首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
This study reports the activation of a latent mushroom tyrosinase isoform by sodium dodecyl sulfate (SDS). The activation process of latent mushroom tyrosinase by SDS is characterized by the presence of a lag period (tau) prior to the attainment of a steady-state rate (V(ss)). This could be related to a slow conformational change of the latent enzyme to render the active isoform. The molecular size of the latent isoform was 67 kDa as determined by SDS-PAGE and western-blotting assays. This size did not change after activation by SDS. The molecular size of the protease-activated isoform was 43 kDa. tau and V(ss) displayed a sigmoidal relationship to the concentration of SDS, but tau was not dependent on o-diphenol or enzyme concentration. Increasing SDS concentrations decreased tau, but then lower V(ss) values were detected because of a possible excess of unfolding and subsequent denaturation of the protein. The same reaction mechanism operated in both SDS-activated and protease-activated tyrosinase isoforms despite their different kinetic features. A possible mechanism for the activation of this latent tyrosinase by SDS is proposed.  相似文献   

2.
This paper reports a study on the hydroxylation of ferulic acid and tyrosine by field bean (Dolichos lablab) polyphenol oxidase, a reaction that does not take place without the addition of catechol. A lag period similar to the characteristic lag of tyrosinase activity was observed, the length of which decreased with increasing catechol concentration and increased with increasing ferulic acid concentration. The activation constant K(a) of catechol for ferulic acid hydroxylation reaction was 5 mM. The kinetic parameters of field bean polyphenol oxidase toward ferulic acid and tyrosine were evaluated in the presence of catechol. 4-Methyl catechol, L-dihydroxyphenylalanine, pyrogallol, and 2,3,4-trihydroxybenzoic acid, substrates with high binding affinity to field bean polyphenol oxidase, could stimulate this hydroxylation reaction. In contrast, diphenols such as protocatechuic acid, gallic acid, chlorogenic acid, and caffeic acid, which were not substrates for the oxidation reaction, were unable to bring about this activation. It is most likely that only o-diphenols that are substrates for the diphenolase serve as cosubstrates by donating electrons at the active site for the monophenolase activity. The reaction mechanism for this activation is consistent with that proposed for tyrosinase (Sanchez-Ferrer, A.; Rodriguez-Lopez, J. N.; Garcia-Canovas, F.; Garcia-Carmona, F. Biochim. Biophys. Acta 1995, 1247, 1-11). The presence of o-diphenols, viz. catechol, L-dihydroxyphenylalanine, and 4-methyl catechol, is also necessary for the oxidation of the diphenols, caffeic acid, and catechin to their quinones by the field bean polyphenol oxidase. This oxidation reaction occurs immediately with no lag period and does not occur without the addition of diphenol. The kinetic parameters for caffeic acid (K(m) = 0.08 mM, V(max) = 32440 u/mg) in the presence of catechol and the activation constant K(a) of catechol (4.6 mM) for this reaction were enumerated. The absence of a lag period for this reaction indicates that the diphenol mechanism of diphenolase activation differs from the way in which the same o-diphenols activate the monophenolase activity.  相似文献   

3.
The monophenolase activity of quince pulp polyphenol oxidase was characterized by extracting samples using a combination of a two-phase partition step in Triton X-114, followed by a PEG 8000/phosphate partition step, and a final ammonium sulfate fractionation between 30 and 75%. The purification method avoids the loss of cresolase activity described in another quince pulp polyphenol oxidase. The activity was characterized by a lag period, whose duration depended on the substrate concentration, the pH, and the presence of catalytic amounts of o-diphenol. By increasing the concentration of o-diphenols, it was possible to evaluate the enzyme activation constant, K(act), which showed a value of 4.5 microM for 4-methylcatechol. A general kinetic mechanism for this enzyme is used to explain the loss of activity that normally occurs during quince pulp polyphenol oxidase purification.  相似文献   

4.
Polyphenol oxidase (EC 1.14.18.1), a thylakoid membrane-bound enzyme, was isolated by sonication of osmotically shocked chloroplasts from iceberg lettuce (Lactuca sativa). The enzyme showed monophenolase activity when assayed on (p-hydroxyphenyl)propionic acid with 3-methyl-2-benzothiazolinone hydrazone in a reliable continuous spectrophotometric method, with high sensitivity, accuracy, and precision. The monophenolase activity showed a lag period before the steady-state rate (V(ss)) was reached. Both kinetic parameters, the lag period and the steady-state rate, depended on the pH, the enzyme and substrate concentrations, and the presence of catalytic amounts of o-diphenol. This activity shows inhibition by high substrate concentration. The experimental results correspond with the mechanism previously described for PPO from other sources. Kinetic constants K(m), V(max), and K(i) were determined.  相似文献   

