首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A detailed study on the heat and moisture vapour transmission characteristics of different types of single and multi-layered fabric ensemble by using sweating guarded hot plate (SGHP) has been reported in the present paper. A comparison has been made on thermal and moisture vapour transmission properties of five different insulative fabrics, namely, knitted-raised fabric, needle punched nonwoven, through air bonded nonwoven, spunbonded-through air bonded sandwich nonwoven and warp knitted spacer fabric and three different coated fabrics, namely, plain woven rubber coated, plain woven polyester polymer coated and plain woven polytetrafluoroethylene (PTFE) coated fabric, used for thermal insulation purpose. ANOVA has been conducted to analyse the significance of type of insulative and coated fabrics used. Sandwich nonwoven fabric which has higher thickness and porosity shows higher thermal resistance followed by through air bonded fabric, raised fabric, needle punched fabric and spacer fabric. Spacer fabric shows lesser evaporative resistance due to its lesser thickness and larger aperture size, which increases the diffusion of moisture vapour. Needle punched fabric shows slightly higher evaporative resistance than spacer fabric, followed by raised fabric, through air bonded fabric and sandwich nonwoven fabric. Permeability index of different multilayered fabric ensembles are also compared.  相似文献   

2.
The thermal characteristics of hollow polyester fibers were compared with solid polyester fibers in order to study their processing behavior and performance characteristics. The effects of different processing and structural properties including fiber diameter, bulk density of layer, and surface pressure on layers of needle-punched nonwoven fabrics with hollow fibers on thermal resistance properties were also investigated. The results show that hollow fibers have a higher thermal resistance in comparison with solid ones. This is a consequence of air trapping inside the fibers, higher bulkiness, and higher surface area of hollow fibers. Furthermore, thermal resistance of microfibers is better than those of macrofibers in both hollow and solid fibers. The thermal resistance of nonwoven subjected to this study, have an inverted-U-shaped pattern versus the bulk density of the fabric. The results also showed that thermal resistance of needle-punched nonwoven fabrics can be affected by the range of heater temperature during the test, however considerably can be affected by fabric thickness as a main structural property of nonwoven fabrics.  相似文献   

3.
The aim of the presented research was to study the influence of surface layer material on improvement of impact, dielectric, EMI shielding and sound absorption properties of sandwich composites. The sandwich composite structure consisted of Kevlar or Carbon woven fabric at the surface layer, recycled high loft nonwoven in the center and a mixture of carbon particles/epoxy matrix as a binder to hold the surface layer and core together. The carbon particles were incorporated in epoxy in order to improve failure mechanism and enhance dielectric properties or electromagnetic shielding of sandwich composites. The biggest improvements on impact properties of sandwich composites were obtained when Kevlar fabric was used as surface layer. However, surface layer of carbon fabric was found to provide better dielectric properties and improve EMI shielding of sandwich composites against Kevlar fabric surface layer.  相似文献   

4.
Far-infrared polyethylene terephthalate (FPET) fibers have been commonly used in clothing in order to attain heat retention, and the combination of three-dimensional crimped hollow polyethylene terephthalate (TPET) fibers makes the clothing to be fluffy and air permeable, and thereby improves the wearing comfort. This study aims to make thermally insulating nonwoven composites by using recycled far infrared fibers. The composites are used to cover the heat transfer lines and prevent the heat emissivity. A specified amount of low-melting-point polyethylene terephthalate (LPET) fibers and FPET and TPET fibers at different ratios are blended, followed by being needle punched at 100-300 needles/min, and then hot pressed at 120 °C, in order to form thirty nonwoven composite types. These nonwoven composites are measured for their porosity, thickness, and air permeability, and are tested for thermal insulation and temperature-rise slope under a constant ambient temperature.  相似文献   

