首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

A previous study indicated that agricultural biosolid applications increased the concentration of EPA3050‐digestible trace elements in soils on Pennsylvania production farms but could not indicate potential trace‐element environmental availability. This study was conducted to determine if biosolid application had altered the distribution of trace‐elements among operationally defined soil fractions and the relationship of trace element concentrations in soil and crop tissues. Biosolid‐amended and unamended soils from production farms in Pennsylvania were extracted using a modified Bureau Communautaire de Référence (BCR) sequential fractionation technique and analyzed for chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn). Trace‐element concentrations in crop tissues (soybean silage, sudangrass, corn grain, alfalfa hay, and orchardgrass hay) from the same farms were also determined. Fractionation results indicated that the proportion of Cr, Cu, Ni, Pb, and Zn that is potentially bioavailable is quite small in unamended soils. Biosolid applications significantly (P≤0.1) increased concentrations of Cu in all soil fractions (average increase over unamended soil=1.14, 8.27, 6.04, and 5.84 mg kg?1 for the exchangeable, reducible, oxidizable, and residual fractions, respectively), Ni (0.41, 1.65 mg kg?1 for the reducible and residual fractions, respectively), Pb (5.12 and 1.49 mg kg?1 for the reducible and residual fractions, respectively), and Zn (8.28, 7.12, 4.44, and 8.98 mg kg?1 for the exchangeable, reducible, oxidizable, and residual fractions, respectively) but did not significantly increase Cr in any soil fraction. Concentrations of Cu in all soil fractions were significantly (P≤0.01) correlated with concentrations of Cu in orchardgrass tissue (r=0.70, 0.66, 0.76, and 0.69 for the exchangeable, reducible, oxidizable, and residual soil fractions, respectively). Concentrations of exchangeable and reducible Zn were significantly correlated with Zn in sudangrass tissue (r=0.81 and 0.67), and reducible Zn was significantly correlated with Zn concentrations in orchardgrass tissue (r=0.65). Application of biosolids had little effect on bioavailability of Cr, Ni, or Pb, whereas higher loadings of Cu and Zn led to a shift toward the more labile soil fractions. Loadings of Cu and Zn were much smaller than cumulative loadings permitted under U.S. Environmental Protection Agency (USEPA) Part 503 regulations. Chemical soil fractionation was able to detect increases in labile soil Cu and Zn that relate to increased phytoavailability.  相似文献   

2.
Slow immobilization of trace metals in soil, termed ‘fixation’, affects their natural attenuation but it is still unclear which reactions occur. Twenty‐eight soils were selected to assess the role of Fe oxides and carbonates on fixation of Cu, Cd, Zn and Ni. Soils included samples from 2 toposequences (Vietnam, Spain) and 13 European topsoils with different soil characteristics (pH 3.4–7.7). Samples were amended with 250 mg Zn kg−1, 100 mg Cu kg−1, 80 mg Ni kg−1 and 2.5 mg Cd kg−1 as metal salts and incubated for 850 days. Fixation was measured as the increase of the fraction of added metals that were not isotopically exchangeable. Fixation increased with time and was, averaged over all the soils, 43% (Cu), 41% (Zn), 41% (Ni) and 28% (Cd) after 850 days. Metal fixation within samples from each toposequence was generally positively related to total Fe oxide concentration (Fed) for Zn, Ni and Cd. However, the fixation of Cd, Zn and Ni was mainly explained by pH and not by Fed when considering all soils. Fixation of Zn and Cd in soils with pH >7.0 increased with increasing concentrations of carbonates at initial ageing times. Fixed fractions of Zn, Ni and Cd were significantly released when experimentally removing 50% of carbonates by acidification. Fixation of Cu was most poorly related to soil properties. Our data suggest that fixation of Cd, Zn and Ni is related to a pH‐dependent diffusion into oxides and that of Cd and Zn also to diffusion and/or coprecipitation in carbonates. Fixation of Ni at neutral pH may also be related to stabilization of precipitates that form readily in soil.  相似文献   

