首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effectiveness of reduced-impact logging practices on the maintenance of biodiversity in Borneo has been recognized for some organisms (e.g., mammals). We investigated the effects of reduced-impact logging and conventional selective logging practices on biodiversity by using soil fauna as indicators of disturbance. The study sites were the production forests of the Deramakot Forest Reserve and the Tangkulap Forest Reserve in Sabah, Malaysian Borneo (5°14–30′ N, 117°11–36′ E). We compared macro- and mesofauna in a pristine forest with no logging, a reduced-impact logged forest in Deramakot Forest Reserve, and a conventionally logged forest in Tangkulap Forest Reserve.The mean density of soil macrofauna (excluding ants) did not differ significantly among the three forest categories (nested ANOVA, p > 0.05). This tendency was also seen in the density and species richness of Oribatida and Collembola, which showed little difference among forest categories. Nonmetrical multidimensional scaling (NMS) ordination diagrams revealed a different community composition in conventionally logged forest sites compared with the other sites. The scores for the NMS first or second axis of soil fauna were correlated with one or more of the values for density, diversity, and species composition of trees. A RELATE test showed the congruence between trees and the Collembola and Oribatida community composition between sites. The results implied that the soil fauna community composition was related to tree communities. In conclusion, the impacts of logging on decomposers in the soil animal communities have been mitigated by the introduction of reduced-impact logging in Deramakot Forest Reserve through the protection of tree vegetation. It is important to consider monitoring the influence of selective logging on soil fauna with regard to the dynamics of the species (or group) composition because total density and species (or group) richness of soil fauna displayed only a marginal response to the different logging practices.  相似文献   

2.
In some tropical regions, following the abandonment of agriculture and pastures, secondary forests can recover plant species richness and forest structure (e.g. canopy cover, biomass); however, the importance of these secondary forests for fauna is not clear. Secondary forests can benefit fauna by providing suitable habitats, connecting forests fragments, and increasing gene flow. Previous studies of forest regeneration have showed different levels of amphibian recovery. In Puerto Rico, 1–5 years old secondary forests achieved similar amphibian species richness and composition in comparison with old-growth forests, while in Brazil secondary forests from 14 to 19 years of recovery only recovered 60% of the species of old-growth forests. We evaluated amphibian recovery in secondary forests in northeastern Costa Rica, by assessing amphibian recovery in 12 secondary forests that vary in age of recovery and in three old-growth forests using visual and acoustic surveys. Our sites varied in terms of their landscape (e.g. amount of surrounding forest) and forest characteristics (e.g. forest age, aboveground biomass, basal area, number of tree species, number of stems, leaf-litter depth), but there was no relationship between these characteristics and amphibian species richness or species composition. We found that amphibians are recovering rapidly in secondary forests in Costa Rica, and even young forests (10–16 years) had similar species richness and composition in comparison with old-growth forests. These forests are providing suitable microhabitats conditions for amphibians. In addition, this study highlights the importance of landscape characteristics. The abundance of amphibian species sources (e.g. forest patches) and connections between forests appear to be helping the species colonize these sites. Worldwide, the area of secondary forests is increasing, and our results show that these habitats are suitable for a diversity of amphibian species, suggesting that these forests can help reduce amphibian population and species decline.  相似文献   

3.
Arbuscular mycorrhizal fungi (AMF) community composition and species richness are affected by several factors including soil attributes and plant host. In this paper we tested the hypothesis that conversion of tropical Amazon forest to pasture changes taxonomic composition of AMF community but not community species abundance and richness. Soil samples were obtained in 300 m × 300 m plots from forest (n = 11) and pasture (n = 13) and fungal spores extracted, counted and identified. A total of 36 species were recovered from both systems, with 83% of them pertaining to Acaulosporaceae and Glomeraceae. Only 12 species were shared between systems and spore abundance of the majority of fungal species did not differ between pasture and forest. Spore abundance was significantly higher in pasture compared to forest but both systems did not differ on mean species richness, Shannon diversity and Pielou equitability. Species abundance distribution depicted by species rank log abundance plots was not statistically different between both systems. We concluded that conversion of pristine tropical forest to pasture influences the taxonomic composition of AMF communities while not affecting species richness and abundance distribution.  相似文献   

