首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the effects of gonadotropin-releasing hormone agonist (GnRHa) and testosterone (T) on the level of gonadotropin subunit mRNAs in the pituitary of ovariectomized or intact female red seabream. Ovariectomy induced increase of seabream (sb) GnRH, glycoprotein (GP) α and luteinizing hormone (LH) β mRNA levels. GnRHa treatment also stimulated GPα and LHβ mRNA levels. T treatment reduced GPα and LHβ mRNA expression probably via negative feedback action on sbGnRH. Both GnRHa and T treatment had no effect on follicle-stimulating hormone (FSH) β mRNA levels. These results suggest that the regulatory mechanisms of GPα and LHβ gene expression differ from those of FSHβ gene.  相似文献   

2.
To examine the roles of gonadal steroids in the regulation of expression of gonadotropin subunit genes, male red seabream were gonadectomized and a sub-group was treated with 11-ketotestosterone (11-KT). Castration of males during the early stage of spermatogenesis elicited a significant increase in FSHβ mRNA levels, which was prevented by 11-KT replacement. By contrast, LHβ mRNA levels were not changed by castration or 11-KT replacement. In addition, administration of 11-KT to sham-operated males suppressed the steady-state FSHβ and LHβ mRNA levels. These results indicate that 11-KT may function as a negative feedback regulator of FSHβ gene expression, and may act through the testis to down-regulate LHβ mRNA levels in male red seabream during this period.  相似文献   

3.
The effects of water temperature on the development of hermaphroditic gonads in red seabream (Pagrus major) and on mRNA expression of cytochrome P450 aromatase (P450arom) and 11β-hydroxylase were examined. High water temperature suppressed both expression of P450arom and 11β-hydroxylase and the development of oocytes in ovarian portion of hermaphroditic gonads.  相似文献   

4.
The feasibility of using rainbow trout Oncorhynchus mykiss embryos as an expression system for proteins was investigated. For model proteins, we selected two goldfish gonadotropins (GTHs), follicle-stimulating hormone (FSH) and luteinizing hormone (LH). To produce single-chain goldfish FSH (scgfFSH) and LH (scgfLH), cDNAs encoding glycoprotein hormone (GP) α and FSHβ were fused in tandem, and cDNAs encoding GPα and LHβ were fused in tandem. The fused cDNAs were ligated with β-actin promoter, and microinjected into fertilized rainbow trout eggs. After 4-days incubation, the embryos were subjected to western blotting and in vitro bioassays. The recombinant proteins produced by the embryos were immunoreactive to antisera against goldfish GPα, N-glycosylated, and biologically active. We conclude that scgfFSH and scgfLH were successfully produced in transgenic rainbow trout.  相似文献   

5.
The endocrine regulation of reproduction in a multiple spawning fish with an asynchronous-type ovary remains largely unknown. The objectives of this study were to monitor changes in the mRNA expression of three gonadotropin (GtH) subunits (GPα, FSHβ, and LHβ) during the reproductive cycle of the female chub mackerel Scomber japonicus. Cloning and subsequent sequence analysis revealed that the cDNAs of chub mackerel GPα, FSHβ, and LHβ were 658, 535, and 599 nucleotides in length and encoded 117, 115, and 147 amino acids, respectively. We applied a quantitative real-time PCR assay to quantify the mRNA expression levels of these GtH subunits. During the seasonal reproductive cycle, FSHβ mRNA levels remained high during the vitellogenic stages, while GPα and LHβ mRNA levels peaked at the end of vitellogenesis. The expression of all three GtH subunits decreased during the post-spawning period. These results suggest that follicle-stimulating hormone (FSH) is involved in vitellogenesis, while luteinizing hormone (LH) functions during final oocyte maturation (FOM). Both GPα and FSHβ mRNA levels remained high during the FOM stages of the spawning cycle and increased further just after spawning. Thus, FSH synthesis may be strongly activated just after spawning to accelerate vitellogenesis in preparation for the next spawning. Alternatively, LHβ mRNA levels declined during hydration and then increased after ovulation. This study demonstrates that chub mackerel are a good model for investigating GtH functions in multiple spawning fish.  相似文献   

