首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Salinity is a negative abiotic stress that produces drastic disorders on soils and plants causing a critical reduction in plant growth and yield parameters, particularly maize plant, which considers a moderately sensitive plant to soil and water salinity. Although proline and nitrogen are well known to protect plants and improve their tolerance against various abiotic stresses including salinity, the interaction between proline and nitrogen fertilizer under saline conditions remained unclear. Two field experiments were conducted, on a clay saline soil in a split-plot design with four replicates. The main plots were arranged to study the effect of exogenous of proline applications at 0, 50 and 100?mM during seedling and vegetative stages, and mineral of nitrogen fertilization rates were 0, 140, 280, and 420?kg N ha?1 occupied the subplots. A significant response to fertilizer N was observed at 420?kg ha?1, while the optimum N rate of 50?mM of proline was 410.3?kg ha?1 and the economic optimum dose was 403.43?kg ha?1. Therefore, we recommend using 403.43?kg N ha?1 to get an optimum economic yield of maize, especially in saline soil, when used 50?mM exogenous of proline at seedling and vegetative stages.  相似文献   

2.
In the present work, the efficiency of different nitrogen doses (0, 50, 100, 150, and 200 kg ha?1) on growth, yield, and quality of stevia (Stevia rebaudiana Bert.) was investigated in 2011–2013. The study was conducted in Antalya located in the Mediterranean Region of Turkey. Terra rossa type soil (LVx, FAO) characteristics of the experimental field were clay loam, with high amounts of lime (33,9%) and slightly alkaline (pH 7.7). The experiment was carried out in randomized block design with four replications. All the results were summarized as mean of three years. The highest fresh and dry biomass yields (26.75 t ha?1 and 7.5 ha?1, respectively) were obtained from 150 kg ha?1 N dose and followed by 100 kg ha?1 N dose (26.29 t ha?1 and 7.24 ha?1, respectively). Whereas the highest fresh and dry leaf yields (13.27 t ha?1 and 3.82 t ha?1, respectively) were realized in 100 kg ha?1 N dose. Actually, all nitrogen doses gave higher biomass and leaf yields compared to the control. On the hand, major steviol glycosides (stevioside and rebaudioside A) in the leaf were not influenced by nitrogen levels. In conclusion, 100 kg ha?1 N dose was found to be suitable for cultivation of stevia under field conditions.  相似文献   

3.
The rice‐wheat annual double cropping system occupies some 0.5 million ha in the Himalayan foothills of Nepal. Alternating soil drying and wetting cycles characterize the 6–10 weeks long dry‐to‐wet season transition period (DWT) after wheat harvesting and before wetland rice transplanting. Mineral fertilizer use in the predominant smallholder agriculture is low and crops rely largely on native soil N for their nutrition. Changes in soil aeration status during DWT are likely to stimulate soil N losses. The effect of management options that avoid the nitrate build‐up in soils during DWT by N immobilization in plant or microbial biomass was studied under controlled conditions in a greenhouse (2001/2002) and validated under field conditions in Nepal in 2002. In potted soil in the greenhouse, the gradual increase in soil moisture resulted in a nitrate N peak of 20 mg (kg soil)–1 that rapidly declined as soil moisture levels exceeded 40 % water‐filled pore space (equiv. 75 % field capacity). Similarly, the maximum soil nitrate build‐up of 40 kg N ha–1 under field conditions was followed by its near complete disappearance with soil moisture levels exceeding 46 % water‐filled pore space at the onset of the monsoon rains. Incorporation of wheat straw and/or N uptake by green manure crops reduced nitrate accumulation in the soil to < 5 mg N kg–1 in pots and < 30 kg N ha–1 in the field (temporary N immobilization), thus reducing the risk for N losses to occur. This “saved” N benefited the subsequent crop of lowland rice with increases in N accumulation from 130 mg pot–1 (bare soil) to 185 mg pot–1 (green manure plus wheat straw) and corresponding grain yield increases from 1.7 Mg ha–1 to 3.6 Mg ha–1 in the field. While benefits from improved soil N management on lowland rice are obvious, possible carry‐over effects on wheat and the feasibility of proposed options at the farm level require further studies.  相似文献   

