首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
为了解秸秆微波酸催化水热炭和碱活化活性炭形成机制和理化特性演变规律,该研究开展了不同柠檬酸质量分数下的秸秆微波水热和活性炭的制备试验,并研究了水热炭和活性炭理化及其电化学特性。结果表明,随柠檬酸质量分数的增加,秸秆水热炭的产率、挥发份和H含量减少,而其灰分、固定碳、C和高位热值增加,且酸质量分数为10%后趋于稳定。柠檬酸质量分数为10%时,水热炭的碳微球结构最丰富,其比表面积和孔体积最大,且以中孔为主。10%柠檬酸水热炭在900℃下经KOH活化后的活性炭产率为8%~11%,活化气体产率为32%~35%,且以CO和H2为主。900 ℃活性炭的比表面积为1 250~1 570 m2/g,总孔体积为1.00~1.20 cm3/g,孔径为3.55~4.10 nm,且以中孔和微孔为主。当电流密度为1 A/g,水稻、玉米和油菜秸秆活性炭的比电容分别为160.54、150.12和155.17 F/g,且循环5 000次后的电容保持率分别为91.04%、88.12%和89.06%,表现出较好的循环稳定性。水稻秸秆水热炭和活性炭的产率、灰分、碳转化率、能量转化率、比表面积、总孔体积、比电容和电容保持率最大。  相似文献   

2.
为探索天然微藻资源化的利用途径,该文以天然栅藻为原料,采用傅立叶转换红外线光谱分析, X射线衍射分析,X射线荧光光谱分析,环境扫描电子显微镜与热重分析仪对水热炭进行测试分析。研究结果表明,随着水热温度的升高,水热炭产率从47.29%(180℃)降低至43.01%(240%);水热炭的O/C摩尔比从1.45减小至0.28,碳化程度加强,水热炭具有应用于固体燃料的潜力。鉴于水热炭含有大量灰分,其热值为8.43~9.67 MJ/kg,因此脱灰预处理是必要的过程。经过水热碳化处理,天然栅藻的比表面积从4.36 m~2/g增加到35.26 m~2/g。热解动力学结果表明随着水热温度的提高,水热炭的热稳定性增强。研究结果对天然微藻的资源化利用提供了一定的理论参考。  相似文献   

3.
为了探究预处理下西瓜皮微波水热(microwavehydrothermal,MHT)温度对炭化产物资源化的影响,该研究对其干燥处理、酸处理和碱处理后进行不同MHT温度试验,分析炭化产物的特性及其可能的应用。结果表明,在MHT温度为130~190℃之间,碱处理在MHT温度为170℃所得水热炭的产率最高达86.01%,明显高于干燥处理和酸处理对应产率(P0.05)。然而,其热值小于17 MJ/kg,不具有作为燃料的潜力。干燥处理和酸处理不仅能获得符合标煤的水热炭,而且能够得到高附加值的5-羟甲基糠醛(5-hydroxymethylfurfural,HMF)和糠醛(furfural,FF)。对比干燥处理产物情况,酸处理能够在MHT温度为130℃时得到3.3%的HMF产率以及在150℃下得到相同产率的FF。经济性分析表明在MHT温度为130℃下酸处理1 t新鲜西瓜皮可得炭化产物的价值约为6 607元,且工艺能耗仅为66元/t。该研究结果可为预处理下西瓜皮资源化转化以及MHT工艺的实际应用提供参考。  相似文献   

4.
种养结合系统是实现养殖业和种植业可持续发展的重要途径。水热技术可以转化畜禽粪污生产生物原油、生物炭、水相产物和气体产物,分别具有燃料、土壤改良、农用杀菌剂和温室气体肥料应用潜力,以粪污水热资源化为核心构建的高效种养结合系统有助于提高土地对畜禽粪污的消纳能力、构建生态可持续的绿色循环农业,实现畜禽粪污资源化利用、种植业和养殖的协同高效发展。该研究基于国内外近十余年的研究,系统综述了粪污水热资源化产物在种养结合生态循环农业模式中的作用和应用潜力,论述了畜禽粪污水热转化生物原油在农业内燃机中作为燃料的研究现状,阐述了水相产物作为潜在的农用杀菌剂在作物病害防控中的作用,梳理了畜禽粪污来源水热炭在转化机理、理化特性和还田应用中的研究进展,分析了气相产物中的组分和用于温室种植的潜力。在此基础上总结了以粪污水热资源化为核心的高效种养结合系统面临的主要挑战,并对水热资源化产物农业循环应用的研究方向进行展望。研究为畜禽粪污水热资源化产物的高值利用和高效种养结合系统研究提供理论参考。  相似文献   