5.
This study focused on the fabrication and acoustic property evaluation of sandwich cover-ply-reinforced highresilience thermal-bonding nonwoven hybrid composites. P-phenyleneterephthalamides and bicomponent high-resilience bonding polyester intra-ply hybrid nonwoven fabrics were compounded with glass plain fabric to produce the high strength sandwich structural cover ply by means of needle punching and thermal bonding to reinforce the whole composites and dissipate energy when being impacted. Then, the acoustic absorption properties of the homogenous intra-ply hybrid meshwork layer were investigated before and after being reinforced with the aforementioned cover ply. The influencing factors, including areal density, fiber blending ratio, needle punching depth, and air cavity thickness between back plate of the impedance tube and composites, were comparatively investigated. Results revealed that hybrid composites exhibited exceedingly high acoustic absorption properties. Acoustic absorption coefficients were promoted with increases in areal densities and fiber blending ratio of 3D crimped hollow polyester, particularly at low-mid frequency range. In addition, needle punching depths and back air cavity thicknesses considerably affected the average absorption coefficients. The meshwork center layer reinforced with sandwich structural cover-ply perform high resilience properties.  相似文献   

6.
Interlinings are produced recently not only natural and synthetics fibers but also fiber sheet form in nonwoven production methods. During usage, the fabric wears out and because of this problem fabric surface structure deteriorates. As a result of, investigation of fabrics surface and frictional properties has been important before usage of garments. For this reason, a patented laboratory instrument was designed which is based on horizontal working principle of accessing friction coefficient of fibrous textile surfaces. The tested materials were nonwoven interlining materials produced by spunbond methods. Abrasion resistance of paste dot-CoPES nonwoven interlining material is lower than others because of softness handle. On the contrary, friction coefficients have been obtained higher values.  相似文献   

7.
The energy of impact must decay and be transmitted after a bullet is shot through a ballistic-resistant cloth with a laminate structure. A rigid net structure transmits the impact stress to reduce the breakage of the material in the direction perpendicular to the fabric after the impacting of a projectile. This work combines the rigid net structure of stainless steel mesh with two layers a needle-punched polyamide nonwoven fabric to create a sandwich-like laminate structure. A compound fabric that is composed of a stainless steel mesh and polyamide nonwoven fabrics is placed in multi-layer Kevlar fabrics, and the buffer effect is measured by performing a dropping weight impact test and a bullet-shooting test. The specifications of the stainless steel mesh and the order of placement of the compound fabrics are varied to show the effect of these parameters on the energy of fracture propagation and the buffer effect of the multi-layered Kevlar compound fabric that includes a layer of compound fabric that is made of stainless steel mesh and polyamide nonwoven fabrics. In this study, the compound fabric replaces several layers of Kevlar unidirectional fabric, to be used to reduce the cost of bulletproof vests without reducing ballistic resistance.  相似文献   

8.
This study used recycled fibers and inflaming retarding fibers to form composite nonwoven and then compounded with PU foam preparing composite board with sound-absorbing, thermal-insulating and cushion properties. Effects of foam density and composite nonwoven on three properties of PU composite board have studied. Result shows that, with increase of foam density, composite boards had higher sound absorbing coefficient at medium and high frequencies, lower thermal insulation as well as firstly improved and then decreased cushion property. After assessment, the optimal foam density was 60 kg/m3. For diverse requirements, PU foam matches with different kinds of composite nonwoven to achieve excellent cushion property. The resulting composite board can effectively ease hurts from rigid wall, and could be applied in kindergarten, music hall, audio-visual room, pub and recreational centre etc in the future.  相似文献   

9.
In the first stage, polyethylene terephthalate (PET) fibers and Kevlar fibers are combined at a blending ratio of 80/ 20 wt% in order to form PET/Kevlar nonwoven fabrics. Two pieces of PET/Kevlar nonwoven fabrics that enclose a carbonfiber (CF) interlayer are then needle punched in order to form PET/Kevlar/CF (PKC) composites. In the second stage, the sandwiches compose PKC composites as the top and the bottom layers, as well as an interlayer that is composed of a spacer fabric and polyurethane (PU) foam. PU foams have different densities of 200, 210, 220, 230, and 240 kg/m3. These resulting nonwoven fabric/spacer fabric/PU foam sandwiches are then tested using a drop-weight impact test, a compression test, a bursting strength test, a sound absorption test, and a horizontal burning test. The test results indicate that the optimal properties of sandwiches occur with their corresponding PU foam density as follows: an optimal residual stress (240 kg/m3), an optimal compressive strength (240 kg/m3), and an optimal bursting strength (220 kg/m3). In addition, the sandwiches reach the HF1 level according to the horizontal burning test results. They also have an average electromagnetic interference shielding effectiveness of -48 dB, as well as a sound absorption coefficient of 0.5 in a frequency between 1500-2500 Hz, which indicates a satisfactory sound absorption effect. The nonwoven fabric/spacer fabric/PU foam sandwiches proposed in this study are mechanically strong, sound absorbent, and fire retardant, and can be used in construction material and electromagnetic shielding composites.  相似文献   