3.
Mining activities are related to relevant environmental pollution issues that should be controlled. We used sequential extractions to fractionate Cd, Cu, Ni, Pb and Zn retained on unamended or mussel shell‐amended mine soil samples, all of them treated with a mixture of the five heavy metals (total metal concentration of 1·57 mmol L−1), after 1, 7 and 30 days of incubation. In addition, we used the stirred flow chamber technique to study the release of each of the five heavy metals from these different unamended and shell‐amended soil samples. The results indicate that the shell amendment caused a decrease in the most soluble fraction, while increasing the most recalcitrant (least mobile) fraction. With equivalent implications, the stirred flow chamber experiments showed that mussel shell amendment was associated to a decrease in heavy metal release and increased retention. The highest mussel shell dose and incubation time caused the most relevant changes in pH values and thus in metal retention, also indicating the importance of pH modifications in the mechanism of retention acting in the amended samples. In view of these results, the use of mussel shell amendment can be encouraged to increase heavy metal retention in acid mine soils, in order to minimise risks of environmental pollution. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Abstract

This study was carried out to investigate whether an insoluble polyacrylate polymer could be used to remediate a sandy soil contaminated with cadmium (Cd) (30 and 60 mg Cd kg?1 of soil), nickel (Ni) (50 and 100 mg Ni kg?1 of soil), zinc (Zn) (250 and 400 mg Zn kg?1 of soil), or the three elements together (30 mg Cd, 50 mg Ni, and 250 mg Zn kg?1 of soil). Growth of perennial ryegrass was stimulated in the polymer‐amended soil contaminated with the greatest amounts of Ni or Zn, and when the three metals were present, compared with the unamended soil with the same levels of contamination. Shoots of plants cultivated in the amended soil had concentrations of the metals that were 24–67% of those in plants from the unamended contaminated soil. After ryegrass had been growing for 87 days, the amounts of water‐extractable metals present in the amended soil varied from 8 to 53% of those in the unamended soil. The results are consistent with soil remediation being achieved through removal of the metals from soil solution.  相似文献   

5.
Biochar application has been suggested for reducing toxic levels of metals in contaminated soils and enhancing nutrient retention in agro‐ecosystems. We studied sorption of copper (Cu(II)) and sulphate‐sulphur (SO4‐S) to charcoal, gasification coke and flash‐pyrolysis biochar in order to relate sorption to char properties. Furthermore, we investigated the effect of composting of charcoal and gasification coke on sorptive properties. Langmuir sorption affinity coefficients for Cu(II) for non‐composted biochars increased in the order flash‐pyrolysis char < charcoal < gasification coke. The sorption capacity for Cu(II) of the chars decreased in the order gasification coke (629 mg kg?1) > flash‐pyrolysis char (196 mg kg?1) > charcoal (56 mg kg?1). Composting significantly increased the sorption affinity coefficient approximately by a factor of 5 for charcoal (up to 1.1 l mg?1) and by a factor of 3–4 for gasification coke (up to 3.2 l mg?1). Whereas Cu(II) sorption to gasification coke (composted or not) was largely irreversible, sorption to flash‐pyrolysis char and charcoal showed higher reversibility. Relationships between Cu(II) sorption and biochar properties such as cation exchange capacity, specific surface area or aromaticity suggest that sorption was largely determined by complexation with organic matter. Sorption of SO4‐S was negligible by non‐composted and composted biochars. Composted gasification coke might be suited to reducing toxic Cu(II) concentrations in contaminated soils. Composted charcoal can potentially improve Cu(II) retention in a plant available form in acidic, sandy soils with small organic matter contents. Transient effects of biochars on soil pH can over‐ride the influence of sorption to biochars on concentrations of trace elements in soil solution and their availability to plants.  相似文献   

