首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 983 毫秒
1.
Two primers, specific for Phytophthora nicotianae (Pn6) and P. citrophthora (Pc2B), were modified to obtain Scorpion primers for real-time identification and detection of both pathogens in citrus nursery soils and roots. Multiplex PCR with dual-labelled fluorogenic probes allowed concurrent identification of both species ofPhytophthora among 150 fungal isolates, including 14 species of Phytophthora. Using P. nicotianaespecific primers a delayed and lower fluorescence increase was also obtained from P. cactorumDNA. However, in separate real-time amplifications, the aspecific increase of fluorescence from P. cactorum was avoided by increasing the annealing temperature. In multiplex PCR, with a series of 10-fold DNA dilutions, the detection limit was 10 pg l-1 for P. nicotianaeand 100 pg l–1 for P. citrophthora, whereas in separate reaction DNA up to 1 pg l-1 was detected for both pathogens.Simple and rapid procedures for direct DNA extraction from soil and roots were utilised to yield DNA whose purity and quality was suitable for PCR assays. By combining these protocols with a double amplification (nested Scorpion-PCR) using primers Ph2-ITS4 amplifying DNA from the main Phytophthora species (first round) and PnB5-Pn6 Scorpion and Pc2B Scorpion-Pc7 (second round), it was possible to achieve real-time detection of P. nicotianaeand P. citrophthora from roots and soil. The degree of sensitivity was similar to that of traditional detection methods based on the use of selective media. The analyses of artificially and naturally infested soil showed a high and significant correlation between the concentration of pathogen propagules and the real-time PCR cycle threshold.  相似文献   

2.
Xiphinema diversicaudatum and X. index are vector nematode species of economic importance in viticulture regions as they can transmit Arabis Mosaic, Grapevine Fanleaf and Strawberry Latent Ringspot viruses to grapevine. Wang et al. (2003) designed species-specific diagnostic primers from ribosomal genes for both these vector species as well as a vector and a non-vector species X. italiae and X. vuittenezi, respectively. Our study aimed to confirm the specificity and determine the sensitivity and reliability of the primers for the two vector species, X. diversicaudatumand X. indexwhen challenged with closely related longidorid species and general nematode communities typical of vineyard soil. With one exception, no PCR product was observed when the primers were tested against six Longidorus, one Paralongidorus and one Xiphinema non-target species. Occasionally (three out of eight replicate PCR reactions) a weak PCR product was noted when primers for X. index were tested with L. elongatus. Furthermore, when challenged with a range of non-target nematode species comprising the nematode community typical of viticulture soil, no PCR product was amplified. An experimental dilution series of extracted DNA rigorously demonstrated that DNA from an equivalent single specimen of the target virus-vector species, X. diversicaudatum and/or X. index, could be detected amongst 1000 equivalent non-targetX. vuittenezi. Also, extracted DNA from an equivalent single target specimen was detected when added to DNA extracted from the overall soil nematode community. The primers were assessed further by using serial mixtures of actual nematodes rather than extracted DNA to simulate field soil. Using this method, a single target nematode could be detected amongst 200 non-target specimens. Given their specificity, sensitivity and reliability, it appears that these diagnostic primers will be of great benefit to phytosanitary/quarantine services related to the viticulture industry.  相似文献   

3.
Pythium and Phytophthora species were isolated from kalanchoe plants with root and stem rots. Phytophthora isolates were identified as Phytophthora nicotianae on the basis of morphological characteristics and restriction fragment length polymorphism (RFLP) analysis of the rDNA-internal transcribed spacer regions. Similarly, the Pythium isolates were identified as Pythium myriotylum and Pythium helicoides. In pathogenicity tests, isolates of the three species caused root and stem rots. Disease severity caused by the Pythium spp. and Ph. nicotianae was the greatest at 35°–40°C and 30°–40°C, respectively. Ph. nicotianae induced stem rot at two different relative humidities (60% and >95%) at 30°C. P. myriotylum and P. helicoides caused root and stem rots at high humidity (>95%), but only root rot at low humidity (60%).  相似文献   