4.
The species Chromolaena odorata (Asteraceae) is a notorious invasive shrub spreading throughout West and Central Africa and as such, there is a need to determine its environmental impact, particularly on soil biodiversity and functioning. Indeed, soil organisms such as earthworms are known to strongly influence soil properties and biogeochemical cycles. This study, conducted in Central Côte d’Ivoire, aims to investigate the temporal dynamics of earthworm communities in C. odorata fallows of different ages and to identify associated indicators and persistent species. Three distinct classes of fallows identified by local farmers, were considered: young (1–3 years, C1), medium-aged (4–8 years, C2) and old (>9 years, C3). Each of the classes included four plot replicates where earthworms were sampled using the Tropical Soil Biology and Fertility (TSBF) 25 cm × 25 cm × 30 cm soil monolith method. The study of earthworm communities was focused on density, biomass, diversity and complementarity. Indicator values (IndVals) were used to identify indicator species of the classes of fallows. The shrub exerted a mixed influence on earthworms depending on the functional group, with litter feeders and polyhumics declining over time as a result of a reduction of the litter availability on the soil surface. The species richness was significantly greater in C1 than in the other classes although the Shannon–Weaver's index did not vary significantly. However, a cluster analysis performed on densities highlighted marked differences between C2 and the two other classes in terms of community composition. Indicator species were found for C1 and C2. The geophagous Millsonia omodeoi has emerged as a persistent species as its density and biomass steadily increased so that it became the dominant species in old fallows. The roles of litters and soil parameters in influencing earthworm communities are discussed.  相似文献   

5.
Indonesia and Norway have entered into a landmark deal that will pay Indonesia up to US$1 billion for forest-conservation activities aimed at slowing rampant deforestation and resulting greenhouse gas emissions. A recent Presidential Instruction in Indonesia outlines a key deliverable of this “Partnership”—a two-year suspension on new concessions for clearing or logging of peat and old-growth forest. Here, we discuss the implications of this instruction for carbon and biodiversity protection. The protection of highly threatened deep peatlands represents a clear victory. However, by focusing solely on old-growth forests, the instruction excludes over 46 million ha of selectively logged rainforests, which often have high carbon storage and biodiversity. This leaves the logged forests, most of which are in accessible lowland areas, highly vulnerable to re-logging and conversion for oil palm and pulpwood plantations. The instruction also could allow large areas of peatlands and old-growth forest to be converted to sugarcane—one of the world’s most rapidly expanding biofuel crops. While the Partnership could potentially help reform land-use planning and reduce illegal deforestation in Indonesia, we argue that Indonesia must also strive to protect vulnerable logged forests, which comprise a large part of the country’s high-carbon, high-biodiversity lands.  相似文献   

6.
Differences in the bacterial communities of soils caused by disturbances and land management were identified in rRNA gene libraries prepared from conventional tilled (CT) and no tilled (NT) cropland, a successional forest after 30 y of regrowth (NF) and an old forest of >65 y (OF) at Horseshoe Bend, in the southern Piedmont of Georgia (USA). Libraries were also prepared from forests after 80 y of regrowth at the Coweeta Long Term Ecological Research site (CWT) in the Southern Appalachians of western North Carolina (USA). The composition of the bacterial communities in cropland soils differed from those of the Horseshoe Bend OF and CWT forest soils, and many of the most abundant OTUs were different. Likewise, the diversity of bacterial communities from forest was less than that from cropland. The lower diversity in forest soils was attributed to the presence of a few, very abundant taxa in forest soils that were of reduced abundance or absent in cropland soils. After 30 y of regrowth, the composition of the bacterial soil community of the NF was similar to that of the OF, but the diversity was greater. These results suggested that the bacterial community of soil changes slowly within the time scale of these studies. In contrast, the composition and diversity of the bacterial communities in the Horseshoe Bend OF and Coweeta soils were very similar. Thus, this forest soil bacterial community was widely distributed in spite of the differences in soil properties, vegetation, and climate as well as resilient to disturbances of the above ground vegetation.  相似文献   

7.
Effect of selective logging on vascular epiphyte diversity was investigated in a moist lowland forest of Eastern Himalaya. Three epiphytic groups viz. orchids, pteridophytes and non-orchid angiosperm epiphytes were specifically studied in closed, selectively logged and in unlogged forests with treefall gaps. Logging reduced the structural complexity of the forests and altered their microclimate. With logging, there was a general decline in richness and abundance of epiphytes except orchids. The abundance and species composition of pteridophytes and non-orchid angiosperm epiphytes were related to microclimate and substrate features while their richness were correlated only with canopy cover. In contrast, orchid species composition was related to forest structure. A combination of management strategies is required for conservation of all epiphyte groups. A mosaic of logged and unlogged forest patches with undisturbed forests in proximity would maintain the diversity of pteridophytes and other angiosperms. However, for full representation of orchids, it is necessary to maintain the structural diversity of the tree forms.  相似文献   