6.
The application of organic fertilizers in soils not only increases soil organic matter but also introduces essential nutrients to soil. Therefore, applying these fertilizers can affect the availability and desorption characteristics of nutrients. The main objective of this research is to study the effects of cow manure (CM) and vermicompost (VC) on availability and desorption characteristics of zinc (Zn) in a loamy calcareous soil. In this study, concentration of available Zn (using DTPA-TEA, AB-DTPA, and Mehlich 3) and desorption characteristics of Zn (using successive extraction with DTPA-TEA For 1–504 h at 25 ± 1°C) in amended soil with 0, 0.5, and 1% (w/w) of CM and VC were investigated in a completely randomized design. Results of this research showed that concentration of Zn extracted by using three methods was higher in amended soils with 1% CM and VC than those with 0.5% of these fertilizers. Furthermore, the difference between concentration of available Zn in amended soils with CM and VC was not found to be significant (p > 0.05). The results of kinetics study illustrated that the effect of organic fertilizers on Zn desorbed after 504 h was found to be significant (p < 0.01). Amount of cumulative of Zn desorbed in amended soils was significantly (p < 0.05) higher than unamended soil. Concentration of Zn desorbed after 504 h in 0.5 and 1% of CM and VC compared with unamended soil increased 26, 54, 12, and 46%, respectively. In addition, Zn desorption rate in amended soils with CM was higher than those with VC. It can be concluded that organic fertilizers applied to loamy calcareous soils enhance source of available Zn for the plant. Moreover, the results of this study showed that the ability of amended soils with VC to supplying Zn for plants was lower than those with CM.  相似文献   

7.
Abstract

Relatively high amounts of Cu are found in manure of hogs (Sus scrofa domesticus) maintained on diets containing growth‐stimulating levels of Cu. While disposal of Cu‐enriched hog manure through repeated long‐term application to agricultural land is commonly practiced, concern exists regarding Cu availability in these soils. Field studies were conducted on a Bertie fine sandy loam (Aquic Hapludults) and a Starr‐Dyke clay loam (Fluventic Dystochrepts‐Typic Rhodudults), located in the Coastal Plain and Piedmont regions of Virginia. The objective was to examine the effects of long‐term Cu application on corn (Zea mays L.) growth and to ascertain the Cu sorption capacity of these soils. Field plots were treated with Cu‐enriched hog manure or CUSO4 (on an equivalent Cu basis) annually. Manure amendments totaled about 240 t ha‐1 (dry weight) over an 11 yr period (1978 through 1989). The manure averaged 1300 mg Cu kg‐1 (dry weight) over this time period totaling 340 kg Cu ha‐1. Sorption isotherms were determined for sorption of Cu by the Bertie and Starr‐Dyke soils. In comparison with unamended control plots, studies conducted in 1989 showed an early season stunting effect for corn grown on the CUSO4 treated Bertie soil. No differences in plant heights were observed for corn grown in CuSO4 treated Starr‐Dyke soil or control plots. Plant growth rates were increased on plots amended with Cu‐enriched hog manure. Copper sorption capacity of Bertie and Starr‐Dyke soils increased following several annual applications of manure.  相似文献   

8.
ABSTRACT

In

-situ sorbent amendment is a relatively low-cost, low-impact approach for remediation of soil contaminated with heavy metals (HMs), and thus is considered a way to be favored in developing countries. In this study, materials of non-hazardous, alkaline agronomic and industrial by-products were used as sorbents to explore their capacity of in situ immobilization of multiple HMs in mining-impacted arable soil. These sorbents included fly ash (FA), biochar (BC) and apatite (AP) and they were implemented with varying ratios of combinations. Results of soil microcosm tests showed that after incubation for 90 days, concentrations of Pb, Zn, and Cd in their exchangeable forms determined by a sequential extraction method significantly decreased in amended soils, as opposed to the unamended control. Of the five sets of amendments, the composite of FA, BC, and AP resulted in the maximum reduction (up to 80%) in the mobility of Pb, Zn, and Cd in soils. The mechanisms underlying the immobilization of HMs in amended soils might involve processes of surface precipitation, ion exchange and complexation, in which the physicochemical properties of sorbent materials played an important role. The immobilization efficacy of sorbent amendments on HMs in soil was further supported by pot experiments in which significant inhibition of HM accumulation in the belowground and aboveground tissues of maize was observed after 50-day cultivation in amended soils as compared with control soil. Together, these results suggest that the application of cost-saving and environmentally friendly materials derived from wastes as sorbents to remediate soils contaminated with multiple HMs is promising for developing countries like Vietnam.  相似文献   

