首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
木材损伤断裂过程的声发射特性与Felicity效应   总被引:5,自引:0,他引:5  
以2种针叶材、2种阔叶材为试材,研究无缺陷试件和含横纹裂纹试件在弯曲破坏过程中材料内部微结构演化的声发射特性,并利用声发射特征参数对几种损伤类型进行辨识.结果表明:1)无缺陷试件在加载初期声发射事件发展较为缓慢,且出现的主要是一些低振幅的AE信号,而大量高振幅AE信号出现在峰值载荷附近及韧性断裂阶段;2)利用声发射监测含裂纹试件在三点弯曲载荷下的损伤并断裂全过程,可以明显地识别裂纹尖端启裂和扩展的不同阶段;3)声发射信号的特征与损伤模式有关,胞壁断裂对应的AE特征为高幅值、高能量及长持续时间,而胞壁界面损伤与层裂损伤和细胞屈服与压溃损伤对应的AE特征为低幅度、低能量及短持续时间;4)木试件在低载荷水平下呈现Kaiser效应,而在高载荷水平下呈现Felicity效应,应用Felicity比能够较好地反映木结构的损伤程度.  相似文献   

2.
含LT型裂纹木梁起裂载荷确定方法的试验研究   总被引:1,自引:0,他引:1  
木材裂纹萌生的准确判定对木材损伤断裂的评估具有重要的意义,起裂载荷是标定裂纹萌生的关键参数。本试验以杉木为研究对象,利用声发射技术(AE)、数字图像相关法(DIC)和电测法(EM),对含LT型裂纹木梁的损伤断裂特性进行了试验研究。通过研究木梁在加载过程中声发射参数变化规律以及裂尖区域的表面应变信息的演变,分析木梁裂纹萌生规律并确定起裂载荷Pini。结果表明:声发射累计振铃计数、幅度可有效反映木梁内部损伤的产生和演化,利用声发射参数的变化规律能准确确定含LT型裂纹木梁的起裂载荷Pini;数字图像相关法、电测法可以实时监测木梁表面裂缝尖端区域的应变变化,根据应变演变特征可以有效监测木梁表面裂纹的萌生和扩展。声发射技术、数字图像相关法、电测法在确定木梁起裂载荷Pini方面有较好的适用性,所确定的起裂载荷大小为:电测法>数字图像相关法>声发射。试验结果为研究监测含LT型裂纹木材裂纹萌生的试验方法提供了依据,应用时可结合实际工况选择合适的测量方法。  相似文献   

3.
The effects of the location of the crack tip in an annual ring and the direction of crack propagation on the fracture toughness of the TR crack propagation system of coniferous wood (T, direction normal to the notch plane; R, propagation direction) were analyzed by the finite element method in regard of the changes in elastic modulus and strength within an annual ring. The critical point of the fracture was defined as the state where the stress of a square element (0.125 × 0.125 mm) in contact with the crack tip equals the tensile strength. The distribution of specific gravity was measured by soft X-ray densitometry. The elastic moduli in the T and R directions were estimated by the sound velocity. The tensile strengths in the T and R directions were measured by the tensile test using small specimens of l mm span length. Regarding the variability of fracture toughness (K IC), the experimental and calculated results had the same tendency. Therefore, it was concluded that the variability ofK IC is caused by the (1) heterogeneity of the elastic modulus and strength within an annual ring; and (2) changes in the degree of stress concentration at the crack tips, according to the direction of crack propagation.Part of this work was presented at the 40th annual meeting of the Japan Wood Research Society, Tsukuba, April 1990 and at the 6th International Conference on Mechanical Behavior of Materials, Kyoto, July 1991  相似文献   