6.
The physiological functions of pituitary gonadotropins (GtHs) are well established in higher vertebrates, whereas those in teleosts are still poorly understood. To describe the role of GtHs during gonadal development of female chub mackerel Scomber japonicus, changes in follicle-stimulating hormone (FSH) and luteinizing hormone (LH) cells were investigated immunohistochemically during the seasonal reproductive and spawning cycles. FSH and LH cells were identified in the different cell types of the proximal pars distalis (PPD); FSH cells were located in the central PPD, whereas LH cells were localized along the border of the pars intermedia. To examine changes in FSH and LH cells, the percentage of FSH or LH cell-occupying area in the PPD was evaluated and represented as FSHβ-immunoreactive (ir) or LHβ-ir levels, respectively. FSHβ-ir levels increased significantly from immature to the completion of vitellogenesis, whereas LHβ-ir levels were maintained at high levels from early vitellogenesis to post-spawning. During the spawning cycle, which consisted of four stages from just after spawning to the next oocyte maturation, both FSHβ-ir and LHβ-ir levels showed no significant changes among different stages; however, LHβ-ir levels remained relatively high, and FSHβ-ir levels were constantly low. These results suggest that both FSH and LH may be involved in vitellogenesis and LH may act at final oocyte maturation in female chub mackerel, although the role of FSH during the spawning cycle is still unclear.  相似文献   

7.
Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) play critical roles in controlling vertebrate gonadal development and function. Activin, a dimeric growth factor initially identified in the gonads, is important in the differential regulation of the two gonadotropins in mammals. Using goldfish as a model, we have demonstrated that activin stimulates FSHβ but suppresses LHβ expression. The present study demonstrated that the 5′-flanking region of goldfish FSHβ gene is functional in the mouse gonadotrope cell line, LβT2 cells. Similar to its effect on the cultured pituitary cells, activin stimulated FSHβ promoter activity in the LβT2 cells and the effect could be blocked by its binding protein follistatin. Follistatin also significantly suppressed the basal FSHβ promoter activity, suggesting secretion of endogenous activin by the LβT2 cells. Further characterization of the cis-regulatory elements responsible for activin stimulation is now under way in our laboratory.  相似文献   

8.
9.
10.
ABSTRACT:   In order to clarify the roles of androgen and gonadotropin-releasing hormone (GnRH) on gonadotropin (GTH; luteinizing hormone [LH] and follicle stimulating hormone [FSH]) synthesis, effects of castration and implantation of GnRH analog (GnRHa) or 11-ketotestosterone (11-KT) on expression of GTH subunit, α-glycoprotein subunit (αGSU), FSHβ, and LHβ genes, during the early spermatogenic stage in male red seabream Pagrus major were examined. Male red seabream underwent castration or sham-operation and were subsequently implanted with cholesterol pellets containing GnRHa, silicone capsules filled with 11-KT, or blank capsules (control). FSHβ mRNA levels increased due to castration, and it was reversed by treatment with 11-KT. 11-ketotestosterone treatment also decreased FSHβ mRNA levels in sham-operated fish. These results suggest that 11-KT acts on the pituitary to suppress FSH synthesis in male red seabream. On the other hand, neither castration nor replacement of 11-KT in castrated fish had effects on LHβ mRNA levels, whereas 11-KT treatment had slightly but significantly decreased LHβ mRNA in sham-operated fish. αGSU mRNA levels were not changed by castration or 11-KT treatment in both sham-operated and castrated fish. Meanwhile, treatment with GnRHa significantly decreased FSHβ mRNA levels in sham-operated fish, but not in castrated fish. This suggests that GnRHa may down-regulate expression of FSHβ mRNA through the production of 11-KT in testis. LHβ and αGSU mRNA levels in sham-operated fish, but not in castrated fish, were significantly elevated by treatment with GnRHa.  相似文献   

11.
Gonadotropin (GTH) hormones are glycoprotein which stimulates gonadal maturation in vertebrates. Follicle stimulating hormone is involved in initiation of gametogenesis and regulation of gonadal growth. FSHβ has been cloned and characterized from the brain of Catla catla. The FSHβ full‐length of cDNA sequence of 523 bp comprised 3, 394 and 128 bp of 5′‐UTR, open reading frame (ORF) 3′‐UTR respectively. The coding region of C. catla FSHβ encoded a peptide of 130 amino acids. Phylogenetic analysis of C. catla FSHβ deduced amino acid sequence showed high similarity with Gobiocypris rarus followed by goldfish, Carassius auratus. The qPCR result shows that FSHβ mRNA is mainly expressed in pituitary while moderate and low expression was observed in testis and ovary respectively. Chitosan‐nanoconjugated kisspeptin‐10 (CK‐10) of particle size 125 nm, polydispersity index of 0.335 to 0.65 and zeta potential of ?34.95 mV were synthesized and evaluated at against naked kisspeptin‐10 for their reproductive hormonal profile. Treatment of fish with CK‐10 showed controlled and sustained surge of the reproductive hormones (FSH & LH) with peak at 12 h. The hormone levels of naked kisspeptin‐10 treated fish decline after 6 h. The sustained release of this CK‐10 will help in reducing maturation age, synchronization of ovulation and spawning in fish. This is the first report on use of chitosan‐nanoconjugated kisspeptin‐10 (CK‐10) for reproduction in fish.  相似文献   