5.
竹材热解过程中焦炭组分的变化规律   总被引:1,自引:1,他引:0  
为了准确掌握生物质热分解机理,该文采用竹材作为典型生物质代表,利用元素分析、漫反射红外(diffuse reflectance infrared Fourier transform spectroscopy,DRIFTS)和二维红外相关光谱(two-dimensional perturbation correlation infrared spectroscopy,2D-PCIS)相结合研究了生物质热解过程中焦炭化学成分、化学结构的演变规律。研究结果发现,氢键网络在250℃热解下解构形成自由羟基,伯醇基在该温度下可转化为羰基类C=O。烷基-CH、-CH2、-CH3起始反应温度分别为250、300、350℃,而吡喃环C-O在300℃左右断键生成大量醚类脂肪链化合物,这些化合物经过缩合重构可能形成新的芳环结构。当热解温度超过350℃,芳基取代反应开始大量发生,焦炭中羰基C=O、醚键C-O-C数量减少,芳环取代基数量增加;500℃后,芳环稠环化反应开始大量发生,600℃热解温度下制备的焦炭中含有大量的稠环芳烃结构。  相似文献   

6.
为了解纤维素在水热降解过程中产物的理化特性及其形成机制,该文对生物质主要组分—纤维素的水热降解特性进行了系统地研究,全面分析了反应温度和停留时间对纤维素水热产物分布的影响,并从产物的化学结构入手,对纤维素水热解机理进行了探索。随着温度的升高,重质油产率在250℃时达到最大,重质油组分变得复杂,焦炭产率逐渐降低。随着停留时间的延长重质油产率呈现先增加后降低的趋势,焦炭产率变化趋势较小,然而通过对焦炭的热重、红外、元素、电子扫描显微镜和X射线光电子能谱仪分析表明停留时间的延长可以提高焦炭的化学官能性,这为生物质水热机理的研究提供了依据。  相似文献   

7.
近年来,由于水热液化技术可以将高含水率的生物质直接转化为生物原油而极具潜力,引起了人们的广泛关注。该文综述了生物质水热液化研究的最新进展,简述了生物质水热液化的产物分离流程,着重分析了水热液化4种产物(生物原油、水相产物、固体残渣和气体)的产物特性及其利用方式。在4项产物中,生物原油可作为燃料或者从中提炼高附加值产品,水热液化水相可以进行微藻养殖、经厌氧发酵产甲烷或者利用微生物电解池产生氢气等,固体残渣通过进一步处理后可作为生物炭使用,气相产物可作为温室的气体肥料。另外,该文总结了生物质中关键元素在水热液化产物中的分布规律,展望了水热液化技术未来研究方向,以期能为生物质水热液化研究提供参考与借鉴。  相似文献   

8.
大量、集中的畜禽粪便,若不加以合理处理利用极易引发严重的环境污染问题。该文选择了集约化程度较高的生猪、奶牛、肉牛、肉鸡和蛋鸡5种畜禽的粪便作为样本,研究了水热碳化温度对畜禽粪便水热处理的影响,通过元素分析、工业分析和热重试验,分析了水热炭的燃烧特性,并比较了不同畜禽粪便水热炭之间的差异。研究发现,水热碳化能够提高水热炭的碳元素、固定碳含量,提高高位热值,降低氢碳比、氧碳比和挥发分固定碳比的值,得到的水热炭类似于褐煤。热重试验发现,水热碳化能够减小不同畜禽粪便样品之间的性质差异。水热碳化温度为180和210℃时,除肉鸡粪便水热炭外,其他畜禽粪便水热炭的综合燃烧特性指数均得到提高,5种畜禽粪便中,奶牛和肉牛粪便水热炭具有更好的燃烧特性。  相似文献   

9.
为探究污泥水热炭化工艺中碳和氮固定率与影响因素间的关系,采用三因素三水平Box-Behnken试验设计,拟合响应面模型,研究了水热温度(150~250℃)、含固率(5%~15%)、反应时间(2~6 h)与污泥水热炭化工艺中碳氮固定率的关系。结果表明,多元二次方程可用于描述碳和氮的固定率与上述影响因素间的定量关系(R2分别为0.9925和0.9903)。污泥水热炭化中碳与氮固定率分别为36.6%~52.9%和20.4%~42.5%。水热温度与反应时间对碳和氮固定率均呈负相关,含固率则呈正相关。3个因素对碳固定率的显著影响(p0.05)大小依次为:水热温度含固率反应时间,而氮固定率仅受水热温度的显著影响(p0.05)。水热温度(≤169℃)与含固率(≥7%)的交互耦合可维持较高的碳固定水平(≥50%),而降低水热温度是获得较高氮固定率的关键。该研究结果可为水热炭化技术应用于污泥处理领域提供参考。  相似文献   