4.
Acoustic emission from softwoods in tension   总被引:3,自引:0,他引:3  
Summary Acoustic emission (AE) monitoring is a non-destructive testing technique widely used to detect flaw development and crack propagation in metals, ceramics, polymers and composite materials.This paper relates the AE-strain characteristics from three softwoods tested in tension to mechanisms of deformation observed by scanning electron microscopy. All wood specimens are identical in size and radial-longitudinal in orientation, enabling the path of failure through planes of earlywood and latewood to be examined.It is found that the proportion of earlywood to latewood in each species has a marked effect on the shape of the AE-strain curves. Parana pine, containing very few latewood tracheids, exhibits a close to linear relationship between log cumulative emissions and strain until close to failure when the count rate increases rapidly. Douglas-fir, which has well-defined earlywood-latewood boundaries generates many AEs at low strain and there is greater variation in the shape of the AE characteristic between samples.Parana pine and Douglas-fir are tested at 20 °C (12.5 % EMC). Scots pine is also stressed at 20°C (12.5%EMC), 20°C (0.7%EMC) and 80°C (0.7%EMC), to assess the effect of moisture content on AE.Values of Young's modulus, stress at failure and work of fracture for the three softwoods are compared with the AE-strain data. Although the work of fracture is related to the total AEs to failure, no direct proportionality exists between the two parameters.Finally, the AE-strain data for plywood and glass-reinforced plastic (GRP), both man-made composite materials, are compared with those of wood, the natural composite material.S.R.C. support for this work under grant No. GR/A/13257 is gratefully acknowledged. The support of Professor Bryan Harris of the School of Materials Science, University of Bath and Dr. J. M. Dinwoodie of the Building Research Establishment, Princes Risborough is greatly appreciated. Mr. B. Dobraszczyk performed the impact tests.  相似文献   

5.
Summary Acoustic emission (AE) signals were collected during fracture tests in order to analyze them for characteristics that could be used as parameters in a reactive control system for the wood drying process. Ponderosa pine and California black oak single edge notch tensile specimens were tested in the TR, TL, and mixed mode configurations, at 12 and 18 percent moisture content and at temperatures of 20, 40 and 60 °C. AE was observed in both opening mode and mixed mode tests, but cumulative events to maximum load in mixed mode were 7.4 times greater than in opening mode for oak and 3.4 times greater in pine. It was concluded that mixed mode AE signals were most promising for pattern recognition analysis, which will be the subject of Part II of this study.This research was supported in part by USDA Grant No. 90-37291-5762  相似文献   

6.
Particleboard specimens with various particle sizes were conditioned into two ranges: low and high moisture content. One set was investigated for internal bond (IB) strength and acoustic emission (AE) events during tensile tests perpendicular to the plane and the other for ultrasonic wave transmission characteristics in the thickness direction. The particleboard structural mechanics were changed as a result of the moisture effect. Specimens conditioning to higher moisture content had lower IB strength and lower cumulative acoustic emission event counts (T AE). The decrease in IB strength indicated that the irreversible thickness swelling was seen when recovery forces of the particles exceed the restraining action of the adhesive. This was attributed to stress release, which resulted in internal failure of the board. The change in the internal structure caused an increased stress level at the initiation of AE generation. No events were recorded before this stress level, obeying theKaiser effect. The decrease inT AE was not only related to the decrease in IB strength but was also affected by the transformation (attenuation) of the AE signals during IB tests according to the mesh size used.Part of this paper was presented at the 45th and 50th Annual Meetings of the Japan Wood Research Society, Tokyo and Kyoto, 1995 and 2000, respectively  相似文献   

7.
ABSTRACT

The usage of hardwoods for engineered wood products, such as glulam, requires defined mechanical properties reflecting the actual tensile strength of the material. Currently, the European strength class system EN 338 only covers profiles for hardwoods tested in bending. In this study, the material properties of medium-density hardwoods are analysed with the focus on a total of 3663 European ash (Fraxinus excelsior) and European beech (Fagus sylvatica) specimens tested in different loading modes (tension, compression, bending, and shear). The relationships between the material propertiestensile strength, stiffness, and density—are analysed on grouped data of both graded and ungraded specimens. As a result, a tailored ratio of tensile strength to tensile MOE and density is given, which allows to utilize a higher tensile strength of hardwoods (ft,0,k over 30?N/mm²) compared to softwoods. Furthermore, the relationship of the test values and the derived values is checked. The equations for deriving the compression and bending strength from tensile strength are verified based on available data. For tensile and compression strength perpendicular to the grain and for shear strength of both beech and ash, higher strength values than the ones listed in EN 338 are possible. The relationship between the mechanical properties are combined to tensile strength profiles for hardwoods.  相似文献   