9.
Soil amendment with animal manures is a common practice for either increasing soil organic matter (SOM) and nutrient content or disposing of wastes from intensive animal industries. However, the application of organic amendments that are not sufficiently mature and stable may adversely affect soil properties, especially the content and quality of SOM pools. In this work, the effect of the consecutive annual additions of pig slurry (PS) at rates of 0 (control), 90 and 150 m3 ha−1 per year over a 4-year period on the soil fulvic acid (FA) fraction of SOM was investigated in a field plot experiment conducted under semiarid conditions on a Calcic Luvisol in Toledo province, Spain. The FAs isolated from PS and control and amended soils were characterized for chemical, compositional, structural and functional properties by use of elemental and functional group analysis, and ultraviolet/visible, Fourier transform infrared (FT IR), fluorescence and electron spin resonance (ESR) spectroscopies. PS-FA was characterized by a prevalent aliphatic character, large contents of acidic functional groups, S- and N-containing groups and polysaccharide components, extended molecular heterogeneity, small organic free radical (OFR) contents and small degrees of aromatic ring polycondensation, polymerization and humification. With respect to the control soil FA, the PS-amended soil FAs were characterized by a smaller extraction yield, O and OFR contents and ratios of absorbances at 465 and 665 nm, and larger C, N, S, COOH and phenolic OH contents, C/N ratios and aliphaticity. Statistical analysis of experimental data showed that, with some exceptions, these effects generally increased with increasing cumulative amount of PS applied to soil over time. In conclusion, cumulative PS application to soil over time modifies the content and properties of the FA fraction of SOM. Thus, this material should not be considered as a mature organic amendment and should be treated appropriately before it is applied to soil, so as to increase the degree of humification and enhance its potential as a soil organic fertilizer.  相似文献   

10.
The distribution in soil and plant uptake of zinc (Zn) and lead (Pb) as influenced by pine bark-goat manure (PBG) compost additions were investigated from the soils artificially contaminated with Zn or Pb ions using maize (Zea mays L.) as a test crop. Soils were amended with four rates of pine bark-goat manure compost (0, 50, 100, and 200 tons ha?1) and four rates (0, 300, 600 and 1200 mg kg?1) of Zn or Pb. Maize was planted and grown for 42 days. At harvest, plants samples were analyzed for Zn and Pb concentration. Soils samples were analyzed for pH, extractable and diethylene triamine pentaacetic acid (DTPA) extractable Zn and Pb. Extractable Zn and Pb was lower in PBG compost amended soils than in unamended soils and steadily declined with increasing amount of compost applied. The extractable fraction for Zn dropped by 62.2, 65.0 and 44.6% for 300, 600 and 1200 mg Zn kg?1, respectively when 200 t ha?1 of PBG compost was applied. Metal uptake by maize plants were directly related to the rate of applied heavy metal ions with greater concentrations of metals ions found where metal ions were added to non-amended soils.  相似文献   

11.
《Applied soil ecology》2009,42(3):269-276
Earthworms can be used to remove polycyclic aromatic hydrocarbons (PAHs) from soil, but this might affect their survival and they might accumulate the contaminants. Sterilized and unsterilized soil was contaminated with phenanthrene (Phen), anthracene (Anth) and benzo(a)pyrene (BaP), added with or without Eisenia fetida, sewage sludge or vermicompost. Survival, growth, cocoon formation and concentrations of PAHs in the earthworms were monitored for 70 days. Addition of sewage sludge to sterilized or unsterilized soil maintained the number of earthworms and their survival was 94%. The addition of sludge significantly increased the weight of earthworms 1.3 times compared to those kept in the unamended soil or in soil amended with vermicompost. The weight of earthworms was significantly lower in sterilized than in unsterilized soil. Cocoons were only detected when sewage sludge was added to unsterilized soil. A maximum concentration of 62.3 μg Phen kg−1 was found in the earthworms kept in sterilized soil amended with vermicompost after 7 days and 22.3 μg Phen kg−1 when kept in the unamended unsterilized soil after 14 days. Concentrations of Phen in the earthworms decreased thereafter and ≤2 μg kg−1 after 28 days. A maximum Anth concentration of 82.5 μg kg−1 was found in the earthworms kept in sterilized soil amended with vermicompost and 45.8 μg Anth kg−1 when kept in the unamended unsterilized soil after 14 days. A maximum concentration of 316 μg BaP kg−1 was found in the earthworms kept in sterilized soil amended with vermicompost after 56 days and 311 μg BaP kg−1 when kept in the unsterilized soil amended with vermicompost after 28 days. The amount of BaP in the earthworm was generally largest after 28 days, but after 70 days still 60 μg kg−1 was found in E. fetida when kept in the sterilized soil amended with sewage sludge. It was found that E. fetida survived in PAHs contaminated soil and accumulated only small amounts of the contaminants, but sewage sludge was required as food for its survival and cocoon production.  相似文献   