4.
生物降解膜促进冬油菜养分吸收减少土壤硝态氮累积   总被引:5,自引:2,他引:5  
针对普通地膜覆盖导致的农田环境污染和土地退化问题,通过2 a田间试验,从土壤有机质含量、硝态氮累积与分布、作物养分吸收和籽粒产量等层面出发,进行了普通地膜覆盖(PM)、生物降解地膜覆盖(JM)和露地(CK)栽培冬油菜的对比研究。结果表明,播种后60和150 d,JM处理的土壤有机质含量、土壤硝态氮的累积和分布与PM处理无显著差异;播种后240 d,JM处理的土壤有机质含量显著大于PM处理,土壤硝态氮的累积量显著小于PM处理,且PM处理土壤硝态氮的淋洗下移峰值更大。PM和JM处理冬油菜的产量及地上部各器官的氮、磷、钾吸收量均显著大于CK,且PM和JM无显著差异。与PM处理相比,JM处理在播种后240 d时土壤有机质质量分数提高7.0%,土壤硝态氮累积量减少34.1%。可见,PM处理在冬油菜生育后期过分消耗地力,且残留在土壤中的硝态氮含量较高。该研究从土壤营养和作物养分吸收利用方面为生物降解地膜应用于农业生产的可行性提供了理论依据。  相似文献   

5.
Abstract

Zinc (Zn) fertilization in rice is important to enhance productivity and increase Zn concentration in rice grain to improve its nutritional status. A field experiment was conducted in wet seasons of 2013 and 2014 to study Zn nutrition of rice in three different crop establishment methods (CEMs) viz. puddled transplanted rice (PTR), system of rice intensification (SRI) and aerobic rice system (ARS), under three different rates of nitrogen (N) and phosphorus (P) viz. 0, 75 and 100% of recommended dose of fertilizer (RDF) (120?kg N ha?1 and 25.8?kg P ha?1) and two different sources of N and P viz. chemical fertilizer and microbial inoculation (MI). Concentration and uptake of Zn at different growth stages and in straw and milled rice was significantly higher in PTR and SRI than ARS. Soil DTPA–extractable Zn content of soil was increased by 1142.4, 1140.3 and 755.8?g ha?1 in PTR, SRI and ARS after two year of Zn fertilization (soil application of 5?kg Zn ha?1). Zinc nutrition increase its Zn concentration in straw and milled rice and improvement in total uptake was 38.1, 40.3 and 40.8?g ha?1 when Zn was applied with RDF, 75% RDF + Anabaena sp. (CR1) + Providencia sp (PR3) consortia (MI1) and 75% RDF + Anabaena-Pseudomonas biofilmed bio-fertilizer (MI2), respectively. Positive correlation between milled rice yield and Zn concentration (R2= 0.95 and 0.97) showed the importance of Zn nutrition in improving rice yield. Zinc concentration at 70?days after sowing (DAS) and 100 DAS was also found positively correlated with dehydrogenase activity and microbial biomass carbon in soil.  相似文献   

6.
In an incubation experiment with flooded rice soil fertilized with different N amounts and sampled at different rice stages, the methane (CH4) and carbon dioxide (CO2) production in relation to soil labile carbon (C) pools under two temperature (35°C and 45°C) and moisture (aerobic and submerged) regimes were investigated. The field treatments imposed in the wet season included unfertilized control and 40, 80 and 120 kg ha?1 N fertilization. The production of CH4 was significantly higher (27%) under submerged compared to aerobic conditions, whereas CO2 production was significantly increased under aerobic by 21% compared to submerged conditions. The average labile C pools were significantly increased by 21% at the highest dose of N (120 kg ha?1) compared to control and was found highest at rice panicle initiation stage. But the grain yield had significantly responded only up to 80 kg ha?1 N, although soil labile C as well as gaseous C emission was noticed to be highest at 120 kg ha?1 N. Hence, 80 kg N ha?1 is a better option in the wet season at low land tropical flooded rice in eastern India for sustaining grain yield and minimizing potential emission of CO2 and CH4.  相似文献   

