首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 95 毫秒
1.
小波域马铃薯典型虫害图像特征选择与识别   总被引:3,自引:0,他引:3  
为准确、快速地识别马铃薯典型虫害,提出了一种基于小波域的马铃薯典型虫害特征提取与识别方法。该方法以自然环境下的马铃薯虫害分割图像为对象,提取小波域高斯空间模型的高频协方差阵特征值与低频低阶矩(HELM)的12个不变纹理特征、空间域Hu不变矩的4个形状特征,进行支持向量机(SVM)的虫害分类识别。通过对8类典型虫害的识别,试验结果表明:在SVM识别方法下,本文HELM特征提取方法,相比传统纹理特征提取方法,在特征计算量不增加的同时,平均识别率至少提高了17个百分点;在HELM特征与Hu矩特征下,本文SVM的运行时间为0.481 s,比人工神经网络快了近2 s,平均识别率为97.5%,比人工神经网络、贝叶斯分类器识别率提高了至少6个百分点,有明显的识别优势。  相似文献   

2.
以川麦冬叶部黑斑病、炭疽病、叶枯病3种病害图像为研究对象,采用K-Means聚类分割技术分离出病斑,通过对颜色、形状和纹理特征构成的46维特征向量进行主成分分析,再运用支持向量机设计的多级分类器进行病害识别,开发出的麦冬叶部病害识别系统识别率达到了94.4%,表明了系统对麦冬病害防治,促进麦冬产业现代化发展有重要意义。  相似文献   

3.
茶叶等级评价是检测茶叶品质的一项重要技术指标。通过提取红茶高光谱成像技术下的图像特征和光谱特征,构建一种基于图谱融合方法、适用于英德红茶等级评价的快速无损判别模型。首先制备3种不同等级的红茶样本,采用t分布-随机近邻嵌入和主成分分析对光谱数据进行降维可视化分析,然后从影响内在品质角度用连续投影法提取每种化学值的特征波长,通过多模型共识策略和竞争性自适应重加权算法-连续投影法筛选得出表征其内在品质的最佳特征波长组合,并建立基于遗传算法优化支持向量机的等级判别模型;其模型的训练集准确率为88%,预测集准确率为78.33%。为了融合外形纹理差异,先提取最佳特征波长组合对应的高光谱图像;采用图像掩膜消除背景的干扰和采用图像主成分分析消除多波长图像间的冗余信息,然后采用灰度共生矩阵和局部二值化算法提取主成分前三维主成分图像与特征光谱融合,并建立基于特征融合的遗传算法优化支持向量机等级判别模型,且基于第三主成分图像特征融合模型判别效果最佳,训练集准确率提升至98%,预测集准确率提升至96.67%。  相似文献   

4.
基于颜色特征和支持向量机的黄瓜叶部病害识别   总被引:1,自引:0,他引:1  
针对黄瓜常见叶部病斑图像的颜色特点,提出了将支持向量机(Support Vector Machine,SVM)应用于黄瓜叶部病害识别中。首先,选择HSI颜色系统作为图像特征提取的颜色空间,以减少光照强度对获取图像时的影响;然后,利用支持向量机进行叶部病害的识别。不同核函数的结果比较分析表明:径向基核函数对黄瓜叶部病害的识别率最高,最适于黄瓜霜霉病、角斑病和白粉病的分类识别;支持向量机识别方法在病害识别时训练样本少,具有很好的分类性能和泛化能力。  相似文献   

5.
基于SVM-DS多特征融合的杂草识别   总被引:11,自引:0,他引:11  
为解决单一特征识别杂草的低准确率和低稳定性,提出一种支持向量机(SVM)和DS(Shafer-Dempster)证据理论相结合的多特征融合杂草识别方法.在对田间植物图像处理的基础上,提取植物叶片形状、纹理及分形维数3类特征,分别以3类单特征的SVM分类结果作为独立证据构造基本概率指派(BPA),引入基于矩阵分析的DS融合算法简化决策级融合算法复杂度,根据融合结果及分类判决门限给出最终的识别结果.实验结果表明,多特征决策融合识别方法正确识别率达到96.11%,与单特征识别相比有更好的稳定性和更高的识别率.  相似文献   