10.
为探索沼液资源再利用,以鸡粪沼气发酵液培养的小球藻为原料,采用水热液化技术制备生物原油。采取正交试验,在温度250~330℃、时间30~90 min及含固量15%~25%下,探讨了水热反应后各相产物特性及元素回收效率。生物原油产率为13.23%~23.83%,最高产油率在330℃、60 min、15%时取得。生物原油中碳、氢及氮回收率分别是16.13%~31.14%、19.18%~34.89%及5.97%~14.32%,最高碳回收率及最低氮回收率分别在330℃、60 min、15%及250℃、30 min、15%时获得。水热液化各相产物中,碳、氢及氮回收率在水相中占主导地位,分别为48.74%~60.43%、46.81%~62.13%及74.84%~82.67%。热重分析暗示生物原油可能适合制备润滑油。此外,GC-MS分析表明生物原油中烃类物质质量分数为16.14%~24.91%,主要为低碳链烃类,如甲苯及二氢茚等。  相似文献   

11.
为了研究生物质热解多联产焦炭产品的应用特性,采用棉秆和油菜秆作为热解原料制备了不同温度(350、550、750和950℃)下的焦炭样品。分析了不同焦样的燃烧特性、水分吸收和保持特性、CO2吸附特性、苯酚吸附特性和抗环境氧化能力。研究结果表明550℃热解棉秆焦炭和750℃热解油菜秆焦炭燃烧特性好,热值高,燃烧快速剧烈,容易燃尽,适宜作为燃料炭;而综合焦样的吸水能力和保水特性,350℃热解棉秆焦炭和550℃热解油菜秆焦炭的吸水量大,保水能力强,适宜用作生物炭。高温下制备的棉秆焦炭和油菜秆焦炭吸附CO2和苯酚的能力更强,其吸附量跟焦炭微孔容积正相关;同时高温热解焦炭具有更好的碳汇效应,相同热解温度下制备的棉秆焦炭比油菜秆焦炭抗环境氧化能力更强。根据不同焦样的燃烧和吸附特性,选择性的制备目标焦炭,将其运用于工农业生产,有利于提升热解多联产的经济效益,保证多联产系统的稳定运营。  相似文献   

12.
水热炭化被认为是极具潜力的安全处置与资源化利用鸡粪的技术措施之一。该研究将鸡粪在190和260℃水热炭化处理不同时间(1、6和12 h),收集并测定固体产物生物质炭特性,目的在于了解水热炭化反应温度和时间对鸡粪生物质炭特性的影响。结果表明,鸡粪经过水热炭化处理后,46%~56%的干物质转化为生物质炭,C、P质量分数分别增加了5%和59%以上,而H、O、N、K质量分数则分别降低了9%~18%、26%~65%、19%~37%和92%~97%。表面电荷量降低,p H值依变性也减弱,其中有效阳离子交换量降低了50%~90%。生物质炭中1~5μm孔隙显著减少,主要形成1和100μm左右的孔隙。总体来看,水热炭化反应温度越高,反应时间越长,这些指标提高或降低的幅度越大,生物质炭的炭化程度越高;比起反应时间,反应温度对生物质炭性质的影响更大。该文还讨论了鸡粪生物质炭作为土壤调理剂的应用价值与潜力,研究结果可为鸡粪生物质炭在土壤改良等方面的应用提供基础数据。  相似文献   

13.
水热炭化可以显著改善污泥的脱水性能,促进污泥的无害化、减量化、资源化利用,但目前污泥水热炭化技术的工业化应用鲜有报道.该研究基于工程规模的污泥水热炭化系统开展研究,重点研究了系统工程设计和控制逻辑,开展了系统参数测试,分析了污泥炭、气相和水相的理化性质和组分分布,并在此基础上进行了系统能量平衡分析.结果表明,系统污泥年...  相似文献   

14.
低温水热法制备竹生物炭及其对有机物的吸附性能   总被引:2,自引:5,他引:2  
竹是一类常见的生物质资源,竹加工中产生的废弃物是制生物炭的理想原料。该研究采用水热炭化法,在较低的水热温度下制备竹生物炭,并通过Na OH浸泡和N2氛围下高温煅烧2种方法,对竹生物炭进行进一步改性,所得产品用于去除水溶液中2-萘酚和刚果红。结果显示:仅采用水热炭化得到的竹生物炭产品得率大于54%,表面官能团丰富,均能吸附水溶液中的2-萘酚和刚果红,其中160℃3 h下制备的样品对2-萘酚吸附效果最好,200℃7 h下制备的样品对刚果红吸附效果最好;改性处理会降低终产品得率并影响表面官能团,Na OH浸泡改性处理能增加竹生物炭对2-萘酚和刚果红的吸附容量,N2氛围下高温煅烧改性则不能提高竹生物炭对这2种物质的吸附效果。研究结果可为废弃生物质制炭及生物炭在水污染物吸附分离中的应用提供参考。  相似文献   