8.
《Applied soil ecology》2007,35(2):340-355
The environmental and vegetation shifts associated with logging disturbance and secondary succession in Tropical Montane Cloud Forests have been studied in detail, however little is known about the consequences that these changes have for the soil system. The present study was undertaken to determine the impact of selective logging and subsequent secondary succession on soil microenvironmental conditions, leaf litter quality and quantity, soil nutrient concentration and soil and litter macroinvertebrate community composition. The study was carried out in three successional chronosequences, two recently logged sites and two pristine tropical mountain cloud forest sites in Oaxaca, Mexico. Results showed that selective harvesting of Quercus spp. trees caused an increase in soil temperature of ca. 4 °C that is not completely reversed after 100 years of succession. During 100 years of secondary succession litter diversity increased and soil organic matter accumulated (16.4% increase in total C). The availability of cations (Ca, Mg, Na, and K) in the topsoil decreased by more than 50% as a result of logging, and only Mg increased again between 75 and 100 years after disturbance.Pristine cloud forests sustain a diverse litter and soil macroinvertebrate community, but its composition and diversity was negatively affected by logging. The effect of Quercus harvesting activities on the litter community was apparent within 2 months of disturbance (total abundance declined by ca. 65%, higher taxa richness by ca. 10% and diversity by ca. 35%). For the soil community there was a time-lag in the effect of logging. Two months after disturbance there was no significant effect on the soil community but 15 years after abandonment, total macroinvertebrate abundance in the soil was ca. 80% lower and higher taxa richness ca. 30% lower compared to undisturbed sites. Full recovery of the macroinvertebrate community composition appeared to take more than 100 years both in the litter and soil. Reduced abundances of Coleoptera and Enchytraeidae were apparent even after 100 years of succession. The endemic earthworm Ramiellona wilsoni was found almost exclusively in the pristine forests and therefore its abundance could be used as a sensitive indicator of disturbance in these forests.  相似文献   

9.
Forest biodiversity conservation in intensively managed agricultural landscapes is a constant concern. The dispersal ability of forest plants is, hypothetically, the major limiting factor in fragmented forest landscapes and, therefore, we tested the validity of the theoretical dispersal scheme for plants in fragmented landscapes: ancient forest > woody corridor > emerging forest patch. To this end, we examined the distribution pattern of forest-dwelling plant species in rural landscapes, specifically the occurrence of common forest plant species in old historical forests and in closed-canopy stands of rural ornamental parks, planted on an agricultural land one–two centuries ago.We found that (i) the shade tolerant plant flora in parks’ stands more resemble forests than woody linear habitats (corridors), (ii) nearly 50% of the local forest species pool was present in parks, (iii) the abundance of seed source habitats and the ecological quality of the target habitat determine success rate of colonization. Models predicted that optimal stand characteristics for forest herbs are a minimum area 2.5 ha, canopy closure 0.7–0.8, basal area of trees 10–20 m2 ha?1 and the presence of moderate understory management.We conclude that only patch-type habitats provide suitable environmental conditions for forest-specific plant species. Many common forest plant species are capable of long-distance dispersal between habitat patches across hostile agricultural land, and accordingly, their dispersal follows a modified scheme of the island biogeography, without intermediary role of corridor habitats. Old rural manor parks provide an ecosystem service for nature conservation by harbouring forest biodiversity, and should be considered as potential refugium habitats.  相似文献   

10.
Differences in beetle community structures between not re-cultivated over 60 years old forest and 10 years old re-cultivated meadow and shrubs were compared. On each locality there were arranged three replicates of 10 pitfall trap rows. Mean abundance of beetles was significantly greater on old forest stand than re-cultivated meadow. However no significant differences between localities in species richness and non parametric index of diversity (Shannon H′) were recorded. Rank–abundance curves for newly established communities best fits to geometric model of distribution (r = 0.98, P < 0.001) which is characteristic for species poor communities, where a single environmental resource is extremely important, meanwhile old stand, without any reclamation practice is best fitted to lognormal distribution model (r = 0.99, P < 0.001) which is typical for more stable and well developed communities. Principal component analysis for log (N + 1) transformed matrix of abundances described well 60% of the total variance. Two clear groups of species transects were derived: one concentrated assemblages of both reclaimed and newly established communities and the second one old non reclaimed forest stands. Significant feature of trophic guild structure in all three communities is the lowest abundance of decomposers meanwhile predators predominate on non re-cultivated old sites and herbivores on reclaimed young stands.  相似文献   