4.
Three citrus scions were evaluated to determine seasonal changes in susceptibility to infections by Phytophthora citrophthora and Phytophthora nicotianae. In a period of 24 months, the Clementine mandarin cv. Hernandina, the hybrid Fortune mandarin and the sweet orange cv. Lane-Late were branch-inoculated under field and laboratory conditions. Field studies showed that the cultivars inoculated with P. citrophthora developed the highest lesion areas during March–June (spring) and September–October (autumn) and with P. nicotianae from June to August (summer). However, lesion areas on detached citrus branches did not show a definite pattern of infection because lesion sizes fluctuated irregularly during the study. The lesion area caused by P. nicotianae in different citrus scions correlated significantly with the monthly mean maximum values of temperature, relative humidity, and the percentage of the relative water content in the 24-month period of inoculations. In contrast, there was no correlation between these variables and the extent of colonisation by P. citrophthora. Nevertheless, a significant relationship was observed between lesion areas caused by P. citrophthora from October to May of each year and the same variables that were significant in inoculations with P. nicotianae. Seasonal changes in the susceptibility of citrus cultivars to P. citrophthora and P. nicotianae may facilitate timing of disease control measures to coincide with periods when disease development is greatest.  相似文献   

5.
In 2004, a damping-off symptom was found on southern star, Oxypetalum caeruleum, in Kochi Prefecture, Japan. Two Phytophthora strains with different colony patterns on potato dextrose agar were isolated, and their pathogenicity was confirmed by inoculation of southern star plants and their reisolation from symptomatic plants. Both fungi were identified as Phytophthora palmivora based on morphology, physiology, and sequence analysis of the internal transcribed spacers of nuclear ribosomal DNA. This is the first report of Phytophthora blight of southern star in the world.  相似文献   

6.
A technique based on the use of specific primers for polymerase chain reaction (PCR) was developed for the identification of the stem and bulb nematode belonging to the Ditylenchus dipsaci species complex. The internal transcribed spacer region ITS1 and ITS2, the gene 5.8 S and part of genes 18 S and 26 S of twenty populations of the D. dipsaci species complex belonging to both D. dipsaci sensu stricto and Ditylenchus sp. B (corresponding to populations of giant individuals associated to Vicia faba) and three congeneric species were amplified with two universal ribosomal primers. PCR-amplified DNA samples were digested with five restriction enzymes in order to reveal some polymorphism allowing the identification of D. dipsaci populations associated with Fabaceae seeds. The polymorphism among species was confirmed by the sequencing of the PCR products. A primer (DdpS2) was designed in a region conserved in all populations of both D. dipsaci sensu stricto and D. sp. B studied in the present work. The other Anguinidae species (except a few species from Central Asia associated to Astereaceae and D. sp. G associated to Plantago maritima) differ in two to four nucleotides at the 3′ extremity of this region. This sequence portion coincides with a TspEI restriction site. In combination with a primer located in the ribosomal region, this first primer is a good candidate for identification by PCR of populations of the D. dipsaci species complex found in Fabaceae seeds. A second primer (DdpS1) was designed in a similar way and was specific to D. dipsaci sensu stricto. The utility of these two sets of primers is discussed against the background of quarantine regulation.  相似文献   

7.
 Cultures of Phytophthora cinnamomi, P. parasitica, and P. palmivora remained viable in water at room temperature for periods ranging from 6 to 23 years. The colonies that developed from the stored cultures were thin-walled and spherical, ranging from 19.2 to 30.0 μm in diameter. The survival structures are thought to be small chlamydospores produced in the absence of adequate nutrition and aeration. Received: October 7, 2002 / Accepted: January 8, 2003 Acknowledgment I thank Dr. Michael L. Parsons for assistance in preparing the photograph.  相似文献   

8.
Epidemiological studies were conducted in five cocoa growing districts in the Eastern Region of Ghana solely infected by Phytophthora palmivora and five districts in the Ashanti and Brong Ahafo Regions prevalently infected by Phytophthora megakarya to determine the natural incidence, the vertical distribution on trees and the probable sources of stem canker infections, and to isolate and identify the causal pathogens. The incidence of canker in the solely P. palmivora infected area was higher (between 0% and 16.0%) than in the area mainly infected with P. megakarya (0.5–8.0%). Differences were found in the natural height distribution of cankers in the two areas, whilst the areas solely infected with P. palmivora showed a near normal curve, those prevalently infected with P. megakarya were positively skewed. Most of the cankers caused by P. megakarya were found at the base or near the base of the tree trunks (1–40cm above ground level), while those of P. palmivora were concentrated between 41 and 100cm from the ground level. The majority (71.8%) of cankers in the solely P. palmivora infected area were cushion-borne, followed by 24.3% from unknown sources and only 3.9% from the soil. In contrast, a significantly large proportion (32.6%) of the cankers in the prevalently P. megakarya infected area were soil-borne, although cushion-borne cankers formed the majority (48.4%) due to the presence of P. palmivora infection whilst those of unknown sources constituted 19.0%. Phytophthora megakarya was frequently isolated from all the three sources of canker infections, indicating P. megakarya readily causes stem canker on cocoa. These results emphasise the importance of different reservoirs as sources of primary inoculum for diseases caused by the two Phytophthora species particularly pod rot infection on cocoa.  相似文献   

