共查询到15条相似文献,搜索用时 63 毫秒
1.
基于最小二乘支持向量机的灌区粮食产量预测研究 总被引:1,自引:0,他引:1
对常用作物产量预测模型进行了简要评述,建立了基于最小二乘支持向量机的灌区产量预测模型。最小二乘支持向量机,采用二次规划方法代替传统的支持向量机来解决函数估计问题。最小二乘支持向量机在利用结构风险原则时,在优化目标中选取了不同的损失函数,即误差ξ_i(允许错分的松弛变量)的二范数。这使得最小二乘向量机的优化问题为:min(1/2)‖w‖^2+C(1/2)sum from i=1 to 1ξi~2(ξi是松驰变量;C为正则化参数)。用于函数估计的最小二乘SVM为:y(x)=sum from k=1 to Nαk K(x,xk)+b。采用等式约束可以将求解的优化问题转化成线性方程,大大减少算法的复杂性,另外,采用径向基核函数的最小二乘SVM仅需确定γ、σ2个参数(γ为可调参数,σ为核函数宽度系数),参数的搜索空间由标准SVM的三维降低到二维,极大地加快了建模速度。对γ,σ2个参数通过模型评估来确定参数最优值,大大提高了预测的精度。对河南省人民胜利渠灌区作物产量进行模拟计算,并用检验样本与灰色预测和神经网络模型的预测结果进行了比较。结果表明,最小二乘SVM预测的最大误差7.12%,平均误差4.81%;灰色理论预测的最大误差38.36%,平均误差17.52%;神经网络预测的最大误差10.40%,平均误差6.80%。可见,最小二乘支持向量机模型有较高的预测精度和良好的推广能力,预测结果优于灰色预测理论和人工神经网络,可作为灌区粮食产量预测的一种新方法。 相似文献
2.
对常用作物产量预测模型进行了简要评述,建立了基于最小二乘支持向量机的灌区产量预测模型。最小二乘支持向量机,采用二次规划方法代替传统的支持向量机来解决函数估计问题。最小二乘支持向量机在利用结构风险原则时,在优化目标中选取了不同的损失函数,即误差ξ_i(允许错分的松弛变量)的二范数。这使得最小二乘向量机的优化问题为:min(1/2)‖w‖~2+C(1/2)sum from i=1 to 1ξ_i~2(ξ_i是松驰变量;C为正则化参数)。用于函数估计的最小二乘SVM为:y(x)=sum from k=1 to Nα_k K(x,x_k)+b。采用等式约束可以将求解的优化问题转化成线性方程,大大减少算法的复杂性,另外,采用径向基核函数的最小二乘SVM仅需确定γ、σ2个参数(γ为可调参数,σ为核函数宽度系数),参数的搜索空间由标准SVM的三维降低到二维,极大地加快了建模速度。对γ,σ2个参数通过模型评估来确定参数最优值,大大提高了预测的精度。对河南省人民胜利渠灌区作物产量进行模拟计算,并用检验样本与灰色预测和神经网络模型的预测结果进行了比较。结果表明,最小二乘SVM预测的最大误差7.12%,平均误差4.81%;灰色理论预测的最大误差38.36%,平均误差17.52%;神经网络预测的最大误差10.40%,平均误差6.80%。可见,最小二乘支持向量机模型有较高的预测精度和良好的推广能力,预测结果优于灰色预测理论和人工神经网络,可作为灌区粮食产量预测的一种新方法。 相似文献
3.
4.
最小二乘支持向量机(LS-SVM)方法克服了经典二次规划方法求解支持向量机的维数灾问题,适合于大样本的学习.提出一种新的基于LS-SVM模型的预测控制结构,对一典型非线性系统-连续搅拌槽反应器(CSTR)的仿真表明,该控制方案表现出优良的控制品质并能适应被控对象参数的变化,具有较强的鲁棒性和自适应能力. 相似文献
5.
参考作物腾发量是估算作物蒸发蒸腾量的关键参数,其准确预测对提高作物需水预报精度具有十分重要的意义.最小二乘支持向量机(LS-SVM)是支持向量机(SVM)的一种改进算法,它基于结构风险最小化准则,可兼顾模型的经验风险和推广能力,将LS-SVM方法引用于参考作物腾发量预测中,并以辽宁省铁岭市为例,对比分析了 LS-SVM模型与BP模型的预测结果.结果表明:LS-SVM模型学习速度快,具有比BP模型更高的模拟性能和预测精度.LS-SVM方法克服了BP模型训练时间长,容易陷入局部极小的缺点,是适合参考作物腾发量预测的新方法. 相似文献
6.