12.
Pituitary gonadotropins (GTHs) are of primary importance in triggering oocyte growth and maturation. However, the actions of GTHs are not direct, but are mediated by the ovarian production of steroidal mediators of oocyte growth (estradiol-17β) and maturation (maturation-inducing hormone, MIH; 17α,20β-dihydroxy-4-pregnen-3-one, 17α,20β-DP in salmonid fishes; 17α,20β,21-trihydroxy-4-pregnen-3-one, 20β-S in sciaenid fishes). It is established that production of estradiol-17β and 17α,20β-DP by salmonid ovarian follicles occurs via the interaction of two cell layers, the thecal and granulosa cell layers (two-cell type model). A distinct shift in the salmonid steroidogenesis from estradiol-17β to 17α,20β-DP occurs in the ovarian follicle layer immediately prior to oocyte maturation. It is possible that this shift is a consequence of dramatic changes in the expression of the genes encoding various steroidogenic enzymes. As an initial step to address this question, we have isolated and characterized the cDNAs encoding a number of ovarian steroidogenic enzymes including the rainbow trout cholesterol side-chain cleavage cytochrome P-450, 3β-hydroxysteroid dehydrogenase (HSD), 17α-hydroxylase/17,20 lyase cytochrome P-450, aromatase cytochrome P-450 cDNAS as well as the pig 20β-HSD cDNA. Estradiol-17β stimulates the hepatic synthesis and secretion of a yolk precursor, vitellogenin. Vitellogenin is then transported to the ovary where it is selectively taken up into the oocyte by a receptor-mediated process involving specific cell-surface receptors. Estradiol-17β was also shown to induce the synthesis of egg membrane proteins in the liver. The maturation-inducing action of 17α,20β-DP and 20β-S is through the binding to the oocyte plasma membrane. This initial MIH-surface interaction is followed by the formation of the major mediator of MIH, maturation-promoting factor (MPF). We have purified MPF from mature oocytes of carp. Carp MPF consists of two components: the homolog of the cdc2+ gene product of fission yeast (p34cdc2) and cyclin B. The cdc2 kinase protein is present in immature oocytes as well as in oocytes induced to mature by 17α,20β-DP treatment, while cyclin B proteins can be detected only in mature oocytes. Addition of bacterially expressed goldfish cyclin B to the extracts of immature goldfish oocytes induced MPF activation. These results suggest that the appearance of cyclin B protein is a crucial step for 17α,20β-DP-induced oocyte maturation in fish.  相似文献   

13.
Steroids are known to play a crucial role in gonadal sex differentiation in many non-mammalian vertebrates, but also in the gonadal sex change of hermaphroditic teleosts. We investigated the expression of two genes encoding key steroidogenic enzymes, i.e., cytochrome P450 aromatase (P450arom) and cytochrome P45011β-hydroxylase (P45011β), during the sex change of the protogynous rice field eel, Monopterus albus. Using RT-PCR with degenerate primers, we cloned rice field eel homologous fragments for both genes (rcP450arom and rcP45011β) as indicated by the high level of homology with P450arom and P45011β sequences from various vertebrates. Gonadal expression of rcP450arom and rcP45011β mRNA levels were then assessed during the sex change by semi-quantitative RT-PCR and a real-time RT-PCR. rcP450arom was predominantly expressed in ovary, much less in ovotestis, and barely in testis. Conversely, P45011β was markedly up-regulated at the onset of testicular development. These findings underline that regulation of steroidogenesis is an important process in the sex change of protogynous rice field eel, and they clearly indicate that the concomitant down-regulation of P450arom and up-regulation of P45011β are of pivotal importance to the sex change of this species.  相似文献   

14.
To achieve a better understanding of the role of gonadotropins (GTHs) in the stickleback we have cloned the full-length cDNAs of the β-subunits of follicle stimulating hormone (FSH) and luteinizing hormone (LH), and analysed the expression during the seasonal cycle. In females, LH-β levels were low during winter and early spring, increased to a peak in late May and declined to low levels again in July. FSH-β expression peaked earlier, in January and declined spring. In males, LH-β expression peaked in May. During June–September, when spermatogenesis occurs, LH-β levels were very low. FSH-β expression peaked earlier, in January, and reached the lowest levels in July. Thus, when spermatogenesis starts, the expression of both GTH-β mRNAs display their lowest levels.  相似文献   