9.
Acremonium cucurbitacearum is a soil-borne pathogen that causes collapse of muskmelon and watermelon plants. Cluster analysis based on RAPD patterns, obtained from use of 25 primers, divided isolates of A. cucurbitacearum from Spain and USA into two major groups. Most isolates from the USA fell into group 1, however, genetic similarity was not highly correlated with geographical origins or with previously established VCG groups. Analysis of 5.8S-ITS sequences showed very little sequence variation among isolates of A. cucurbitacearum, most had identical 5.8S-ITS sequence. Nodulisporium melonis, previously reported to cause a similar disease in Japan, had a 5.8S-ITS sequence that was identical to that of isolate A-419 proposed as the type strain of A cremonium cucurbitacearum suggesting that the two fungal pathogens should be considered a single species. Phylogenetic analysis, based on the 5.8S-ITS region, indicated that A cremonium cucurbitacearum is a monophyletic taxon more closely related to Plectosphaerella cucumerina than to other species of the genus Acremonium. Based on the 5.8S-ITS nucleotide sequence, a polymerase chain reaction was designed and used for specific detection of A. cucurbitacearum in diseased plants.  相似文献   

10.
In 2002, a severe fruit spot of sweet lime (Citrus limetta) was observed in Piura and Lambayeque provinces in northern Peru. Affected fruits showed large oval and sunken lesions, often surrounded by chlorotic haloes. Septoria sp. was isolated from affected fruits. Sweet lime isolates showed larger pycnidia and pycnidiospores than those of Septoria spp. previously described on citrus. In addition, phylogenetic analysis of the ITS sequences clearly separated the sweet lime isolates from S. citri and S. citricola. Isolates were pathogenic to detached sweet lime fruits and the fungus was isolated from lesions on inoculated fruits.  相似文献   

11.
Novel primers for rep-PCR were developed with the original software and based on `ancient diverged periodical sequences'. Rep-PCR with these primers was applied to study genetic relationships among 51 Xanthomonas campestris strains. The strains were collected from different countries including Russia, Japan, UK, Germany and Hungary. Reference strains of three X. campestrispathovars and five other Xanthomonas species were included. Based on qualitative differences in amplification profiles, the strains were divided into four major groups. Two subgroups recognised within X. campestrispopulation were similar to RFLP haplotypes. The third subgroup included strains of two other pathovariants and Japanese isolates of X. campestris pv. campestriswhile the fourth group comprised the other species of Xanthomonas. The analysis of the diversity within X. campestris resulted in the conclusion that isolates belong to distinct clonal populations (subgroups). The differences between the subgroups of X. campestris were only slightly smaller than between species of Xanthomonas. A PCR fragment about 600 bp amplified by primer KRPN2 was found in nearly all tested strains of X. campestris.SCAR primers designed for this marker produced a single specific band for strains of X. campestris, but not for other Xanthomonas, Pseudomonas and Erwiniastrains tested. Application of the new primer set for rep-PCR offers a rapid, simple and reproducible method for identification of bacterial strains. The X. campestris-specific SCAR primers may be used in diagnostics of this important plant pathogen.  相似文献   

12.
Specific primers were designed based on the sequences of the spacer region between the 16S and 23S ribosomal DNA (rDNA) for direct, rapid and specific detection of Burkholderia gladioli. These primers were named GLA-f and GLA-r. PCR performed on boiled bacterial suspensions yielded an amplification product of approximately 300 bp. No products from other bacterial species, including B. glumae were amplified, even after complete DNA extraction by the cetyltrimethyl-ammonium bromide (CTAB) method. Using the specific primers designed in this study, the PCR method can detect B. gladioli in plant samples within 6 hr. These data demonstrate the potential of specific PCR for the detection of B. gladioli. Received 10 December 2001/ Accepted in revised form 15 April 2002  相似文献   