8.
Summary Fracture toughness in mode I was determined for wood bonded with various adhesive systems. Tapered double-cantilever beam (TDCB) specimens were used, with attached transducer connected to instrumentation for monitoring acoustic emission. Adhesives used fro bonding the TDCB specimens included urea-formaldehyde resin, phenol-resorcinol resin, and emulsion polymer isocyanate, among others. Test parameters measured included critical load for cleavage fracture and number of events (stress waves) emitted, from which fracture toughness and cumulative count of acoustic emission were computed. It was found that there was a well defined, linear relation between fracture toughness and cumulative counts of acoustic emission per fracture area. The fracture toughness values of systems containing polyvinyl acetate and of epoxy resin were larger than those of thermosetting resins such as urea-or phenol formaldehyde. The high fracture toughness imparted by polyvinyl acetate was attributed to viscous movement of linear molecular chain segments, as compared with the more brittle behavior of the crosslinked molecular structure of such resins as ureaformaldehyde.  相似文献   

9.
Mode I and Mode III loading experiments were performed on side grooved CT specimens of two types of Laminated Veneer Lumber (LVL). Steady state crack propagation was maintained in order to detect complete load displacement diagrams. Fracture behaviour and influence of fiber orientation were studied and all important fracture mechanical values (stiffness/compliance, microstructural damage, crack initiation energy, specific fracture energy etc) were determined. Much higher crack initiation energies and specific fracture energies resulted in mode III loading than in mode I loading for both material types. Under external mode III loading, crack initiation occurs in mode III and crack propagation however takes place under mode I owing to crack surface interference. The influence of fiber orientation on fracture mechanical properties of LVL was discussed. Received 15 September 1999  相似文献   

10.
Several plywood materials made from spruce wood and, for comparison, solid spruce wood were investigated focusing on the sub-macroscopic damage evolution during tensile loading of the specimens. The destructive tests were simultaneously monitored by the acoustic emission (AE) method and strain field deformation measurement using digital image correlation (DIC). The bilinear interpretation of exponential defect growth identified the start of significant nonlinear behavior at 70 % of ultimate strength for all plywood materials. However, already the preceding and more stable damage evolution at lower stress levels has indicated a variation in intensity of the source mechanisms evaluated by AE energy of the detected events. Additional information on the formation of strain field concentration, which correlates with discrete accumulation in AE events and increased spreading in the distribution of AE energy, reveals the complexity of pre-damage due to the variation in cracks’ magnitude and timescales involved. The correlation between ultimate tensile strength and damage accumulation below 70 % of ultimate strength is determined, as well as the influence of layered structures on damage size shown by the percentage distribution of AE energy.  相似文献   

11.
[目的]针对木材蛀干害虫羽化孔洞缺陷检测问题,通过对声发射信号的时频分析,研究木材蛀干害虫羽化孔洞缺陷的AE信号特征.[方法]首先,对无孔洞和3种不同尺寸的钻孔缺陷的木材试件,参照ASTM-E976标准采用铅芯折断方式产生AE源,通过采样频率为500 kHz的2通道木材声发射信号采集系统获取原始AE信号.然后,对原始A...  相似文献   

12.
In situ tensile tests were performed in an environmental scanning electron microscope (ESEM) on earlywood, transition wood and latewood cells of Norway spruce (Picea abies [L.] Karst.). In order to examine the single wood fibres in a wet state, a specially designed tensile testing stage with a cooling device was built. The fracture behaviour of the cell types was studied at high resolution while straining. Different failure mechanisms were observed for the three tissue types. The thin-walled earlywood fibres showed tension buckling which gave rise to crack initiation and resulted in low tensile strength, whereas thick-walled latewood fibres predominately failed by transverse crack propagation without fibre folding.  相似文献   