7.
Soil extractable organic nitrogen plays an important role in nitrogen transformation and migration in many ecosystems. However, it is generally ignored due to its low content in agricultural soils. The objective of this study was to evaluate the leaching risk of soil extractable organic nitrogen affected by manure application in an intensively irrigated greenhouse vegetable cropping system through investigating its spatial (vertical profile) and temporal dynamics. Results showed that extractable organic nitrogen was present in appreciable quantities, despite that nitrate was the main soluble nitrogen form in 0–60 cm soil profile. Both the extractable organic and inorganic nitrogen were enriched in the surface and subsurface soils, and showed a high temporal variability throughout the cucumber growing season. Manure application increased the stocks of extractable organic nitrogen significantly in the soil profile. Average extractable organic nitrogen reserves in 0–60 cm layer were 47, 71, and 131 kg ha?1 for the treatments of 0, 20, and 30 t dry chicken-manure application ha?1, respectively, during the cucumber growing season. As a result, while extractable organic nitrogen only accounted for a small part of total extractable nitrogen, its high contents and large temporal variation demonstrated its leaching risk in intensively irrigated vegetable cropping systems. Soil extractable organic nitrogen should be taken into account when an advanced environment management strategy is to be developed in greenhouse vegetable planting practice.  相似文献   

8.
CERES-Maize model was used to determine nitrogen fertilizer requirements of early maturing maize varieties in the Sudan Savanna. Data were collected from 2013 to 2014 field experiments conducted in Bayero University Kano, (BUK), Kano, Nigeria. The experiments consisted of three nitrogen fertilizer levels (0, 60, and 120 kg N ha?1) and two early maize varieties (EVDT and 2009 TZEEW). Sensitivity analysis was performed to evaluate the responses of the two maizes to N fertilizers and for economic and strategic responses. The model predicted grain yield and harvest index reasonably well for the two varieties. Increasing N application from 0 to 30 kg N ha?1 increased grain yield by 105%, when nitrogen (N) rate was increased to 60 kg N ha?1, grain yield increased by 226%. Yield increases of 364%, 451%, and 461% was observed when N rate increased from 0 to 90, 120, and 150 kg ha?1, respectively.  相似文献   

9.
A field experiment was conducted to assess the effect of sulfur (S) fertilization on distribution of S in soil and use efficiency on blackgram in subtropical Inceptisol of acidic soil of Assam, India. Five levels of S were applied (0, 10, 20, 30 and 40 kg S ha?1) along with recommended dose of nitrogen, phosphorus and potassium. Available S content gradually decreased with the advancement of crop growth stages and lowest value was observed at 60 DAS. Different S fractions were found to increase with increasing levels of S application and 40 kg S ha?1 resulted the highest content for all S fractions. The grain and stover yield of blackgram increased significantly up to 20 kg S ha?1 which was 95.69% higher over control. Agronomic efficiency, apparent S recovery and recovery efficiency of S were higher at 10 kg S ha?1and found decreased with increase in level of S.  相似文献   

10.
Though mineral N application impaired nodulation initiation and function, it improves the productivity of common bean. The effect of inorganic application on common bean productivity, however, is dependent on the availability of plant nutrients including nitrogen (N) in the soils. Therefore, multilocation field experiments were conducted at Babillae, Fedis, Haramaya, and Hirna to evaluate the effect of inherent soil fertility status on responsiveness of common bean to different rates of N fertilizer application and its effect on nodulation, yield, and yield components of common bean. The treatments were six levels of N fertilizer (0, 20, 40, 60, 80, and 100 kg N ha?1) laid out in randomized completed block design with three replications. The result revealed that 20 kg N ha?1 application significantly improved the nodule number (NN) and nodule dry weight (NDW) except Hirna site, in which reduction of NN and NDW was observed. Although the remaining investigated yield and yield components were significantly improved due to N fertilizer in all study sites, 40 kg N ha?1 application resulted in significantly increased GY of common bean at Fedis, Haramaya, and Hirna site, while 60 kg N ha?1 at Babillae site. The highest total biomass yield (7011.6 kg ha?1) and GY (2475.28 kg ha?1) of common bean were recorded at Hirna and Haramaya sites, respectively, indicating the importance of better fertile soil for good common bean production. Hence, it can be concluded that the effect of inorganic N on common bean was irrespective of soil fertility rather the total amount of N in soil would affect the need of different rate of inorganic N.  相似文献   