13.
Tumour tissue samples were collected from vines grown in various regions of Italy and other parts of Europe and extracted for detection of Agrobacterium vitis. Fifty strains were isolated on agar plates and screened by PCR with consensus primers from the virD2 gene. They were confirmed as A. vitis with a species-specific monoclonal antibody. The isolates were further analyzed by PCR for their opine synthase genes and ordered into octopine, nopaline and vitopine strains. Primers designed on the octopine synthase gene did not detect octopine strains of Agrobacterium tumefaciens. For quantitative PCR, virD2 fragments were sequenced: two classes of virD2 genes were found and two primer sets designed, which detected octopine and nopaline strains or only vitopine strains. For simultaneous identification of all opine-type strains, multiplex real-time PCR with either primer pair and SYBR Green was performed: the combined sets of primers gave signals with DNA from any A. vitis strain. Specificity of the new primers for real-time PCR was evaluated using several unidentified bacterial isolates from grapevines and other plant species. An elevated level of non-specific background was observed when the combined primer sets were used in multiplex PCR assays. The real-time PCR protocol was also used to detect A. vitis cells directly from grapevine tumours; avoiding direct isolation procedures a sensitivity in the range of one to ten cells per assay was found. Inhibition of the PCR reaction by plant material was overcome by treating tumour extracts with a DNA purification kit as a step for the isolation of nucleic acids.  相似文献   

14.
Phytophthora nicotianae Breda de Haan is one of the most important soil-borne plant pathogens. The identification of this pathogen based on morphological or physiological characters is time-consuming and labour-intensive and requires comprehensive knowledge of fungi. Molecular analysis of the internal transcribed spacer (ITS) regions of rDNA is a novel and very effective method of species determination. Based on this concept, conventional and single closed tube nested-PCRs were developed for the specific and sensitive detection of P. nicotianae. Two new specific primers, designed from the spacer regions ITS1 and ITS2, internal to the nucleotide sequence flanked by universal primers ITS4 and ITS6, were used. To evaluate the specificity of the method, 36 morphologically characterized isolates were tested. A positive reaction, characterized by an amplification product of 737 bp, was shown by all P. nicotianae isolates and two P. nicotianae/cactorum hybrids. No amplification product was observed when other Phytophthora species and genera were assayed. The sensitivity of this method was analysed by serial dilutions of a defined amount of fungal DNA in a healthy root extract. Nested-PCR was at least 1000 times more sensitive than conventional PCR. In addition, samples from different infection sites, origins and crops, samples from nutrient solution, water and the rockwool used in hydroponic cultures, were analysed to validate this method.  相似文献   

15.
In four neighbouring regions of southern Italy, Basilicata, Campania, Apulia and Calabria, pepper and zucchini plants showing Phytophthora blight symptoms, tomato plants with either late blight or buckeye rot symptoms, plants of strawberry showing crown rot symptoms and declining clementine trees with root and fruit rot were examined for Phytophthora infections by means of polymerase chain reaction (PCR) assays, using primers directed to nuclear ribosomal DNA (rDNA) repeat sequences. All diseased plants and trees examined tested positive. The detected fungal-like organisms were differentiated and characterized on the basis of primer specificity as well as through extensive restriction fragment length polymorphism (RFLP) and sequence analysis of PCR-amplified rDNA. Phytophthora capsici was identified in diseased pepper and zucchini plants, P. infestans was identified in tomato with late blight symptoms whereas buckeye rot-affected tomatoes and diseased strawberry plants proved to be infected by P. nicotianae and P. cactorum, respectively. Declining clementine trees were infected with P. citrophthora and P. nicotianae in about the same proportion. Also, thirty-one pure culture-maintained isolates of Phytophthora which had previously been identified in southern Italy by traditional methods but were never examined molecularly, were examined by RFLP and sequence analysis of PCR-amplified nuclear rDNA. Among these, an isolate from gerbera which had previously been identified by traditional methods only at genus level, was assigned to P. tentaculata. For the remaining pure culture-maintained isolates examined, the molecular identification data obtained corresponded with those delineated by traditional methods. Most of the diseases examined were already known to occur in southern Italy but the pathogens were molecularly detected and fully characterized at nuclear rDNA repeat level only from other geographic areas, very often outside Italy. A new disease to southern Italy was the Phytophthora blight of zucchini. This is also the first report on the presence and molecular identification of P. tentaculata from Italy.  相似文献   

16.
A conventional PCR and a SYBR Green real-time PCR assays for the detection and quantification of Phytophthora cryptogea, an economically important pathogen, have been developed and tested. A conventional primer set (Cryp1 and Cryp2) was designed from the Ypt1 gene of P. cryptogea. A 369 bp product was amplified on DNA from 17 isolates of P. cryptogea. No product was amplified on DNA from 34 other Phytophthora spp., water moulds, true fungi and bacteria. In addition, Cryp1/Cryp2 primers were successfully adapted to real-time PCR. The conventional PCR and real-time PCR assays were compared. The PCR was able to detect the pathogen on naturally infected gerbera plants and on symptomatic artificially infected plants collected 21 days after pathogen inoculation. The detection limit was 5 × 103 P. cryptogea zoospores and 16 fg of DNA. Real-time PCR showed a detection limit 100 times lower (50 zoospores, 160 ag of DNA) and the possibility of detecting the pathogen in symptomless artificially infected plants and in the re-circulating nutrient solution of closed soilless cultivation systems.  相似文献   