6.
支持向量机在黄瓜病害识别中的应用研究   总被引:4,自引:0,他引:4  
探讨了采用支持向量机对黄瓜病害进行分类的方法;提取了病斑的形状、颜色、质地、发病时期等特征作为特征向量,利用支持向量机分类器,选取4种常见核函数,以Matlab7.0为平台对10类常见病害进行识别.结果表明,SVM 方法在处理小样本问题中具有良好的分类效果,线性核函数和径向基核函数的SVM 分类方法在黄瓜病害的识别方面优于其他类型核函数的SVM.  相似文献   

7.
基于PCA—SVM的棉花出苗期杂草类型识别   总被引:3,自引:0,他引:3  
为了实现棉田中不同类型杂草的机器视觉识别,提出基于主成分分析和支持向量机的棉花出苗期杂草识别方法。该方法通过提取棉田图像中棉花和杂草的颜色、形状、纹理等特征,并利用主成分分析(PCA)降低特征变量空间维数,结合支持向量机,实现对棉田杂草类型分类。通过120个棉花杂草测试样本分类试验结果发现,经PCA降维得到的前3个主成分分量能有效减少支持向量机的训练时间和提高分类正确率;通过对比发现前3个主成分分量与径向基核函数支持向量机相结合效果最好,其训练时间为91 ms,平均分类正确率达98.33%。  相似文献   

8.
基于PCA-SVR的油菜氮素光谱特征定量分析模型   总被引:4,自引:1,他引:4  
研究了采用光谱分析技术对油菜植株全氮进行定量分析的方法.采用逐步回归法对氮素的光谱特征波长进行选择,为克服光谱变量间多重共线性的影响,对变量进行了主成分分析(PCA),为提高模型的拟合优度,应用支持向量机回归(SVR)建立油菜氮素的定量分析模型.对不同氮素水平的油菜冠层光谱数据进行分析,结果表明,406、460、556、634、662、675nm的光谱反射率与油菜含氮量呈极显著相关.植株全氮SVR模型预测值与实测值的相关系数为0.89,模型的检验误差(RMSE)为2.51.  相似文献   

9.
由于甘蔗收获机在收获过程中智能化水平较低,依靠人工操作很容易对甘蔗收获机的运行状态产生误判,从而造成物流通道堵塞、能源浪费、收割效率低。针对这些问题,提出一种基于主成分分析(PCA)、遗传算法(GA)和支持向量机(SVM)状态识别模型。首先,通过实地采集甘蔗收获机刀盘轴、行走轴、切段轴和风机轴扭矩和行驶速度特征信息,然后通过PCA进行数据降维,最后利用GA优化参数C、γ,使用每个特性信息来训练SVM,对甘蔗收获机运行状态进行分类。结果表明:PCA-GA-SVM状态识别模型对甘蔗收获机运行状态的识别准确率为93.75%,建模时间为3.688 s,与SVM(81.25%,9.487 s)、PCA-SVM(87.5%,5.817 s)和GA-SVM(90%,8.969 s)进行对比,该模型具有最高准确识别率和最快建模速度,具有较大的应用价值。  相似文献   

10.
醋醅中微生物群落及其代谢产物是镇江香醋独特口感和风味形成的关键因素。研究醋醅微生物的快速识别方法,有利于监控醋醅微生物的群落组成及其动态变化情况,保障发酵产品品质。利用近红外光谱技术对醋醅中5种形态相似的常见杆菌进行快速检测。首先采集5种杆菌菌落的近红外光谱信息,并利用PCR方法对5种杆菌进行生物学鉴别(分别为地衣芽孢杆菌、短小芽孢杆菌、嗜酸乳杆菌、枯草芽孢杆菌和醋酸杆菌),然后利用K-最近邻法和最小二乘支持向量机法建立5种杆菌的近红外光谱识别模型,结果表明当主成分为4时,LS-SVM模型对应的校正集识别率为100%,预测集识别率为97.50%。  相似文献   

11.
为了快速、精准地感知水稻稻曲病的发生,实现稻曲病大面积早期监测,利用机载UHD185高光谱仪采集带有发病区域的多组水稻冠层高光谱图像数据,对图像数据进行预处理并建立数据集。对健康区域和发病区域进行分类训练,建立支持向量机(SVM)识别模型和主成分分析(PCA)加人工神经网络(ANN)的识别模型,通过验证样本来检验识别模型的准确性,达到识别发病水稻的目的。支持向量机识别模型选用两组特征波长下的假彩色图像:第1组波长组合(TZH1)为654、838、898 nm;第2组波长组合(TZH2)为630、762、806 nm,两组数据的错分误差/漏分误差总体分别达到4.24%和5.41%;其中S型核函数的SVM模型诊断性能最好,总体分类精度最高可达到95.64%,Kappa系数可达到0.94,基本达到了准确识别水稻稻曲病的目的。主成分分析加人工神经网络的识别模型选用前3个主成分,贡献率分别为93.67%、2.80%、1.24%,作为最优波长建立人工神经网络识别模型;其中非线性分类的效果优于线性分类的效果,总体分类精度达到了96.41%,Kappa系数可达到0.95。通过两个实验组数据的支持向量机...  相似文献   