11.
Total content of trace elements (Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn), was determined to a depth of about 1 m in the horizons of three representative podzolic soils (i.e., wet moor, dry moor, and dune soil) developed on the coarse sands of the Atlantic face of southwest France. In the aged soils (wet moor and dry moor), Cr, Cu, Ni, Pb and Zn, were highly concentrated in the B horizons whereas Cd accumulated in the litter. An estimate of metal balance was made in the soil profiles, comparing the total amount of metal recovered in the A-B horizons to the amount of indigenous metal determined in a rock matter (C) layer of a similar depth as the A-B horizons. Substantial long-term enrichment of the whole upper part of the profile (A-B horizons) of three representative sites was found for Cd (0.1–0.6 kg ha?1), Cu (3–12 kg ha?1), Ni (1–7 kg ha?1), Pb (20–26 kg ha?1), and, to a lesser extent, for Co, Mn, and Zn. Since the experimental site was remote from industrial, urban and agricultural activities, the increase in soil metal content was apparently caused by the deposition of metallic aerosols via long-range transport. Total long-term inputs are estimated for average values of Cd (0.6 kg ha?1), Cr (5 kg ha?1), Cu (12 kg ha?1), Ni (7 kg ha?1), Pb (25 kg ha?1) and Zn (6 kg ha?1) for the 1 m depth. Several Atlantic areas of Europe are probably affected by a similar metal input.  相似文献   

12.
ABSTRACT

The effect of deficit irrigation (DI) on wheat crop yield, soil physical parameters and on nitrate nitrogen movement in soil profile was evaluated under application of dairy manure and nitrogen fertilizer. Two levels of DI were taken as I0.6 (60% FC) and I0.8 (80% FC) along with two dairy manure levels (20 and 25 Mg ha?1) and three nitrogen levels (80, 100, and 120 kg ha?1). The grain yield was high under I0.8 than I0.6, whereas the irrigation level has no significant effect on soil organic carbon contents. Dairy manure, irrigation, and nitrogen indicated strong interaction with each other for all yield-related parameters during both years of study, however, results for 2nd year were highly positive. Soil nitrate nitrogen movement was significantly affected under I0.8 with high rate of dairy manure (25 Mg ha?1) and nitrogen fertilizer (120 kg ha?1). Results concluded that combined application of dairy manure (25 Mg ha?1) and nitrogen fertilizer (120 kg ha?1) under DI level I0.8 resulted in high grain yield. To overcome water scarce conditions, further experiments can be designed by addition of various organic matters in different combination that enhances the yield and soil health.  相似文献   

13.
Huang  Lei  Wang  Dangjun  Yao  Luhua  Li  Xiaoting  Wang  Dengke  Du  Qingfeng  Zhang  Yong  Hou  Xiangyang  Guo  Yanjun 《Journal of Soils and Sediments》2019,19(2):544-556
Purpose

Arid steppes in northern China have degraded severely in recent decades due to frequent human activities, resulting in poor soil quality and thus low productivity. The objective of the current study was to investigate whether nitrogen addition was a useful approach to improve productivity of these degraded steppes in Inner Mongolia.

Materials and methods

In the current study, severely degraded arid steppe was fenced in June 2014 and then fertilized for consecutive 3 years, 2014, 2015, and 2016. There were four nitrogen fertilization rates, 0, 50, 100, and 150 kg N ha?1, and two phosphorus rates, 0 and 60 kg P2O5 ha?1. Each treatment replicated three times, with each plot size reaching 400 m2 (20 m?×?20 m). The annual precipitation in 2014 and 2016 were 255 and 309 mm (dry years), respectively, lower than that (412 mm) in 2015 (wet year).