11.
《Applied soil ecology》2007,35(1):140-153
This study explored the relationship between landscape-level factors (land use type) and the diversity of soil mites (Acari: Oribatida, Mesostigmata) at a within-site scale, using diversity measures including point diversity (local species diversity within a single sampling point), patterns of species turnover among the sampling points, and alpha diversity (total species richness in a habitat). The land use types included corn fields, intensive short-rotation forestry plantations, two types of abandoned agricultural fields, and hardwood forests.Land use type was identified as a significant factor influencing both small-scale (within individual soil cores) and site-scale diversity of Oribatida, which increased in the order “corn  willow  abandoned fields  forests”. There was no statistical relationship between land use type and abundance or diversity of Mesostigmata.Using a bootstrapping method to generate “random” communities, we found that all land use types had significantly more diverse patterns of species abundance than was expected by chance. On the other hand, the patterns of presence/absence of species were less diverse than expected by chance. Local site factors were significant in driving the patterns of diversity of soil mites at the site scale; land use type was less important. The overall structure of Oribatida and Mesostigmata assemblages was significantly related to land use type. We conclude that soil communities respond to land management on both local scales and habitat-wide scales.  相似文献   

12.
《Applied soil ecology》2007,35(2-3):258-265
We examined the relationship between soil respiration rate and environmental determinants in three types of tropical forest ecosystem—primary forest, secondary forest, and an oil palm plantation in the Pasoh Forest Reserve on the Malaysian Peninsula. In August 2000, the soil respiration rate and environmental factors (soil temperature, soil water content, soil C and N contents, biomass of fine roots, and microbes) were measured at 12–16 points in research quadrats. Soil respiration rates were 831 ± 480, 1104 ± 995, 838 ± 143, 576 ± 374, and 966 ± 578 (mean ± S.D.) mg CO2 m−2 h−1 in the primary forest canopy and gap site, secondary forest canopy and gap site, and oil palm plantation, respectively. Although the mean soil respiration rates in the three forest ecosystems did not differ significantly, differences were evident in the environmental factors affecting the soil respiration. The major causes of spatial variation in soil respiration were fine root biomass, soil water content, and soil C content in the primary and secondary forests and oil palm plantation, respectively.  相似文献   

13.
《Geoderma》2007,137(3-4):318-326
Increasing areas of altered wetland are being restored by re-flooding the soil. Evidence in the literature indicates that this practice can induce the redox-mediated release of soil nutrients, thereby increasing the risk of diffuse water pollution. However, for the sake of improving wetland management decisions, there is a need for more detailed studies of the underlying relationship between the hydrological and redox dynamics that explain this risk; this is particularly the case in agricultural peatlands that are commonly targeted for the creation of lowland wet grassland. A 12-month field study was conducted to evaluate the relationship between hydrological fluctuations and soil redox potential (Eh) in a nutrient-rich peat field (32 g N kg 1 and 1100 mg P kg 1 in the surface 0–30 cm soil) that had been restored as lowland wet grassland from intensive arable production. Field tensiometers were installed at the 30-, 60- and 90-cm soil depths, and Pt electrodes at the 10-, 30-, 60- and 90-cm depths, for daily logging of soil water tension and Eh, respectively. The values for soil water tension displayed a strong negative relationship (P < 0.001) with monthly dip well observations of water table height. Calculations of soil water potential from the logged tension values were used, therefore, to provide a detailed profile of field water level and, together with precipitation data, explained some of the variation in Eh. For example, during the summer, alternating periods of aerobism (Eh > 330 mV) in the surface, 0–10 cm layer of peat coincided with intense precipitation events. Redox potential throughout the 30–100 cm profile also fluctuated seasonally; indeed, at all depths Eh displayed a strong, negative relationship (P < 0.001) with water table height over the 12-month study period. However, Eh throughout the 30–100 cm profile remained relatively low (< 230 mV), indicating permanently reduced conditions that are associated with denitrification and reductive dissolution of Fe-bound P. The implications of these processes in the N- and P-rich peat for wetland plant diversity and water quality are discussed.  相似文献   