基于最小二乘支持向量机的土壤含水量检测的研究与分析 总被引:1,自引:0,他引:1
介绍了运用数字图像处理技术和基于最小二乘支持向量机的土壤含水量检测方法,经理论分析和土壤含水量检测试验,证明该方法有效、可行、操作简便、实时性好。 相似文献
7.
依据铂电阻温度传感器样本,提出了一种采用最小二乘支持向量机辨识传感器逆模特征的校正铂电阻温度传感器非线性误差的原理和方法.该方法不需逆模型函数形式的先验知识,能够保证找到的极值解就是局最优解,具有较好的泛化能力.实例应用表明,其检测精度可达到0.1 ℃,铂电阻温度传感器非线性校正效果好. 相似文献
8.
提出了一维波动方程的基于最小二乘支持向量机方法的近似解求法。该方法求得的近似解结构简单、精度高、形式固定。所得近似解由两部分组成:一部分是满足边值条件的已知函数;另一部分是两项的乘积,其中一项是边值为0的已知函数,另一项是与径向核函数相关的函数。同时证明了解的收敛性和稳定性,最后通过两个数值算例验证了该方法的有效性。 相似文献
9.
最小二乘支持向量机方法在农用柴油机故障诊断中的应用研究 总被引:1,自引:0,他引:1
采用最小二乘支持向量机法对农用柴油机故障进行计算机仿真诊断。结果表明:该方法能够提高故障诊断的准确性,减少误诊。 相似文献
10.
由于农村各类用地数据具有样本小、非线性等特点,导致土地利用空间配置结果的适宜性较差,提出基于最小二乘支持向量机的农村土地利用空间优化配置方法。基于最小二乘支持向量机预测农村土地利用空间格局,得到各类用地面积数据,对各类用地进行满足经济效益与生态效益最大化的多目标函数的优化配置。实例结果表明,农村土地利用空间优化配置结果中各类用地类型高度适宜区域的面积在总面积中占比均超过75%,证实了设计方法的合理性。 相似文献
11.
农业灌溉用水量的LS-SVM预测模型研究 总被引:3,自引:0,他引:3
农业灌溉用水量预报是灌区制定水资源调度计划、合理高效分配水量的科学依据。针对灌溉用水量影响因素复杂非线性的特点,鉴于支持向量机算法的诸多优势,建立了基于最小二乘支持向量机的灌溉用水量预测模型,将该模型用于塔河流域T灌区灌溉用水量预测,并与人工神经网络方法预报结果比较,表明该方法具有泛化能力强、误差小等特点。 相似文献
12.
13.
支持向量机(Support Vector Machines,SVM)是一种具有坚实理论基础的新颖小样本学习方法。采用支持向量机回归(Support Vector Machine Regression,SVR)算法,用libsvm-2.89软件包对我国近年来的粮食产量进行回归预测,选择交叉验证法进行参数寻优,建立粮食产量和其影响因素的支持向量机回归模型。粮食产量预测平均相对百分误差为1.209%,均方根误差为581.191,相关系数为0.962 24。将预测结果与指数平滑模型、生产函数模型及多元线性回归模型进行了比较,用平均绝对百分误差、希尔不等系数及均方根误差对4种模型预测结果进行评价。结果表明,基于支持向量机的径向基核函数(RBF)模型预测粮食产量的精度优于其他预测方法。 相似文献
14.
电子商务客户流失受到多种影响,具有时变性、非线性,为了提高电子商务客户流失的预测精度,提出一种粒子群算法优化支持向量机的电子商务客户流失预测模型。首先收集电子商务客户数据,并进行预处理,然后将数据输入到支持向量机进行学习,并采用粒子群算法选择支持向量机参数,建立最优电子商务客户流失预测模型,最后采用具体数据进行了仿真实验。结果表明,相对于其他电子商务客户流失预测模型,本文模型提高了电子商务客户流失的预测精度,可以准确反映电子商务客户流失变化特点,预测结果可以为电子商务企业提供有价值的参考意见。 相似文献
15.
以面向对象软件的度量准则作为预测因子,以维护期间所修改的代码函数作为可维护性,运用支持向量机回归原理,构造了面向对象软件可维护性预测模型.为了评价模型的性能,同时构造人工神经网络模型.在R软件环境下仿真,通过误差的可视分析和RMSE分析知,SVM模型预测面向对象软件可维护性具有较好的性能,效果明显优于ANN模型. 相似文献