Results and discussion

The results indicated that aboveground biomass in wet years was significantly higher than that in dry years, suggesting that water is the most important limiting factor influencing steppe productivity. Plant nitrogen concentration in Stipa krylovii (dominant species) was positively correlated with the concentrations of soil available nitrogen and nitrogen use efficiency (NUE), confirming that the plant adsorbed more nitrogen under fertilization and thus increasing the NUE. The NUE and water use efficiency (WUE) in wet year were higher than those in dry years and a positive correlation was also observed between WUE and NUE, confirming that the NUE was relied mainly on precipitation.

Conclusions

Nitrogen fertilization was effective in increasing grassland production in wet years but not in dry years, suggesting that the primary limitation on grassland productivity in this ecosystem might shift from precipitation in dry years to nitrogen in wet years. Higher NUE could be obtained under low nitrogen rates in wet years. Therefore, in degraded arid steppe, low nitrogen rate (50 kg N ha?1) was recommended in wet years to improve steppe productivity.

  相似文献   

14.
Dry direct-seeded aerobic rice (DSR) is an emerging attractive alternative to traditional puddled transplanted rice (PTR) production system for reducing labour and irrigation water requirements in the Indo-Gangetic plains (IGP) of India. The fertilizer N requirement of DSR grown with alternate wetting and drying water management may differ from that of PTR grown under continuous flooding due to differences in N dynamics in the soil/water system and crop growth patterns. Limited studies have been conducted on optimizing N management and application schedule for enhanced N use efficiency in DSR. Therefore, field experiments were conducted over 3 years in NW India to evaluate the effects of N rate and timing of its application on crop performance and N use efficiency. Interaction effects of four N rates (0, 120, 150, and 180 kg ha?1) as urea and four schedules of N application on yield and N use efficiency were evaluated in DSR. The N schedules included N application in three equal split doses (0, 35 and 63, and 14, 35 and 63 days after sowing, DAS) and four equal split doses (0, 28, 49 and 70; 14, 28, 49 and 70 DAS). There was no significant interaction between N rate and schedules on grain yield. Significant response to fertilizer N was observed at 120 kg N ha?1 and economic optimum dose for three equal split doses and skipping N at sowing was 130 kg N ha?1. Highest mean grain yield of 6.60 t ha?1 was obtained when N was applied in three equal split doses at 14, 35 and 63 DAS which was about 8.5% higher compared with N applied in four equal split doses at 14, 28, 49 and 70 DAS. Under the best N application schedule, agronomic N use efficiency (26 kg grain kg?1), recovery efficiency (49%) and physiological efficiency (53 kg kg?1) were comparable to the values reported in Asia for PTR. Results from our study will help to achieve high yields and N use efficiency in DSR to replace resource intensive PTR.  相似文献   

15.
Pollution of ground water caused by excessive and uncontrolled use of nitrogen fertilizer is worrying. A recent example of such pollution has been observed in an agricultural basin in the province of Nevsehir, Turkey, where up to 900 kg ha?1 nitrogen fertilizer is used for growing potatoes in sandy soils under irrigation. Using nitrogen fertilizer in amounts that guarantee large yields without polluting ground water is essential. We present results of field experiments and numerical simulations involving 15N-labelled nitrogen fertilizer leaching. In the field, we monitored the movement of water and the distributions of nitrogen species within the soil–water–plant continuum. The detailed dynamics of the nitrogen cycle within the system were simulated. Simulations included calibration and validation of the nitrogen version of the LEACHM model (LEACHN, version 3) and long-term applications of the model. The model’s predictions of nitrogen fluxes under long-term use of fertilizer and irrigation were analysed. Nearly half of the applied ammonium-N was converted to nitrate-N during the growing season. With increasing additions of N the rate of plant uptake declined, while leaching increased significantly, and the fraction of nitrogen remaining in the soil profile increased only moderately. In long-term applications, a significant fraction of the applied fertilizer tended to accumulate after the first year in soil as the residual nitrogen not taken up by the crop. Accumulated residual nitrogen is converted to nitrate-N and leached rapidly from the soil profile during the wet season following the harvest. To reduce leaching of the residual nitrate, the rates, frequencies and timings of fertilizer application and irrigation must be scheduled in accordance with the plant growth periods and the hydraulic regime of the soil.  相似文献   