12.
Abstract

The objective of this research was to assess the long‐term effects of broiler litter applications on soil phosphorus (P), copper (Cu), zinc (Zn), manganese (Mn), and arsenic (As) concentrations in Chesapeake Bay watershed Coastal Plain soils. Litter and soil samples were collected from 10 farms with more than 40 years of broiler production and from wooded sites adjacent to fields and were analyzed for P and metal contents. Averaged over farms, total P and metal concentrations in the litter were 12.8 g kg?1 P and 332, 350, 334, and 2.93 mg kg?1 Cu, Zn, Mn, and As, respectively. Surface (0–15 cm) soil pH values were greater than (5.7–6.4) the 0‐ to 15‐cm depth at wooded sites (3.5–4.3). Surface soil Bray 1 P values (149–796 mg kg?1) in amended fields were greater than wooded sites (4.4–17 mg kg?1). The 1N nitric acid (HNO3)–extractable metal concentrations were higher in amended soils than in wooded areas and were 7.7–32, 5.7–26, 12.3–71, and 0.6–3.0 mg kg?1 for Cu, Zn, Mn, and As, respectively, compared to 0.76–14, 4.6–22, 1.6–70, and 0.14–0.59 mg kg?1 for the same metals, respectively, in wooded areas. Results from this study demonstrated that long‐term broiler litter applications have altered the chemical properties of the Coastal Plain soils of the Maryland Eastern Shore. Metal concentrations were low in the surface layer of amended fields and typically decreased with depth. Phosphorus additions rather than metals are most likely to contribute to the degradation of the Chesapeake Bay watershed.  相似文献   

13.
Abstract

This study was undertaken to assess the mineralization of sulfur (S) in laboratory conditions of three rice soils (Joydebpur, Faridpur, and Thakurgaon), receiving the following treatments: 1) control, 2) rice straw (Oryza sativa L.), and 3) pea vine (Pisum sativum L.). The organic residue (25 mg g‐1) was added and mixed with soil and glass beads (1:1, soil to bead ratio) and placed into a Pyrex leaching tube. The soils were flooded and incubated at 35°C, after which they were leached with deionized water at 1, 2,4, 8, and 12 weeks for analysis of SO4 and other chemical properties in the leachates. Potentially mineralizable S (So) and C (Co) pools and first‐order rate constants (Ks for S and Kc for C) in soils amended with rice straw and pea vine under flooded conditions were estimated using an exponential equation. The So and Ks varied considerably among the soils and types of added organic residues, and their values in rice straw and pea vine ranged from 8.70 to 29.55 and 0.124 to 0.732 mg S kg‐1 wk‐1, respectively. Except for the Thakurgaon soil, the So and Ks values in Joydebpur and Faridpur soils were higher in the unamended treatments. Higher So values in the unamended soils were probably due to less microbial activity to mineralize organic S from organic residues. The results indicate that the amount of SO4 in flooded soils amended with organic residues are dependent on soil type, nature of organic residues, and time of incubation. The Co and Kc values under flooded incubation were higher in residue amended soils than in unamended soils. Pea vine treated soils had higher Co and Kc values than the soils treated with rice straw.  相似文献   