5.
The kinetics of the activation process of latent peach PPO by trypsin was studied. By coupling this activation process to the oxidation of 4-tert-butylcatechol (TBC) to its corresponding quinone, it was possible to evaluate the specific rate constant of active PPO formation, k(3), which showed a value of 0.04 s(-1). This proteolytic activation of latent peach PPO permitted us to characterize the monophenolase activity of peach PPO for the first time using p-cresol as substrate, and it showed the characteristic lag period of the kinetic mechanism of monophenols hydroxylation, which depended on the enzyme and substrate concentration, the pH and the presence of catalytic amounts of o-diphenol (4-methylcatechol). The enzyme activation constant, k(act), was 2 microM.  相似文献   

6.
Latent mushroom tyrosinase can be considered as a zymogen when activated by proteases because the activation process fulfilled all of the kinetic dependencies predicted by a theoretical zymogen activation model previously reported. The activation was studied under two assay conditions: high and low ratio of latent tyrosinase/serine protease (trypsin and subtilisin Carlsberg) concentrations, in the presence and in the absence of a serine protease inhibitor (aprotinin). The size of the latent enzyme was 67 kDa, determined by denaturing SDS-PAGE electrophoresis and Western blot assays. After proteolytic activation, the size was 43 kDa, with an intermediate band of 58 kDa. The values of the catalytic () and Michaelis () constants for the active forms of tyrosinase resulting from the activation by subtilisin, trypsin, or sodium dodecyl sulfate on the substrate tert-butylcatechol were slightly different, which could support the idea of "one activator-one different active tyrosinase". Vacuum infiltration experiments tried to reproduce in vivo the role of mushroom serine proteases in the activation of latent tyrosinase. The use of serine protease inhibitors is proposed as a new alternative tool to prevent melanin formation.  相似文献   

7.
Polyphenol oxidases (PPOs) oxidize o-diphenols to o-quinones, which cause browning reactions in many wounded fruits, vegetables, and plants including the forage crop red clover (Trifolium pratense L.). Production of o-quinones in red clover inhibits postharvest proteolysis during the ensiling process. The cDNAs encoding three red clover PPOs were expressed individually in alfalfa (Medicago sativa L.), which lacks detectable endogenous foliar PPO activity and o-diphenols. Several physical and biochemical characteristics of the red clover PPOs in alfalfa extracts were determined. In transgenic alfalfa extracts, red clover PPOs exist in a latent state and are activated (10-40-fold increase in activity) by long incubations (>2 days) at ambient temperature or short incubations (<10 min) at > or =65 degrees C. PPO1 appears to be more stable at high temperatures than PPO2 or PPO3. During incubation at ambient temperature, the molecular masses of the PPO enzymes were reduced by approximately 20 kDa. The apparent pH optima of latent PPO1, PPO2, and PPO3 are 5.5, 6.9, and 5.1, respectively, and latent PPO1 is slightly activated (~5-fold) by low pH. Activation of the PPOs shifts the pH optima to approximately 7, and the activated PPOs retain substantial levels of activity as the pH increases above their optima. The latent and activated PPOs were surveyed for ability to oxidize various o-diphenols, and activation of the PPOs had little effect on substrate specificity. Activation increases the V max but not the affinity of the PPO enzymes for caffeic acid. Results indicate red clover PPOs undergo structural and kinetic changes during activation and provide new insights to their effects in postharvest physiology.  相似文献   

8.
Polyphenol oxidase (PPO; EC 1.14.18.1) catalyzes the hydroxylation of monophenols to o-diphenols (cresolase activity) and the oxidation of o-diphenols to o-quinones (catecholase activity), leading to browning in plants and produce. Further interest in the enzyme has been triggered by the active role that it plays in plant defense systems. PPO can be found in latent forms and is activated in vitro by various agents including urea, detergents, and proteases. The activation of PPO from several sources by sodium dodecyl sulfate (SDS) has been extensively investigated, but reports on the effect of other detergents or on the differential effect of detergents on each of PPO's activities are scarce. In addition, investigations on the enzyme in other plant parts besides fruits and vegetables are also scarce. Here, the effect of various detergents and chaotropic agents on PPO from dormant saffron (Crocus sativus L.) corm extract was investigated. SDS and sarkosyl activated the cresolase activity, while only SDS activated the catecholase activity. All other detergents tested, in milli- or micromolar concentrations, inhibited the cresolase activity but barely affected the catecholase activity. In contrast, urea and guanidine-HCl drastically inhibited the catecholase activity but moderately inhibited the cresolase activity. The same effects were obtained on the partially purified enzyme. Results identified a PPO, present in dormant corms, which was activated only by anionic detergents and was inhibited by other reputed activating agents such as urea. Results also emphasized the differences in structure and accessibility of the active sites for cresolase and catecholase activities.  相似文献   