15.
水热碳化是一种实现废弃生物质高值化再利用的热化学转化技术,特别是针对含水率高的畜禽粪便处理,与其他碳化技术相比具有明显的优势,不仅能解决畜禽粪便随意堆积造成的环境污染问题,还能快速杀死致病微生物、获得高值生物炭产品,为实现畜禽养殖粪污减量化排放、资源化利用,推动乡村振兴、建设美丽乡村具有重要意义。文章基于畜禽粪便主要组分和水热碳化机理,重点介绍了温度、液固比、反应停留时间、添加剂等因素对水热炭产率及理化性质的影响,并讨论了水热炭作为生物燃料、吸附剂、土壤改良剂和功能材料前驱体的应用前景,为通过调整水热碳化过程参数以提高产物应用潜能提供参考。通过梳理,总结目前研究存在的问题,为未来研究工作指明方向,以期推动水热碳化技术在畜禽粪便处理和资源化利用的应用。  相似文献   

16.
为了解秸秆微波水热碳化过程中产物形成机制及其理化结构演变规律,该文采用控制变量法进行了单因素试验设计,研究了水热温度、停留时间、催化剂和原料种类对秸秆微波水热产物组成和结构特性的影响。结果表明,随着水热温度升高和停留时间延长,液相产物的pH值先降低后增加,最低值为3.13,电导率和PO_4~(3-)–P质量浓度先增加后下降,最大值分别为9.38 mS/cm和308 mg/L,NH_4~+–N质量浓度增加,260℃最大值为155 mg/L,而水热焦的产率、H/C和O/C下降,固定碳、C、高位热值增加。高温和长停留时间使水热焦生成较多纳米碳微球结构,且使其O-H键先增多后减少。高温和K_2CO_3使水热焦的芳香烃结构和C=O、C–O含氧官能团增强,而长停留时间使其先增强后减弱。高温和长停留时间使水热焦的比表面积、孔体积和孔径均先增加后降低,而K_2CO_3使水热焦的纳米碳微球和比表面积增加,最大比表面积为10.975 9 m~2/g。玉米秆、水稻秆和油菜秆水热焦的纳米碳微球结构最明显,棉花秆水热焦的比表面积和孔体积最大。  相似文献   

17.
生物质成型处理可以提高生物质的能量密度而降低其运输与储存成本,有利于生物质资源的综合利用。该研究以杉木屑为研究对象,经170~260 ℃水热及水热氧化预处理后制备成型颗粒,并使用范式法、X射线衍射仪和热重分析仪等测试手段分析了水热及水热氧化预处理过程对木屑及其成型颗粒理化性能的影响。结果表明:与原料相比,水热及水热氧化预处理后木屑成型颗粒的机械性能从原料的16.2 MPa分别增至38.9 和41.1 MPa,水热氧化预处理对木屑的机械性能提升更有效。在水热及水热氧化预处理过程中,随着预处理温度上升,木屑样品的结晶度均呈现先升高后降低的趋势,分别在230和200 ℃时达到最高值,且成型颗粒的机械性能与木屑中纤维素含量及其结晶度呈正相关趋势,结晶纤维素是影响其成型过程的关键组分。与原料相比,水热及水热氧化预处理明显改善了木屑成型颗粒的燃料品质及其燃烧性能,成型燃料的热值、综合燃烧指数和稳燃指标均得到明显提升,其中水热氧化处理更有利于木屑炭化程度的提升。  相似文献   

18.
By hydrothermal liquefaction (HTL) of organic matter, hydrochars are produced which may be applied to soil for carbon sequestration. From substrates of wild seaweed and organic waste digestate, we measured the distribution of solids (hydrochars) and liquids after HTL at 150 and 200°C, 50?bar for 1?h. The output of liquids and solids was recorded. Elemental analysis was conducted for essential plant nutrients, potentially toxic elements (PTEs) and silicon in the hydrochars. Sequential extraction of phosphorous (P) was conducted to assess the P availability for plants. About 20% of the initial dry matter dissolved during HTL of digestate, and 55% for seaweed. More dry matter was dissolved by increased temperature. Except from arsenic in seaweed chars, the concentrations of PTEs were below quality compost thresholds. About 85% of P was recovered in chars for digestate. For seaweed, the recovery was 97% at 150°C, decreasing to 84% at 200°C. The solubility of P in chars decreased by HTL, and more with higher temperature. Reduced P availability, especially by higher temperature, is negative for the immediate fertilization effect. However, for soil sequestration of carbon, reduced P availability in hydrochars may expand the area where application may occur without negative environmental effects of eutrophication of water bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号