10.
Layered fabric systems with electrospun polyurethane fiber web layered on spunbonded nonwoven were developed to examine the feasibility of developing protective textile materials as barriers to liquid penetration using electrospinning. Barrier performance was evaluated for layered fabric systems, using pesticide mixtures that represent a range of surface tension and viscosity. Air permeability and water vapor transmission were assessed as indications of thermal comfort performance. Protection performance and air/moisture vapor transport properties were compared for layered fabric systems and existing materials for personal protective equipment (PPE). Layered fabric systems with electrospun nanofiber web showed barrier performance in the range between microporous materials and nonwovens used for protective clothing. Layered fabric structures with the web area density of 1.0 and 2.0 g/m2 exhibited air permeability higher than most PPE materials currently in use; moisture vapor transport was in a range comparable to nonwovens and typical woven work clothing fabrics. Comparisons of layered fabric systems and currently available PPE materials indicate that barrier/transport properties that may not be attainable with existing PPE materials could be achieved from layered fabric systems with electrospun nanofibrous web.  相似文献   

11.
Biodegradable products are parts of a natural cycle. The biopolymers and the fibers that can be produced from them are very attractive on the market because of the positive human perception. Therefore, PLA being a well known biodegradable fiber and some conventional fibers were selected for the current study to examine the differences between them and to emphasize the importance of biodegradability beside fabric performance. 14.8 tex (Ne 40/1) combed ring spun yarns produced from biodegradable fiber PLA, new generation regenerated fibers Modal and Tencel, synthetic and blends 50/ 50 % cotton/polyester and 50/50 % viscose/polyester, polyester were selected as yarn types and by using these yarns, six knitted fabrics were produced and some important yarn and fabric properties were compared. In this context, moisture and the tensile behavior of yarns and pilling, bursting strength, air permeability and moisture management properties of the test fabrics are discussed.  相似文献   

12.
This research is intended to improve the interface between the fibers and the matrix and limit water absorption of bio-based material thereby decreasing degradation of the composites when they are exposed to external environment such as high temperature and humidity. In this study, flax fibers were treated with an organic surface coating containing SiO2 nanoparticles. This coating was a dispersion of silica fume in epoxy. One composite was also made with raw fibers as reference as well as one sample of pure PLA. Flax fibers/PLA composites were manufactured by hot pressing by stacking 4 PLA films and 3 pieces of flax fabric. Morphology and dispersion of the coating on the fibers was observed by scanning electron microscopy (SEM), small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). Accelerated ageing was carried out on the 3 materials by placing them in a 50 °C water bath until saturation to investigate the influence of the coating on water diffusion. Mechanical properties of the different composites were investigated by tensile (before and after conditioning) and short beam shear (SBS) testing in order to evaluate the impact of the coating on the interfacial properties of the materials. The results show that the fibers surface was homogenized and that a better adhesion was reached because of the coating. Coating the fibers also allowed the decrease in water uptake by more than 10 % and their protection during conditioning, preserving their mechanical properties.  相似文献   