13.
A fracture mechanics model for analysis of crack initiation and propagation in wood is defined and applied. The model has the advantage of being simple, yet it enables reasonably general and accurate analysis commonly associated with more complex models. The present applied calculations are made by means of the finite element method and relate to progressive cleavage fracture along grain. The calculations concern a tapered double cantilever beam specimen and an end-notched beam. Comparisons are made of experimental test results. The fracture properties of the wood are modelled by means of a very thin linear elastic layer located along the crack propagation path. The properties of the layer are such that the strength and fracture energy of the wood are represented correctly. This makes a single linear elastic calculation sufficient for strength prediction. Both crack development and pre-existing cracks can be analyzed. Both material strength and fracture energy and stiffness are taken into account, their relative influence on structural strength being different for different elements. The fracture layer is in the finite element context represented by joint elements. Propagation of a crack can be analyzed either by a series of elastic calculations corresponding to different crack lengths or by use of a finite element code for non-linear analysis. The computational results include sensitivity analysis with respect to the influence of the various material parameters on structural strength.  相似文献   

14.
A simple experimental setup for mode III and mixed mode (I?+?III) fracture tests with anisotropic materials under steady state crack propagation has been developed. Load-displacement curves can be recorded up to the complete separation of the specimen. From the load-displacement curves several mechanical material parameters can be derived. The tests have been performed for solid wood and different wood composites, being PARALLAM® PSL in different orientations, particleboard and INTRALLAM® LSL, and the fracture behaviour is characterised by the specific fracture energy.  相似文献   

15.
郭晓磊  胡伟  郭勇 《森林工程》2011,27(1):27-30
介绍声发射技术的定义、原理和特点,以及声发射技术作为一种新型的动态无损检测方法在木材工业中的应用,重点分析当前国内外学者对木材及木基复合材料损伤断裂中声发射特性的研究情况,指出由木材及木基复合材料损伤断裂中的声发射特性,可以在线监测木质材料裂纹尖端起裂时间、破坏源的位置以及材料损伤的严重性,较好的识别木质材料损伤断裂的不同阶段,对构件的安全性检测具有重要意义。在此基础上,指出今后声发射技术在木质材料科学领域的发展趋势。  相似文献   

16.
Bamboo is a unidirectional fiber-reinforced bio-composite. Once having cracks, the delaminating propagation is not controlled by the strength but by the interlaminar fracture toughness. In this paper, the behaviors of Mode I (crack opening mode) interlaminar fracture parallel to grain of moso bamboo (Phyllostachys pubescens) were studied. Based on energy theory, the Mode I interlaminar fracture toughness, G IC, was measured using the double cantilever beam specimens, and the fracture surfaces were examined under scanning electron microscope. The results show that: (1) the interlaminar fracture toughness of Mode I is the basic characteristic of bamboo material. The mean value of G IC = 358 J/m2 (coefficient of variation = 16.88%) represents the resistance arresting crack propagation. No significant difference was found for G IC among the specimens located at different heights of the bamboo. (2) Due to the low G IC of bamboo, the crack propagation parallel to grain developed easily. The crack was a self-similar fracture without fiber-bridging. On the fracture surfaces, smooth fibers and plane ground tissue were found at the extended area of Mode I fracture along the longitudinal direction. Under scanning electron microscope, it could be seen that the crack propagation developed along the longitudinal interface between fibers or ground tissue. It indicates that the longitudinal interface strength was weak among bamboo cells.  相似文献   