14.
Earthworms can have positive effects upon crop growth in the tropics. If soils are to be managed sustainably, then more attention should be paid to the effects of cultivation and cropping practices upon earthworms. When forest vegetation is cleared, slashed, burned and land is tilled and cultivated, earthworm abundance, diversity and activity are reduced. Conversely, retaining trees in agroecosystems may maintain earthworm populations during the cropping phase.Here, we assessed the impact on earthworm species diversity and densities of crop cultivation in the understorey of timber plantations thinned to two tree densities and compared these with uncropped, undisturbed timber plantation controls. The plots were reassessed after two and a half years of fallow to see whether populations had recovered. The experiment was in central Cameroon.Seventeen earthworm species were recorded from Eudrilidae subfamilies Eudrilinae and Pareudrilinae, Ocnerodrilidae and Acanthodrilidae, most of which were endemics. This included two new species from two new genera from the sub-family Pareudrilinae, one new species from one new genus of Ocnerodrilidae, two new species of Dichogaster and one new species of Legonodrilus. Ten species were epigeic, six were endogeic and one was anecic.Generally, earthworm densities were lower in cropped plots than in the undisturbed plantation control. The most abundant species was a Legonodrilus sp. nov. with average densities of 49 individuals m−2 in the crop phase and 80 ind. m−2 in the fallow phase. By the fallow phase, densities in the low tree density (120 ind. m−2) were higher than in the high density (40 ind. m−2). The densities of the epigeic Acanthodrilidae were significantly reduced to 7 ind. m−2 in the cropped plots compared with 42 ind. m−2 in the control plots. The effects of cropping were thus species-specific and more work is required to identify which of these endemics are the ecosystem engineers in the system.  相似文献   

15.
There is vigorous debate about the potential for reforestation to offset losses in biodiversity associated with tropical deforestation, but a scarcity of good data. We quantified developmental trajectories following active restoration (replanting) of deforested pasture land to tropical Australian rainforest, using 20 different bird community indicators within chronosequences of multiple sites. Bird species composition in restored sites (1–24 years old) was intermediate between that of reference sites in pasture and primary rainforest. Total species richness was much less sensitive to land cover change than composition indicators, because of contrasting species-specific response patterns. For example, open-country (grassland/wetland) bird species declined in richness and abundance with increasing site age, while rainforest-dependent species increased. Results from two different landscapes (uplands and lowlands) were remarkably consistent, despite differing bird assemblages. After 10 years, restored sites averaged about half the number of rainforest-dependent bird species typical of rainforest. Mean values at around 20 years overlapped with the “poorest” rainforest reference sites, but projections suggest that >150 years are required to reach mean rainforest levels, and high variability among sites means that many were not on track towards ever achieving a rainforest-like bird community. Regional rainforest endemics were half as likely to occupy older revegetated sites as non-endemic rainforest-dependent species. Between-site variability and slow colonisation by regional endemics strongly constrain the potential of rainforest restoration to offset the biodiversity impacts of tropical deforestation. The results also mean that ongoing monitoring of biodiversity is an essential part of restoration management.  相似文献   

16.
A growing body of evidence indicates that atmospheric nitrogen (N) deposition can alter the composition and function of arbuscular mycorrhizal fungi (AMF) associated with plant roots. We studied the community of AMF actively transcribing ribosomal genes in the forest floor of northern hardwood forests dominated by sugar maple (Acer saccharum Marsh.) that have been exposed to experimental N deposition since 1994 (30 kg NO3-N ha−1 year−1). Our objective was to evaluate whether previously observed declines in AM root infection and mycelial production resulted in a compositional shift in the AM fungi actively providing resources to plant symbionts under chronic N deposition. To accomplish this task, we cloned and sequenced the LSU of reverse-transcribed AM fungal rRNA extracted from the forest floor under ambient and experimental N deposition treatments. We found that experimental N deposition did not alter the active community of AMF or AMF diversity, but we did observe a significant decrease in rare taxa under chronic N deposition. Our results indicate that chronic N deposition, at levels expected by the end of this century, can exert a moderate influence on the composition and abundance of AMF associated with plant roots in a wide-spread forest ecosystem in the northeastern North America.  相似文献   