14.
Abstract

Carrots were grown on a Joel sand amended with several levels of applied gypsum‐treated bauxite residue (RMG) up to 240 t‐ha‐1, to test whether the residue reduces phosphorus (P) leaching when applied to the soil. Phosphorus sorption, measured using the Modified Phosphorus Retention Index (PRIM), was initially 30 at 2401 RMG ha‐1 due to a combination of iron and aluminum oxides, calcium carbonate (CaCO3), and soluble calcium (Ca). Four months after harvest, PRIM had decreased to 10 at 240 t RMG ha‐1 (PRIM of 4 on unamended soil) due to the leaching of soluble Ca. Retention of fertilizer (P) (0–15 cm) at 160 kg P ha‐1 increased from 34% on unamended soil to approximately 100% at 60 and 240 t RMG ha‐1 one month after fertilizer application. Bicarbonate‐extractable P at harvest reached 60 to 65 mg‐kg‐1 at 120 and 240 t RMG ha‐1 when 346 kg P ha‐1 was applied, whereas on unamended soil, levels did not exceed 30 mg‐kg‐1, regardless of the level of applied fertilizer. Plant uptake of P was reduced due to the precipitation of calcium phosphate compounds, although final yield was unaffected possibly because of slow re‐release of P from precipitated calcium phosphate compounds. Red mud was difficult to wash off carrots grown on soil amended with 2401 RMG ha‐1. The use of RMG may have a place in the management of horticultural crops in areas at risk from P pollution. However, more work is needed to investigate ‘aged’ RMG‐amended sites since the P retention in this experiment was affected by soluble Ca and also by post‐planting P applications.  相似文献   

15.
Ethylendiamintetraacetic acid (EDTA) is persistent in the environment. The presence of EDTA in soil may alter the mobility and transport of Zn, Cd and Ni in soils because of the formation of water soluble chelates, thus increasing the potential for metal pollution of natural waters. Mobility of metals is related to their extractability. To investigate metal extractability affected by EDTA, Zn, Cd and Ni were added to Vertisol and Alluvial soil at rates of 50, 2 and 5 mg kg-1, respectively. Both natural and metal amended soils were treated with Na2EDTA at rates of 0; 0.2 and 0.5 mg kg-1. After five months of incubation soil samples were extracted with 0.1 N HCl, 0.005 M DTPA + 0.01 M CaCl2 + 0.1 M TEA (0.005 M Diethylenetriaminepentaacetic acid + 0.01 M Calcium cloride + 0.1 M Triethanolamine) and 1 M Mg(NO3)2, the latter of which extracts the exchangeable from of metald (Zn, Cd and Ni).

According to experiment results, Zn, Cd and Ni in all extraction increased with increasing rates of EDTA in the natural and metal amended soils.  相似文献   

16.
The effects of carbofuran, a widely used carbamate pesticide, on soil enzymatic activities such as fluorescein diacetate hydrolysis (FDAH), dehydrogenase, and acid and alkaline phosphatases were studied at different time intervals in unamended soil and soil amended with inorganic fertilizers and vermicompost, cropped with tomato plants. The results showed that all enzymatic activities varied with carbofuran application rates and increased significantly up to 1.0 kg active ingredient (a.i.) ha?1 dose of carbofuran. The most significant increase was observed at 0.20 kg a.i. ha?1 dose both in unamended and amended soils. This showed that carbofuran was not toxic to all enzymatic activities studied upto 1.0 kg a.i. ha?1 dose of carbofuran in both systems. A significant decrease in all enzymatic activites were observed at higher dose of carbofuran both in unamended and amended soils relative to their respective controls. Highest enzymatic activities were observed in vermicompost amended soil and minimum in fertilized soil compared to control. The results indicated that the growth of tomato plants was significantly higher at 0.20 kg a.i. ha?1 dose of carbofuran in all the cases and followed the order: fertilized soil > vermicompost amended soil > natural soil and was positively correlated with the enzyme activities.  相似文献   

17.
The objective of this study was to evaluate effects of elemental sulfur (S) addition on soil pH and availability of macro- and micronutrients during the sugarcane growing season. Sulfur application did not significantly reduce soil pH when applied at 0 to 448 kg S ha?1 due to the high soil buffering capacity. Water extractable phosphorus (P) and potassium (K) for soils receiving the highest S rate were 188% and 71% higher than for unamended soils only at two months after application, indicating a short-term enhancement of macronutrient availability. Soil amended with 448 kg S ha?1 contained 134% more acetic acid-extractable zinc (Zn) than unamended soil, although stimulatory effects did not extend beyond two months. Sugar yield was not affected by S addition, averaging 17 Mg sugar ha?1. The failure of S to enhance nutrient availability throughout the growing season indicates the limited benefit of applying elemental S to reduce pH and increase nutrient availability to sugarcane.  相似文献   