17.
Xylem dysfunction progresses rapidly in Pinus thunbergii infected with pine wilt disease. The present report deals with the timing and process of the extensive dehydration of tracheids by embolism and the subsequent desiccation of the xylem with disease development. An ultrasonic acoustic emission (AE) technique was used to detect embolisms in the xylem of pine trunks. In most of the P. thunbergii saplings inoculated with the pathogen Bursaphelenchus xylophilus, the AE frequency suddenly increased in the second week after inoculation. The high-frequency AE continued for about 3 days and into the nights. Harvesting of specimens at this time revealed that white air-filled patches, representing the dehydrated and dysfunctional areas, had just emerged in the sapwood. The AE events in the night must be due to something other than embolisms in healthy trees. Frequent embolism of tracheids, which was suggested by the elevation of the AE frequency, might occur due to the decrease in the tensile strength of xylem sap. This hypothesis is supported by previously reported data. Host cells that had reacted to infection with B. xylophilus produce and release chemicals which can lower the surface tension of xylem sap. During the second increase of AEs, most of which occurred in the third week, xylem desiccation and needle yellowing progressed. Needle fading then became distinct, and the tree was close to death when the AE frequency dropped during the fourth week. By monitoring the AE, the first physiological abnormality that took place very early after infection was detected.  相似文献   

18.
The fracture toughness of thermally modified beech (Fagus sylvatica L) and ash (Fraxinus excelsior L) wood under Mode I loading was quantified using Compact Tension (CT) specimens, loaded under steady-state crack propagation conditions. The influence of three heat-treatment levels and three moisture contents, as well as two crack propagation systems (RL and TL) was studied. Complete load–displacement records were analysed, and the initial slope, k init, critical stress intensity factor, K Ic, and specific fracture energy, G f, evaluated. In the case of both species, thermal modification was found to be significantly affect the material behaviour; the more severe the thermal treatment, the lower the values of K Ic and G f, with less difference being observed between the most severe treatments. Moisture content was also found to influence fracture toughness, but had a much less significant effect than the heat treatment.  相似文献   

19.
Abstract

A new testing method measuring the specific fracture energy of wood-based panels in Mode I is proposed. Three types of wood-based panels, i.e. oriented strand board (OSB), particleboard (PB) and medium density fibreboard (MDF) are investigated, using fracture energy and the industrial European standard method of internal bond strength according to EN 319. Double cantilever beam specimens are notched in the middle layer to introduce an initial crack. To apply tensile load perpendicular to the surface of the panels to open the crack in Mode I specimens were adhesively bonded to steel braces. Besides the calculation of the total fracture energy an advanced analysis of the load–displacement curve was also performed. Results of the fracture energy method were compared to internal bond strength (IB). Specimen shape is optimized for industrial purposes using double cantilever beams, while the determination of the fracture energy is performed by simple integration of the load–displacement curve. While IB showed a large scattering of data, the fracture energy test yielded statistically significant differences between the board types.  相似文献   

20.
The mechanical properties of 613 small clear specimens of 35 species (11 ring-porous hardwoods, 19 diffuse-porous hardwoods, and 5 softwoods) were evaluated. The aim of the study was to examine indexes of wood quality that are easy to measure and that exhibit a high correlation with bending performance and hardness that are essential properties of hardwood products. The modulus of rigidity, dynamic modulus of elasticity, bending properties (modulus of elasticity, modulus of rupture, stress at the proportional limit, absorbed energy, Tetmajer’s modulus), dynamic energy absorption by an impact bending test, compressive strength parallel to the grain, shear strength, partial bearing strength, and Brinell’s hardness were measured. A high correlation was found between dynamic modulus of elasticity and static modulus of elasticity. Bending stress at the proportional limit was found to be approximately equivalent to the compressive strength parallel to the grain. Static energy absorption correlated with dynamic energy absorption. Tetmajer’s modulus was found to be closely related to the ratio of the initial stiffness within the elastic range to the secant modulus at the maximum load. A high correlation was observed between Brinell’s hardness and partial bearing strength. The difference in the regression coefficients obtained for these correlations between the species groups was small. Part of this study was presented at the All Division 5 Conference of IUFRO, Taipei, October 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号