17.
Tomato chlorosis virus causes yellow leaf disorder epidemics in many countries worldwide. Plants of Physalis ixocarpa showing abnormal interveinal yellowing and plants of Physalis peruviana showing mild yellowing collected in the vicinity of tomato crops in Portugal were found naturally infected with ToCV. Physalis ixocarpa and P. peruviana were tested for susceptibility to ToCV by inoculation with Bemisia tabaci, Q biotype. Results confirmed that ToCV is readily transmissible to both species. The infection was expressed in P. ixocarpa by conspicuous interveinal yellow areas on leaves that developed into red or brown necrotic flecks, while P. peruviana test plants remained asymptomatic. Infected plants of both P. ixocarpa and P. peruviana served as ToCV sources for tomato infection via B. tabaci transmission. This is the first report of P. ixocarpa and P. peruviana as natural hosts of ToCV.  相似文献   

18.
Leaves of Xanthium strumarium infected with downy mildew were collected in the vicinity of a sunflower field in southern Hungary in 2003. Based on phenotypic characteristics of sporangiophores, sporangia and oospores as well as host preference the pathogen was classified as Plasmopara angustiterminalis. Additional phenotypic characters were investigated such as the size of sporangia, the number of zoospores per sporangium and the time-course of their release. Infection studies revealed infectivity of the P. angustiterminalis isolate to both X. strumarium and Helianthus annuus. Inoculation of the sunflower inbred line, HA-335 with resistance to all known P. halstedii pathotypes, resulted in profuse sporulation on cotyledons and formation of oospores in the bases of hypocotyls. Infections of sunflower differential lines often led to damping-off. Molecular genetic analysis using simple sequence repeat primers and nuclear rDNA sequences revealed clear differences to Plasmopara halstedii, the downy mildew pathogen of sunflower.  相似文献   

19.
During a 6-year study, grapevine propagation materials and young grapevines were analysed to evaluate the presence of internal wood discolouration and the occurrence of fungal species involved in Petri disease. The intensity of wood discolouration increased with the ageing of the plants. The maximum incidence of dark streaks was observed in the rootstock while necrosis originating from buds or nodes were notably present in the trunk and cordon of older vines. In contrast, the highest levels of brown-red halo symptoms, defined as discoloured areas around the pith, were recorded in the early growth stages. Phaeoacremonium spp. and Phaeomoniella chlamydospora were usually isolated from the rooted-grafts and the 3-year old plants, respectively. The number of infected grapevines increased with age. Most of the P. chlamydospora strains were isolated from dark streaks or dots, while Phaeoacremonium spp. were detected in brown-red halo symptoms and other symptomatic or asymptomatic wood. The greatest incidence of the two fungal taxa was recorded in the lower parts of the grapevine, including the roots and rootstock.  相似文献   

20.
The development of a rapid detection method for Xanthomonas campestris pv. campestris (Xcc) in crucifer seeds and plants is essential for high-throughput certification purposes. Here we describe a diagnostic protocol for the identification/detection of Xcc by PCR amplification of fragments from the pathogenicity-associated gene hrcC. Under stringent conditions of amplification, a PCR product of 519 bp from hrcC was obtained from a collection of 46 isolates of Xcc, with the exception of two isolates from radish. No amplicons were obtained from 39 pure cultures of the phytopathogenic bacteria Xanthomonas campestris pv. cerealicola, X. campestris pv. juglandis, X. campestris pv. pelargonii, X. campestris pv. vitians, X. arboricola pv. pruni, X. axonopodis pv. phaseoli, X. axonopodis pv. vesicatoria, X. vesicatoria, Pseudomonas syringae pv. phaseolicola, P. syringae pv. syringae, P. syringae pv. tomato, P. fluorescens, P. marginalis, Pectobacterium atrosepticum, P. carotovorum subsp. carotovorum. In addition, PCR reactions were negative for fifty unidentified environmental isolates purified from the surface of crucifers. The PCR fragment was obtained from four strains previously classified as X. campestris pv. aberrans, X. campestris pv. armorociae, X. campestris pv. barbarae and X. campestris pv. incanae using pathogenicity assays. Our PCR protocol specifically detected Xcc in inoculated leaves, seeds and naturally infected leaves of crucifers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号