18.
Abstract

Changes in pH values during 12 weeks incubation in soils treated with acidified sawdust (ACD‐SD)‐treated soils ranged from 5.03 to 5.89, from 9.88 to 10.35 in soil treated with alkalized sawdust (ALK‐SD), and ranged from pH 6.88 to 7.35 in untreated sawdust‐amended soil. In unamended soil, pH values were 6.80 to 7.35. Bacterial populations over the 12 weeks in ACD‐SD‐treated soils increased from 5×106 to 167×106 colonies while bacterial populations in ALK‐SD‐treated soils increased from 2×106 to 54×106. Fungal populations increased from 6×104 to 11,333×104 colonies per gram soil in ACD‐SD treated soils over the 12 week incubation. Untreated sawdust and control soil did not result in any significant changes in the fungal populations.  相似文献   

19.
Net carbon dioxide (CO2) emission from soils is controlled by the input rate of organic material and the rate of decomposition which in turn are affected by temperature, moisture and soil factors. While the relationships between CO2 emission and soil factors are well-studied in non-salt-affected soils, little is known about soil properties controlling CO2 emission from salt-affected soils. To close this knowledge gap, non-salt-affected and salt-affected soils (0-0.30 m) were collected from two agricultural regions: in India (irrigation induced salinity) and in Australia (salinity associated with ground water or non-ground water associated salinity). A subset (50 Indian and 70 Australian soils) covering the range of electrical conductivity (EC) and sodium adsorption ratio (SAR) in each region was used in a laboratory incubation experiment. The soils were left unamended or amended with mature wheat residues (2% w/w) and CO2 release was measured over 120 days at constant temperature and soil water content. Residues were added to overcome carbon limitation for soil respiration. For the unamended soils, separation in multidimensional scaling plots was a function of differences in soil texture (clay, sand), SOC pools (particulate organic carbon (POC) and humus-C) and also EC. Cumulative CO2-C emission from unamended and amended soils was related to soil properties by stepwise regression models. Cumulative CO2-C emission was negatively correlated with EC in saline soils (R2 = 0.50, p < 0.05) from both regions. In the unamended non-salt-affected soils, cumulative CO2-C emission was significantly positively related to the content of POC for the Indian soils and negatively related to clay content for the Australian soils. In the wheat residue amended soils, cumulative CO2-C emission had positive relationship with POC and humus-C but a negative correlation with EC for both Indian and Australian soils. SAR was negatively related (β = −0.66, p < 0.05) with cumulative CO2-C emission only for the unamended saline-sodic soils of Australia. Cumulative CO2-C emission was significantly negatively correlated with bulk density in amended soils from both regions. The study showed that in salt-affected soils, EC was the main factor influencing for soil respiration but the content of POC, humus-C and clay were also influential with the magnitude of influence depending on whether the soils were salt affected or not.  相似文献   

20.
Abstract

The available (0.1M HCl‐ and DTPA‐extractable) and total forms of copper (Cu) and zinc (Zn) were determined in soils developed on various groups of basalts, namely, the Newer, Older, Lateritized‐Older, and Biu (undifferentiated) basalts. The HCl‐, DTPA‐extractable, and total Cu in the soils ranged from 0.40 to 5.60, 0.15 to 2.64, and 15 to 65 mg Cu kg‐1, respectively, with corresponding means values of 2.06, 0.89, and 41 mg Cu kg‐1. Similarly, HCl‐, DTPA‐extractable, and total Zn varied from 3.00 to 6.20, 0.14 to 2.15, and 25 to 265 mg Zn kg‐1 with respective mean values of 4.65, 0.52, and 89 mg Zn kg‐1. The soils were high in the total forms of Cu and Zn, generally sufficient in available Cu, but deficient in available Zn. Both the total and available forms of Cu and Zn were little correlated with soil properties in soils of the Lateritized‐Older and Biu basalts, while only the available forms were related mainly to silt, clay, pH, and organic carbon in soils of the Newer and Older basalts. Furthermore, the available forms were correlated with each other, but not with the total forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号