13.
Different silk substrates in form of spun silk tops, nonwoven web, yarn, and fabric were coated with electrically conducting doped polypyrrole (PPy) by in situ oxidative polymerization from an aqueous solution of pyrrole (Py) at room temperature using FeCl3 as catalyst. PPy-coated silk materials were characterized by optical (OM) and scanning electron (SEM) microscopy, FT-IR spectroscopy, and thermal analysis (DSC, TG). OM and SEM showed that PPy completely coated the surface of individual silk fibers and that the polymerization process occurred only at the fiber surface and not in the bulk. Dendrite-like aggregates of PPy adhered to the fiber surface, with the exception of the sample first polymerized in the form of tops and then spun into yarn using conventional industrial machines. FT-IR (ATR mode) showed a mixed spectral pattern with bands typical of silk and PPy overlapping over the entire wavenumbers range. DSC and TG showed that PPy-coated silk fibers attained a significantly higher thermal stability owing to the protective effect of the PPy layer against thermal degradation. The mechanical properties of silk fibers remained unchanged upon polymerization of Py. The different PPy-coated silk materials displayed excellent electrical properties. After exposition to atmospheric oxygen for two years a residual conductivity of 10–20 % was recorded. The conductivity decreased sharply under the conditions of domestic washing with water, while it remained essentially unchanged upon dry cleaning. Abrasion tests caused a limited increase of resistance. PPy-coated silk tops were successfully spun into yarn either pure or in blend with untreated silk fibers. The resulting yarns maintained good electrical properties.  相似文献   

14.
The melt-blowing technique is usually used for thermoplastic resins, not for non-thermoplastic materials. In this study, nonwoven fabric was successfully obtained by a cellulose solution through melt-blowing technique. The solution was prepared by a twin-screw extruder after mixing cellulose pulp with 1-Allyl-3-methylimidazolium Chloride ([AMIM]Cl). Nonwoven fabric exhibited typical characteristics of those from melt-blown thermoplastic resins. Some aspects of meltblowing process are discussed, such as cellulose concentration, temperature of extrusion die and hot air pressure. In experimental range, to obtain nonwoven web, cellulose concentration was below 15 wt%. Temperature of extrusion die and hot air pressure had great influence on the fabric. With the increasing of temperature of extrusion die and hot air pressure, the fiber changed thin and the fiber web became better, while the fiber diameter became thicker after increasing the cellulose concentration. Elevating the temperature of extrusion die, the degree of polymerization decreased, and the quality of the fiber webs declined.  相似文献   

15.
Polylactides (PLAs) are a type of environmental friendly material. PLA fabrics feature excellent performance in terms of texture, comfort, curling effect, crystallinity, and transparency. However, because of its aliphatic polyester structure, PLA is relatively fragile as compared with the commercially available products like PET or Nylon. This study adopted water-based polyurethane (PU) to modify the surface of PLA fabrics, thereby enhancing the fabrics’ mechanical properties. Various polyols such as polytetrahydrofuran (PTMG), polycaprolactone diol (PCL), and polycarbonates diol (PC) were used and various NCO/OH molar ratios were designed in this study. As the PLA fabric was processed by dipping in various PU dispersions, it was found that the breaking strength of the fabric was increased, while its elongation at breakage decreased. Particularly, the breaking strength of the fabric modified by PUD50PC containing 50 weight percent of PC and two other polyols was the most prominent showing an 80 % increase in strength. Furthermore, the abrasion resistance of the PUD50PC-modified PLA fabric showed a roughly 6 times increase as compared to the plain PLA fabric. SEM images also reveal that after processing with water-based PU, the PLA fibers are bonded tightly with the water-based PU molecules to increase the breaking strength of the PLA fabrics.  相似文献   

16.
Sound absorption property, viscoelastic property and the effect of plasma treatment of four automotive nonwoven fabrics on these properties are discussed in this research paper. Needle-punched fabrics used for vehicle headliner include 2 polyester fabrics made of hollow polyester fibers or solid polyester fibers, and 2 polypropylene-composite cellulose fabrics made of jute fibers or kenaf fibers, manufactured with the same web structure of apparent fabric density and fabric thickness. Hollow polyester fiber fabric has the highest sound absorption and the highest loss factor, the second highest is jute fiber fabric. The viscoelastic property is found to be related to the sound absorption property of fabric. The plasma treatment on nonwoven fabrics changes their sound absorption and viscoelastic property as well as their fabric weight and pore size. Hollow polyester fabric shows the increased sound absorption and viscoelastic property after the treatment with the increased pore sizes, while regular polyester fabric displays insignificant changes. The cellulose fabrics are more affected by plasma treatment compared to the polyester fabrics in terms of fabric weight loss and pore size, and jute fabric is more affected than kenaf fabric due to fiber weakness. The jute fabric demonstrates the decreased sound absorption and viscoelastic property, while kenaf fabric shows the increased sound absorption with the unchanged viscoelastic property after the treatment.  相似文献   

