covered ridge (CR) and uncovered ridge (UR) systems, respectively. The results showed that in terms of average alfalfa yield on a total area basis, ridge type and ridge width both had significant effects, with CR being better than UR, and UR in turn being better than FS. The 2-year average annual yield of alfalfa was 5114 kg DM ha−1 for CR, 2531 kg DM ha−1 for UR, and 1927 kg DM ha−1 for FS. For the CR treatments, the ridge width (RW) of 0.3 m resulted in higher yield (5528 kg DM ha−1) than RW of 45 cm (5095 kg DM ha−1) and 60 cm (4719 kg DM ha−1). For the UR treatments, yields with 30 cm RW (3088 kg DM ha−1) were higher than with 45 cm RW (2434 kg DM ha−1) and 60 cm RW (2071 kg DM ha−1). The results also showed that the CR planting system had additional advantage of collecting more rainwater to improve plant effective soil moisture. In conclusion, the CR with a RW of 0.3 m and furrow width of 0.6 m is recommended for improved rainwater utilization and improved alfalfa yield in the semiarid areas where alfalfa production is largely rainfed.  相似文献   

14.
Designing conservation strategies that protect wide-ranging marine species is a significant challenge, but integrating regional telemetry datasets and synthesizing modeled movements and behavior offer promise for uncovering distinct at-sea areas that are important habitats for imperiled marine species. Movement paths of 10 satellite-tracked female loggerheads (Caretta caretta) from three separate subpopulations in the Gulf of Mexico, USA, revealed migration to discrete foraging sites in two common areas at-sea in 2008, 2009, and 2010. Foraging sites were 102–904 km away from nesting and tagging sites, and located off southwest Florida and the northern Yucatan Peninsula, Mexico. Within 3–35 days, turtles migrated to foraging sites where they all displayed high site fidelity over time. Core-use foraging areas were 13.0–335.2 km2 in size, in water <50 m deep, within a mean distance to nearest coastline of 58.5 km, and in areas of relatively high net primary productivity. The existence of shared regional foraging sites highlights an opportunity for marine conservation strategies to protect important at-sea habitats for these imperiled marine turtles, in both USA and international waters. Until now, knowledge of important at-sea foraging areas for adult loggerheads in the Gulf of Mexico has been limited. To better understand the spatial distribution of marine turtles that have complex life-histories, we propose further integration of disparate tracking data-sets at the oceanic scale along with modeling of movements to identify critical at-sea foraging habitats where individuals may be resident during non-nesting periods.  相似文献   

15.
The distribution, density and biomass of earthworms were investigated at the copper polluted site, Hygum (Denmark). In 1994, shortly after farming of the area was abandoned, only four earthworm species were present and their distribution was restricted to areas where copper concentration did not exceed 200 mg kg?1 dry soil. Sixteen years later (in 2010), without any agricultural activity, ten species of earthworms were found, in particular, epigeic species were present where soil copper concentrations reached >1000 mg kg?1 dry soil.  相似文献   

16.
Populations of migratory birds can be affected by events happening at both breeding and wintering grounds. The Sahel is a vast region holding a large number of wintering trans-Saharan migratory European birds, and current land-use changes there may represent a threat for these species. We used satellite tracking data from the migratory Montagu’s harrier to evaluate habitat use of the species during the wintering season, and whether the current network of protected areas is effective to provide their habitat needs during that season. We also developed an ecological niche model for the species in Western-Central Sahel to check if the most suitable sites are included within current protected areas. Tracked harriers occupied a large region encompassing a total of eight countries. The most preferred habitats during winter were croplands and some natural vegetation habitats, especially grasslands. Protected areas only covered a small proportion of the overall wintering grounds of tracked harriers and the most suitable areas for the species in Western-Central Sahel. Increasing the extent of preferred natural habitats within protected areas should benefit the conservation of this and probably other insect-eating raptors. However, substantial increases in extent and number of protected areas in sub-Saharan Africa are very unlike to occur. Conservation actions in the region should therefore be mostly focused on improving land use planning and management outside protected areas, specially enhancing agricultural practices to make biodiversity conservation compatible with poverty alleviation. These can be chiefly targeted at an area of <20,000 km2 of very suitable habitat for these species.  相似文献   

17.
《Applied soil ecology》2007,35(3):622-634
Rocky Mountain National Park (RMNP), Colorado, USA, contains a diversity of plant species. However, many exotic plant species have become established, potentially impacting the structure and function of native plant communities. Our goal was to quantify patterns of exotic plant species in relation to native plant species, soil characteristics, and other abiotic factors that may indicate or predict their establishment and success. Our research approach for field data collection was based on a field plot design called the pixel nested plot. The pixel nested plot provides a link to multi-phase and multi-scale spatial modeling-mapping techniques that can be used to estimate total species richness and patterns of plant diversity at finer landscape scales. Within the eastern region of RMNP, in an area of approximately 35,000 ha, we established a total of 60 pixel nested plots in 9 vegetation types. We used canonical correspondence analysis (CCA) and multiple linear regressions to quantify relationships between soil characteristics and native and exotic plant species richness and cover. We also used linear correlation, spatial autocorrelation and cross correlation statistics to test for the spatial patterns of variables of interest. CCA showed that exotic species were significantly (P < 0.05) associated with photosynthetically active radiation (r = 0.55), soil nitrogen (r = 0.58) and bare ground (r = −0.66). Pearson's correlation statistic showed significant linear relationships between exotic species, organic carbon, soil nitrogen, and bare ground. While spatial autocorrelations indicated that our 60 pixel nested plots were spatially independent, the cross correlation statistics indicated that exotic plant species were spatially associated with bare ground, in general, exotic plant species were most abundant in areas of high native species richness. This indicates that resource managers should focus on the protection of relatively rare native rich sites with little canopy cover, and fertile soils. Using the pixel nested plot approach for data collection can facilitate the ecological monitoring of these vulnerable areas at the landscape scale in a time- and cost-effective manner.  相似文献   