16.
Incorporating straw into the ploughed layer of soil affects the dynamics of carbon and nitrogen. A precise quantification of its short‐term effect in agricultural fields is difficult because biological and physical processes interact and take place simultaneously. As an alternative to experimentation, investigations have turned to simulations using mechanistic models, and we have taken this approach. The goal of our study was to test a mechanistic and one‐dimensional model of transport and biotransformation (PASTIS) against a data set obtained in a field experiment in northern France. We tested carbon and nitrogen dynamics by measuring C mineralization rates, the rates of gross immobilization and mineralization of N (using 15N tracing), and inorganic pools of N in the soil profile during 1 year in a bare soil with or without addition of wheat straw. Most of the model parameters were determined in independent experiments. We estimated the biological parameters from incubation experiments in the laboratory. The simulated results were in good agreement with experimental data, particularly for gross N rates. Hypotheses concerning the pathway of microbial assimilation and the dependence of decomposition on the size of the biomass were tested. The simulated net N immobilization due to addition of straw (8000 kg dry matter ha?1) reached a maximum of 64 kg N ha?1 after 2 months, whereas the observed value was 66 kg N ha?1. The model indicated that after 13 months the incorporation of straw had reduced the net amount of nitrogen mineralized by 13% and the amount of leached nitrate by 27%. The sensitivity analysis to the depth of straw incorporation indicated that the deeper was the incorporation the less was the leaching and the mineralization of nitrogen.  相似文献   

17.
Abstract

Sweetpotato is an important tuber crop for the food security in Island countries of the South Pacific. The allometric relationship between tissue nitrogen (N) concentration and aerial dry matter is unknown. We determined critical N (Nc) content from vegetative stage to harvesting, and estimated the range of variation in N nutrition index (NNI) from two field experiments with varied rates of N (0, 25, 60, 125 and 180?kg N ha?1 in 2015 and 0, 50, 125, 175 and 250?kg N ha?1 in 2017). A unified critical N curve (Nc = 3.338?W?0.307) where W?=?aerial dry matter with W?≥?1.38 t ha?1, was constructed based on the N concentration in the aerial dry matter. The calculated NNI ranged from 0.69 to 1.23 in 2015 and 0.54 to 1.17 in 2017. The preliminary Nc dilution curve and NNI determined could potentially be used as a parameter for N management.  相似文献   

18.
Yield, dry matter production, nitrogen (N) uptake and nitrogen use efficiency (NUE) of Bangladesh Rice Research Institute (BRRI) dhan29 were investigated during two consecutive dry (Boro) seasons of 2009–10 and 2010–11. The experiments were set up in a randomized complete block design with three replication having six nitrogen (N) levels of 0, 40, 80 120, 160 and 200 kg ha?1. Nitrogen fertilization increased yield characters, dry matter production and N uptake. The economic optimum rate of N was 166 and 155 kg ha–1 in first and second year, respectively, with corresponding yield of 7.1 and 6.5 t ha?1. NUEs were higher in the first year, decreased with increasing N rates in most cases. Gross return over fertilizer reached the highest Tk 692 in 2009–10 and Tk 489 in 2010–11 with 160 kg N ha–1. The results suggest that BRRI dhan29 should receive an average of 160 kg N ha?1 for economic optimum yield.  相似文献   