9.
Thiols, such as cysteine and N-acetylcysteine, are included in many pharmaceutical products for their mucolytic properties. The method described here uses mushroom polyphenol oxidase (PPO) to determine two thiols and consists of measuring the lag period in the formation of the product generated as PPO acts on o-diphenol in the presence of a thiol. In the experimental conditions, o-quinone is formed enzymatically and then reacts stoichiometrically with the thiol, originating the corresponding thiol-diphenol adduct, which does not absorb visible light. Once the thiol has been used up, the o-quinone can be observed in the medium. It must be borne in mind that the inhibition of PPO is practically null at low concentrations of thiol, and the only effect observed is the formation of the thiol-diphenol adduct. In the following, an exact kinetic method capable of rapidly and accurately assaying thiols with PPO and o-diphenol is optimized and is shown to be a straightforward way of calculating thiol concentration. The method has been successfully applied to the determination of cysteine in model solutions and of N-acetylcysteine in pharmaceutical products.  相似文献   

10.
Aroma is an important sensory parameter of food products. Lactic acid bacteria have enzymatic activities that could be important in the modification of food aroma. The complete genome sequence from Lactobacillus plantarum WCFS1 shows a gene (lp_3054) putatively encoding a protein with benzyl alcohol dehydrogenase activity. To confirm its enzymatic activity lp_3054 from this strain has been overexpressed and purified. Protein alignment indicated that lp_3054 is a member of the family of NAD(P)-dependent long-chain zinc-dependent alcohol dehydrogenases. In lp_3054 all of the residues involved in zinc and cofactor binding are conserved. It is also conserved the residue that determines the specificity of the dehydrogenase toward NAD (+) rather than NADP (+) and, therefore, L. plantarum benzyl alcohol dehydrogenase is less active in the presence of NADP (+) than in the presence of NAD (+). The purified enzyme exhibits optimal activity at pH 5.0 and 30 degrees C. The kinetic parameters K m and V max on benzyl alcohol as a substrate were, respectively, 0.23 mM and 204 mumol h (-1) mg (-1). Besides its activity toward benzyl alcohol, it showed activity against nerol, geraniol, phenethyl alcohol, cinnamyl alcohol, and coniferyl alcohol, all of which are volatile compounds involved in determining food aroma. The biochemical demonstration of a functional benzyl alcohol dehydrogenase activity in this lactic acid bacteria species should be considered when the influence of bacterial metabolism in the aroma of food products is determined.  相似文献   

11.
Despite the importance of the substrate gamma-L-glutaminyl-4-hydroxybenzene (GHB) in the melanin biosynthesis pathway in mushrooms Agaricus bisporus, the kinetics of its oxidation catalyzed by tyrosinase has never been properly characterized. For this purpose GHB and its corresponding o-diphenol (GDHB) were isolated and purified from A. bisporus mushrooms. The kinetic constants that characterize the action of tyrosinase on GHB and GDHB are = 2.10 +/- 0.10 microM/min, = 0.30 +/- 0.03 mM, = 210.0 +/- 7.3 microM/min, and = 7.80 +/- 0.41 mM. The oxygen kinetic constants for tyrosinase in the presence of these compounds are = 3. 20 +/- 0.21 microM/min, = 1.50 +/- 0.12 microM, = 200.2 +/- 8.1 microM/min, and = 100.2 +/- 8.2 microM. These values were compared to those obtained for the pair L-tyrosine/L-DOPA. The kinetic and structural reaction mechanisms of tyrosinase were corroborated for these physiological phenolic compounds.  相似文献   

12.
The effect of acidity, squalene, hydroxytyrosol, aldehydic form of oleuropein aglycon, hydroxytyrosyl acetate, tyrosol, homovanillic acid, luteolin, apigenin, alpha-tocopherol, and the mixtures hydroxytyrosol/hydroxytyrosyl acetate, hydroxytyrosol/tyrosol, and hydroxytyrosol/alpha-tocopherol on the oxidative stability of an olive oil matrix was evaluated. A purified olive oil was spiked with several concentrations of these compounds and, then, subjected to an accelerated oxidation in a Rancimat apparatus at 100 degrees C. Acidity, squalene, homovanillic acid, and apigenin showed negligible effect. At the same millimolar concentrations, the different o-diphenolic compounds yielded similar and significant increases of the induction time, alpha-tocopherol a lesser increase, and tyrosol a scarce one. At low concentrations of o-diphenols and alpha-tocopherol, a linear relationship between induction time and concentration was found, but at high concentrations the induction time tended toward constant values. To explain this behavior, a kinetic model was applied. The effect of the mixtures hydroxytyrosol/hydroxytyrosyl acetate was similar to that of a single o-diphenol at millimolar concentration equal to the sum of millimolar concentrations of both compounds. Concentrations of tyrosol >0.3 mmol/kg increase the induction time by 3 h. The mixtures hydroxytyrosol/alpha-tocopherol showed opposite effects depending on the relative concentrations of both antioxidants; so, at hydroxytyrosol concentrations <0.2 mmol/kg, the addition of alpha-tocopherol increased the induction time, whereas at higher hydroxytyrosol concentrations, the alpha-tocopherol diminished the stability.  相似文献   