12.
针对温室黄瓜霜霉病、角斑病、白粉病这3种常见病害图像的特点,提出了将支持向量机方法应用于黄瓜这3种病害识别中.首先选择HIS颜色空间作为图像特征提取的空间,以避免光照强度对图像获取的影响,然后利用支持向量机分类方法进行病害的识别.实验分析表明,HIS颜色系统基本上消除了图像获取时,光照强度对图像的影响;支持向量机分类方法在病害分类时训练样本较少,具有良好的分类能力和泛化能力.不同分类核函数的比较结果是径向基核函数的SVM方法对黄瓜这3种病害的识别率达到了90%以上,最适于黄瓜3大病害的分类识别.  相似文献   

13.
需水预测是水资源优化配置、水资源规划和水资源管理的重要依据,其预测精度受到众多因素的影响,且实际用水量数据时间系列较短,制约了传统预测方法的应用。利用支持向量机在对小样本学习的基础上对其他样本进行快速、准确的拟合预测的特点,采用主成分分析与支持向量机相结合的方法,首先利用主成分分析法筛选需水量的主要影响因子,然后将其作为输入样本,对支持向量机模型进行训练和检验,寻找最优模型,并将该方法应用于洛阳市需水预测。结果表明,该模型预测结果平均相对误差为-0.83%,预测精度较高,可作为训练样本较少情况下的一种需水预测方法。  相似文献   

14.
基于支持向量机和色度矩的植物病害识别研究   总被引:15,自引:8,他引:15  
针对植物病害彩色纹理图像的特点,提出将支持向量机和色度矩分析方法相结合应用于植物病害识别中。首先利用色度矩提取植物病害叶片的特征向量,然后利用支持向量机分类方法进行病害的识别。黄瓜病害纹理图像识别实验分析表明,利用色度矩提取病害彩色纹理图像特征简便、快捷、分类效果好;支持向量机分类方法在病害分类时训练样本较少,具有良好的分类能力和泛化能力,适合于植物病害的分类。不同分类核函数的相互比较分析表明,线性核函数最适于植物病害的分类识别。  相似文献   

15.
基于多特征降维的植物叶片识别方法   总被引:1,自引:0,他引:1  
植物种类识别方法主要是根据叶片低维特征进行自动化鉴定。针对低维特征不能全面描述叶片信息,识别准确率低的问题,提出一种基于多特征降维的植物叶片识别方法。首先通过数字图像处理技术对植物叶片彩色样本图像进行预处理,获得去除颜色、虫洞、叶柄和背景的叶片二值图像、灰度图像和纹理图像。然后对二值图像提取几何特征和结构特征,对灰度图像提取Hu不变矩特征、灰度共生矩阵特征、局部二值模式特征和Gabor特征,对纹理图像提取分形维数,共得到2 183维特征参数。再采用主成分分析与线性评判分析相结合的方法对叶片多特征进行特征降维,将叶片高维特征数据降到低维空间。降维后的训练样本特征数据使用支持向量机分类器进行训练。试验结果表明:使用训练后的支持向量机分类器对Flavia数据库和ICL数据库的测试叶片样本进行分类识别,平均正确识别率分别为92.52%、89.97%,有效提高了植物叶片识别的正确率。  相似文献   

16.
基于SVM和D—S证据理论的多特征融合杂草识别方法   总被引:1,自引:0,他引:1  
针对单一特征识别杂草的低准确率和低稳定性,提出一种支持向量机( SVM)和D-S证据理论相结合的多特征融合杂草识别方法.在对田间植物图像处理的基础上,提取植物叶片的颜色、形状和纹理等3类视觉特征,分别以3类单特征的SVM分类结果作为独立证据构造基本概率指派(BPA),运用D-S证据组合规则进行决策级融合,根据分类判决门...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号