15.
Two gonadotropic glycoproteins (PmGTH I and II) were purified by ion-exchange chromatography, gel filtration and preparative SDS-PAGE, from pituitaries of red seabream, a marine teleost which has an asynchronous-type ovary and spawns almost daily during the spawning season. The glycoproteins were composed of distinct subunits and the molecular weights were estimated to be 32 and 38 kDa for PmGTH I and PmGTH II, respectively. Both PmGTH I and II were active in two homologous bioassays: in vitro oocyte maturation and/or in vitro estradiol-17 production assays. These two GTHs were distinct in electrostatic properties, molecular weight, stability and yields from pituitaries during the spawning season. These properties suggest that PmGTH I and II correspond to salmon GTH I and II, respectively.A homologous radioimmunoassay with which to measure PmGTH II was developed using a rabbit antiserum against the subunit of PmGTH II and intact PmGTH II as standards and radioactive competitors. Competition curves for red seabream plasma and pituitary extract were parallel to the standard curve, while PmGTH I had low cross-reactivity (3.1 %) with the antibody. This specific RIA system showed an in vivo LHRHa induced GTH surge in the plasma of female red seabream.  相似文献   

16.
Recombinant gonadotropins (GTH), follicle-stimulating hormone (FSH) and luteinizing hormone (LH) of goldfish Carassius auratus were produced by baculovirus in silkworm larvae. Hemolymph containing recombinant FSH (rFSH) or LH (rLH) was collected from silkworm larvae, and its biological activity was examined in vivo using male goldfish and female bitterling Rhodeus ocellatus ocellatus. Injection of hemolymph containing rFSH or rLH induced milt production in male goldfish, whereas only rLH induced ovulation in female bitterling. These results suggest, that biologically active goldfish recombinant GTH could be applied for the induction of gonadal development in aquaculture fishes as a substitute of pituitary extract, if a method of large scale production is established.  相似文献   

17.
To assess the response of the GtH system to the removal of gonadal feedback, effects of bilateral gonadectomy and 17β-estradiol (E2) replacement on gonadotropin (GtH) subunit expression, as well as LH protein levels, were monitored in the pituitary. Adult female hybrid striped bass undergoing mid-vitellogenesis were divided into one sham and two gonadectomized (gdx) groups. One gdx group received E2 (2 mg kg?1) via microspheric delivery systems, the other was given a vehicle injection. Groups were sampled on days 3 and 14 post-surgery (PS). Expression of all GtH subunits was significantly increased in the gdx group on both days compared to the shams, whereas E2 replacement in gdx fish restored alpha and LHβ mRNA levels to those of the sham fish and dramatically reduced FSHβ mRNA levels. Gdx had no effect on the pituitary concentration of LH. E2 replacement, however, reduced protein levels significantly on day 3, but not day 14. In conclusion, during mid-vitellogenesis expression of both GtHβ subunits is negatively controlled by gonadal feedback, which is also evident by restoration of gdx subunit mRNA levels to those of the shams after E2 replacement.  相似文献   

18.
19.
Pseudolabrus sieboldi, wrasse being a diurnal spawner provides a good opportunity to study the endocrine mechanism of estrogen formation in brain and gonads. Moreover, an extremely large amount of E2 was produced in serum and testis of wrasse. It is assumed that the presence of E2 may play a major role in diurnal gametogenesis in male fish. In this study brain type aromatase have been isolated, cloned and sequenced from the brain of wrasse. Further, the expression pattern of brain type aromatase in gonads and adult tissue of male and female fish have been analyzed. In addition, the diurnal expression pattern of brain type aromatase in both male and female fish brain during spawning season have been analyzed. The P450arom (br) was isolated, cloned and sequenced from both male and female bamboleaf wrasse. The P450arom (br) gene (1877 sequenced nucleotide) contains an ORF of 1470 bp, a 5′-UTR of 18 bp and at least 407 bp in 3′-UTR. The amino acid sequence homology in the coding region of wrasse P450arom (br) is high compared to that of medaka, Oryzias latipes (80%), rainbow trout type 2, Oncorhynchu mykiss (78.2%), fugu, Takifugu ribripes (78%) rainbow trout type 1, (76%), goldfish, Carassius auratus (66.8%) and zebrafish, Danio rerio (66.2%). Expression study reveals that P450arom (br) mRNA were most abundant in brains of both male and female fish throughout the day during the spawning season. RT-PCR study revealed that P450arom (br) was expressed in skin, anal fin and tail fin of both male and female wrasse. P450arom (br) was not detected at any time of the spawning day in either ovary or testis of wrasse.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号