17.
《Applied soil ecology》2011,47(3):355-371
Secondary succession of nematodes was studied in 1–48-year-old abandoned fields on cambisols in South Bohemia, Czech Republic, and compared with cultivated field and sub-climax oak forests. Bacterivores were the predominant group in the cultivated field whereas in forests root-fungal feeders (mainly Filenchus) were almost as abundant as bacterivores. The total abundance of nematodes in the cultivated field averaged 868 × 103 ind m−2. During the first three years of succession the abundance practically did not change (775 × 103 ind m−2), the fauna was still similar to that in cultivated field but the biomass increased mainly due to Aporcelaimellus. Then the abundance increased up to 3731 × 103 ind m−2 in 7–8-year-old abandoned fields, plant parasites (Helicotylenchus) dominated and the fungal-based decomposition channel was activated. Later the abundance stabilised at between 1086 and 1478 × 103 ind m−2 in 13–25-year-old successional meadow stages with high population densities of omnivores and predators. The total abundance of nematodes was low in the 12–13-year-old willow shrub stage (594 × 103 ind m−2), increased in the 35–48-year-old birch shrub stage (1760 × 103 ind m−2) and the nematode fauna developed towards a forest community. The diversity and maturity of nematode communities generally increased with the age of abandoned fields but the highest values were in meadow stages (81–113 species, 57–68 genera, MI 2.73–3.30). The development of meadow arrested succession towards forests or diverted succession towards a waterlogged ecosystem. The succession of nematodes was influenced by the method of field abandonment (bare soil vs. legume cover, mowing) that affected the formation of either a shrub or meadow stage, and by the soil water status. The composition of the nematode fauna indicated that the soil food web could recover faster from agricultural disturbance under successive meadows than under shrubs.  相似文献   

18.
Over the past few decades, tropical timber production in many Asia–Pacific countries has been akin to the symmetric logistic distribution curve, or ‘Hubbert Curve’, observed in the exploitation of many non-renewable resources—a rapid increase in production followed by a peak and then decline. There are three principal reasons why logging of native tropical forests resembles the mining of a non-renewable resource: the standard cutting cycle of 30–40 years is too brief to allow the wood volume to regenerate; tropical logging catalyses considerable deforestation; and the bulk of logging is undertaken by multinational corporations with little interest in long-term local sustainability. Unless something fundamental changes, we believe tropical forests will continue to be overharvested and cleared apace, leading to an inevitable global decline in tropical timbers of non-plantation origin. It has become common these days to speak of ‘peak oil’. In the tropics, we suggest that we should also begin to discuss the implications of ‘peak timber’.  相似文献   

19.
Fragmentation of forest ecosystems increases the proportion of edge habitat and is accompanied by a change in plant species composition. The recreational use of urban forests leads to decreased vegetation cover and the formation of paths, and thus, to fragmentation at small scales. We studied the impacts of forest and path edge effects on the soil microbial community structure (by using the phospholipid fatty acid (PLFA) method) and microbial activity (measured as basal respiration) in 34 mesic boreal urban forest fragments in Finland. We sampled the humus layer 1) from the forest edge into the interior (0–80 m), and 2) at different distances from paths. Microbial community structure was only slightly affected by the forest edge but differences were found between distances of 0–10 m and over 50 m from the edge. These changes correlated with changes in soil pH. Although changes in the microbial community structure were not pronounced, microbial biomass and activity were 30–45% lower at the first 20 m into the forest fragments, due to a low moisture content of the humus near the edge. The decreased microbial activity detected at forest edges implies decreased litter decomposition rates, and thus, a change in ecosystem nutrient cycling. The microbial community structure differed between paths and surrounding areas and correlated with changes in soil pH. Paths also supported approximately 25–30% higher microbial biomass with a transition zone of at least 1 m from the path edge. Path associated disturbances (mainly alterations in vegetation and soil pH) were reflected in the soil microbial community structure up to 1.5 m from the paths.  相似文献   

20.
《Applied soil ecology》2003,22(3):241-253
Root distribution and mycorrhizal associations were compared in primary, secondary and limestone forests in Xishuangbanna, southwest China. Soil cores to a depth of 20 cm were collected at random points from four 50 m2 quadrats in each forest type. Arbuscular mycorrhizal (AM) associations were the only form of mycorrhiza found in all forest types. The primary forest was characterized by high root mass, root lengths and AM colonization levels higher than other forest types. In contrast, secondary forests had greater AM fungal spore numbers and specific root length, indicating that plant species in secondary forests achieved a greater degree of soil exploration with less biomass allocation to roots. Root density, AM colonization and AM fungal spore numbers decreased with soil depth in all forest types. Although the correlation between AM colonization levels and spore numbers was insignificant when all forest types were considered together, significant relationships emerged when each forest type was considered individually. AM colonization and spore numbers were correlated with several root variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号