18.
Because particular life history traits affect species vulnerability to development pressures, cross-species summaries of life history traits are useful for generating management guidelines. Conservation of aquatic turtles, many members of which are regionally or globally imperiled, requires knowing the extent of upland habitat used for nesting. Therefore, we compiled distances that nests and gravid females had been observed from wetlands. Based on records of > 8000 nests and gravid female records compiled for 31 species in the United States and Canada, the distances that encompass 95% of nests vary dramatically among genera and populations, from just 8 m for Malaclemys to nearly 1400 m for Trachemys. Widths of core areas to encompass varying fractions of nesting populations (based on mean maxima across all genera) were estimated as: 50% coverage = 93 m, 75% = 154 m, 90% = 198 m, 95% = 232 m, 100% = 942 m. Approximately 6–98 m is required to encompass each consecutive 10% segment of a nesting population up to 90% coverage; thereafter, ca. 424 m is required to encompass the remaining 10%. Many genera require modest terrestrial areas (<200 m zones) for 95% nest coverage (Actinemys, Apalone, Chelydra, Chrysemys, Clemmys, Glyptemys, Graptemys, Macrochelys, Malaclemys, Pseudemys, Sternotherus), whereas other genera require larger zones (Deirochelys, Emydoidea, Kinosternon, Trachemys). Our results represent planning targets for conserving sufficient areas of uplands around wetlands to ensure protection of turtle nesting sites, migrating adult female turtles, and dispersing turtle hatchlings.  相似文献   

19.
The Canadian Prairies have undergone important land use changes over the past 150 years. Beginning in the early 20th century, a significant portion of agricultural land was under summerfallow primarily to conserve soil moisture. The area under fallow grew to over 11 Mha, which constitute about 25% of Canada's cultivated land, and mostly remained at that level until 1975, subsequent to which improved land management practices led to significant reductions in areas under summerfallow. By 2001 summerfallow area had been reduced to 5.4 Mha, and future projections expect it to fall to 3.5 Mha. Numerous modeling studies and observations have shown that land use change can have a significant impact on regional and local climate. In the Canadian Prairies, these effects would likely be seen during the mid-June to mid-July period, when agricultural crops undergo rapid foliar expansion and substantial transpiration, thus contributing to significantly higher latent heat fluxes. Observations of 1976–2000 climate trends in the black, dark brown and brown soil zones of the Canadian Prairies showed that there have been substantial reductions in maximum temperature (1.7 °C decade−1), diurnal temperature range (1.1 °C decade−1) and solar radiation (1.2 MJ m−2 decade−1), as well as a corresponding increase in precipitation (10.3 mm decade−1) during the mid-June to July period. These findings are in opposition to trends that would be expected from climate change from an enhanced greenhouse effect, and suggest that there is substantial correspondence between reductions in summerfallow and changes in climate in the agricultural regions of the Canadian Prairies.  相似文献   

20.
Estimates of the amount of Soil Organic Carbon (SOC) at the regional scale are important to better understand the role of the SOC reservoir in global climate and environmental issues. This study presents a method for estimating the total SOC stock using data from Flanders (Belgium). More than 6900 SOC measurements from the national soil survey (database ‘Aardewerk’) are combined with a digital land use map and a digital soil map of Flanders. The spatial distribution of the SOC stock is studied in its relation to factors such as soil texture, soil moisture (drainage class) and land use. The resulting map with a resolution of 15 m consists of different classes forming a combination of these environmental factors. The results show that the lowest SOC amount (kg m? 2) is stored under cropland whereas the highest amount is found under grassland. Regarding the effect of soil properties, a significant correlation between SOC stock and depth of the ground water table is observed. Sandy loam soils stock the lowest SOC amount (kg m? 2), whereas clay soils retain the highest SOC amount. First, the mean SOC amounts of the land use–soil type classes are calculated and assigned to the corresponding cells in order to obtain a total SOC stock with its spatial distribution for Flanders. Then, a multiple regression model is applied to predict the SOC value of a particular land use–soil type class on the map. This model is based on the observed relationships between SOC and land use–soil type characteristics, using the entire dataset. The first approach does not allow to obtain a (reliable) SOC value for all land use–soil type classes due to a lack of samples in some classes. A major advantage of the regression model approach is the attribution of class specific SOC values to each land use–soil type class, regardless of the number of observations in the classes. Consequently, by applying the model approach instead of the mean approach, the area for which a reliable SOC estimate could be obtained increased by 8.1% (from 9420 km2 to 10179 km2) and the total predicted SOC stock increased by 10.1% (from 88.7 ± 5.6 Mt C to 97.6 ± 1.1 Mt C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号