17.
This research investigates applying zinc oxide nanoparticles to polypropylene nonwoven fabrics via electrospinning for the development of UV-protective materials. Layered fabric systems with electrospun zinc oxide nanocomposite fiber webs were developed at various concentrations of zinc oxide in a range of web area densities. The effects of zinc oxide concentration and web area density on the UV-protective properties of layered fabric systems were examined. Air and moisture vapor transport properties of layered fabric systems were assessed to examine the effect of electrospun web layers on thermal comfort properties of the material. A very thin layer of electrospun zinc oxide nanocomposite fibers significantly increased the UV blocking for both UV-A and UV-B ranges, and exhibited an ultraviolet protection factor (UPF) of greater than 40, indicating excellent UV protection. UV-protective properties of layered fabric systems increased with increasing zinc oxide concentrations of the nanocomposite fiber web. Increasing the electrospun web area density of the zinc oxide nanocomposite fiber web also enhanced UV-protective properties of layered fabric systems. Air and moisture vapor transport properties of layered fabric systems decreased as the electrospun web area density increased for the range of web area densities examined.  相似文献   

18.
Based on the requirements of extensive green roofs, ploylactide (PLA) fibers, cotton fibers, polyester (PET), and low-melting-point LMPET fibers are combined and produced culture mediums for Crassulaceae plants. The resulting mediums are tested for their physical properties and found to be light weight, which is a required condition for plant growth. These features contribute to efficient construction and maintenance. In addition, the optimal cooling effect of the culture mediums is 9.6 °C, which significantly reduces the amount of heat that invades indoor spaces. The decrease in the amount of heat indoors results in a lower demand for air conditioning so as to achieve energy conservation. The results derived from this study help in the promotion of green roofs, thereby slowing down the urban heat island effect and global warming.  相似文献   

19.
In this study, fire-retardant polyester fibers (FRPFs), which are hollow and have a 3D-crimp shape, were processed using nonwoven manufacturing technology to create fire-retardant fibrous material. The content of low-T m fibers (10, 20, 30, 40, 50 %) and number of layers of loose nonwoven sheet (1, 2, 3, 4, 5 layers) were changed to determine tensile strength and elongation, thermal conductivity, air permeability and the limiting oxygen index. The purposes of this study are to develop a manufacturing procedure for convenient installation of thermal insulation material and improve the application of fiber materials in thermal insulation. Experimental results demonstrate that, due to the loose nonwoven sheet combined with needle punching nonwoven sheets, tensile strength FRPFs increased to 100 %. The contents of the polyester low-melting-temperature fiber and the number of combined layers affected thermal conductivity results. In the test for the limit oxygen index, the optimal sample was manufactured using 7.78 dtex FRPFs, 10 % PET low-melting-temperature fiber and 5 layers of loose nonwoven sheet. The limit oxygen index is 35.  相似文献   

20.
Denim, a twilled cotton fabric, was used to enhance the mechanical and thermal properties of poly(lactic acid) (PLA). The denim fabric reinforced composites with different numbers of denim layers were fabricated by using a hand layup method. The impact, tensile, and dynamic mechanical properties of the composites were observed with increasing denim layers to examine the reinforcing effect of denim fabrics. Numerical analysis was carried out to model the elastic modulus of the composite by using a commercial software. Three-dimensional geometry of the denim fabric reinforced PLA composite was generated through a CAD program, and the elastic modulus was calculated by applying uniform deformation on one surface. The impact strength, tensile strength, and thermal properties of the composites were improved by piling denim fabrics. The denim fabric reinforced composites exhibited outstanding impact strength due to the retarded crack propagation as well as large energy dissipation. The 3 layer denim reinforced composite showed best results among all specimens, and its impact strength, tensile strength, and tensile modulus were measured to be 82 J/m, 75.76 MPa, and 4.65 GPa, respectively. The PLA/denim composites have good mechanical properties and can substitute traditional composites such as glass fiber or carbon fiber reinforced composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号