19.
ABSTRACT

The objective of this study was to study the influence of three organic manures, farm yard manure (FYM), poultry manure (PLM), and pigeon manure (PGM), on soil physical and chemical properties on tuber yield of Jerusalem artichoke in a newly reclaimed saline calcareous soil. A field experiment was conducted applying the three manures, alone and/or in different combinations. Soils were investigated at surface (0–30 cm) and subsurface (30–60 cm) layers before and after planting, and analyzed for physical and chemical properties. The results indicated that the application of 31.5 kg ha?1 of PLM+10.5 kg of PGM T7 recorded highest available nitrogen, zinc, copper, and moisture content at the surface layer. The same results were obtained for iron and manganese at both layers. While, applying 21.0 kg ha?1 FYM+21.0 kg ha?1 PLM T10 recorded the best treatment for pH, phosphorus, zinc, copper, moisture content, and saturation percentage at the subsurface layer. Applying 21.0 kg ha?1 PGM + 10.5 kg ha?1 FYM+10.5 kg ha?1 PLM T15 recorded the best treatment for organic matter content and bulk density at surface layer and reduced the electrical conductivity and inulin tuber content at both layers. On the other hand, calcium carbonate and sodium adsorption ratio were reduced in both layers by applying 21.0 kg ha?1 PLM+10.5 kg ha?1 FYM+10.5 kg ha?1 PGM T14. The best treatment for tuber nitrogen content and total yield was obtained with applying 42.0 kg ha?1 PLM T2 only and 31.5 kg ha?1 FYM+10.5 kg ha?1 PLM T4, respectively.  相似文献   

20.
Long-term effects of the different combinations of nutrient-management treatments were studied on crop yields of sorghum + cowpea in rotation with cotton + black gram. The effects of rainfall, soil temperature, and evaporation on the status of soil fertility and productivity of crops were also modeled and evaluated using a multivariate regression technique. The study was conducted on a permanent experimental site of rain-fed semi-arid Vertisol at the All-India Coordinated Research Project on Dryland Agriculture, Kovilpatti Centre, India, during 1995 to 2007 using 13 combinations of nutrient-management treatments. Application of 20 kg nitrogen (N) (urea) + 20 kg N [farmyard manure (FYM)] + 20 kg phosphorus (P) ha?1 gave the greatest mean grain yield (2146 kg ha?1) of sorghum and the fourth greatest mean yield (76 kg ha?1) of cowpea under sorghum + cowpea system. The same treatment maintained the greatest mean yield of cotton (546 kg ha?1) and black gram (236 kg ha?1) under a cotton + cowpea system. When soil fertility was monitored, this treatment maintained the greatest mean soil organic carbon (4.4 g kg?1), available soil P (10.9 kg ha?1), and available soil potassium (K) (411 kg ha?1), and the second greatest level of mean available soil N (135 kg ha?1) after the 13-year study. The treatments differed significantly from each other in influencing soil organic carbon (C); available soil N, P, and K; and yield of crops attained under sorghum + cowpea and cotton + black gram rotations. Soil temperature at different soil depths at 07:20 h and rainfall had a significant influence on the status of soil organic C. Based on the prediction models developed between long-term yield and soil fertility variables, 20 kg N (urea) + 20 kg N (FYM) + 20 kg P ha?1 could be prescribed for sorghum + cowpea, and 20 kg N (urea) + 20 kg N (FYM) could be prescribed for cotton + black gram. These combinations of treatments would provide a sustainable yield in the range of 1681 to 2146 kg ha?1 of sorghum, 74 to 76 kg ha?1 of cowpea, 486 to 546 kg ha?1 of cotton, and 180 to 236 kg ha?1 of black gram over the years. Beside assuring greater yields, these soil and nutrient management options would also help in maintaining maximum soil organic C of 3.8 to 4.4 g kg?1 soil, available N of 126 to 135 kg ha?1, available soil P of 8.9 to 10.9 kg ha?1, and available soil K of 392 to 411 kg ha?1 over the years. These prediction models for crop yields and fertility status can help us to understand the quantitative relationships between crop yields and nutrients status in soil. Because black gram is unsustainable, as an alternative, sorghum + cowpea could be rotated with cotton for attaining maximum productivity, assuring sustainability, and maintaining soil fertility on rain-fed semi-arid Vertisol soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号