13.
Hydroxytyrosol (HTyr), a natural ortho-diphenolic antioxidant with health-beneficial properties that mainly occurs in virgin olive oil and olive oil mill waste waters (also known as vegetative waters), has been enzymatically synthesized using mushroom tyrosinase. This o-diphenol (not commercially available) was obtained from its monophenolic precursor tyrosol (commercially available) in the presence of both tyrosinase and ascorbic acid. The reaction synthesis is continuous, easy to perform, and adaptable to a bioreactor for industrial purposes. The HTyr concentration is time-predicted, and the yield of reaction can be 100%. The synthesis method reported here is an alternative approach to obtain this compound in an environmentally friendly way.  相似文献   

14.
Changes in the concentration of tocopherol, monophenols, o-diphenols, squalene, and polyunsaturated fatty acids in olive oil were evaluated during 1 year at various storage conditions. Samples of two different extra virgin olive oil (EOO), produced in Calabria (Italy), were stored in dark and in colorless bottles, filled up completely or to half, in order to simulate the domestic storage conditions. The extent of oxidation or photooxidation was monitored by periodic measurements of peroxide values and the rate of degradation of alpha-tocopherol, o-diphenols, squalene, and polyunsaturated fatty acids. The quantitative analysis of the constituents has been performed by HPLC-DAD, HPLC-MS, and GC-MS. The main changes in the concentrations of the analyzed compounds were associated with the major oxygen level in the half-empty glass bottles. alpha-Tocopherol was the first molecule to be oxidized (-20% after 2 months, -92% after 12 months). Squalene and o-diphenols were protected in the first months by the presence of alpha-tocopherol, and their content decreased significantly only after 6 and 8 months, respectively, in the half-empty bottles. The concentration of polyunsaturated fatty acids remained almost constant during 8 months for all four different storage conditions; their oxidation started when the level of the antioxidants decreased.  相似文献   

15.
Mushroom tyrosinase exhibits catalase activity with hydrogen peroxide (H(2)O(2)) as substrate. In the absence of a one-electron donor substrate, H(2)O(2) is able to act as both oxidizing and reducing substrate. The kinetic parameters V(max) and K(m) that characterize the reaction were determined from the initial rates of oxygen gas production (V(0)(O)()2) under anaerobic conditions. The reaction can start from either of the two enzyme species present under anaerobic conditions: met-tyrosinase (E(m)) and deoxy-tyrosinase (E(d)). Thus, a molecule of H(2)O(2) can reduce E(m) to E(d) via the formation of oxy-tyrosinase (E(ox)) (E(m) + H(2) <==> O(2) right harpoon over left harpoon E(ox)), E(ox) releases oxygen into the medium and is transformed into E(d), which upon binding another molecule of H(2)O(2) is oxidized to E(m). The effect of pH and the action of inhibitors have also been studied. Catalase activity is favored by increased pH, with an optimum at pH = 6.4. Inhibitors that are analogues of o-diphenol, binding to the active site coppers diaxially, do not inhibit catalase activity but do reduce diphenolase activity. However, chloride, which binds in the equatorial orientation to the protonated enzyme (E(m)H), inhibits both catalase and diphenolase activities. Suicide inactivation of the enzyme by H(2)O(2) has been demonstrated. A kinetic mechanism that is supported by the experimental results is presented and discussed.  相似文献   

16.
Wine is a complex consumer product produced predominately by the action of yeast upon grape juice musts. Model must systems have proven ideal for studies of the effects of fermentation conditions on the production of certain wine volatiles. To identify grape-derived precursors to acetate esters, model fermentation systems were developed by spiking precursors into model must at different concentrations. Solid-phase microextraction-gas chromatgraphy mass spectrometry analysis of the fermented wines showed that a variety of grape-derived aliphatic alcohols and aldehydes are precursors to acetate esters. The C6 compounds hexan-1-ol, hexenal, (E)-2-hexen-1-ol, and (E)-2-hexenal are all precursors to hexyl acetate, and octanol and benzyl alcohol are precursors to octyl acetate and benzyl acetate, respectively. In these cases, the postfermentation concentration of an acetate ester increased proportionally with the prefermentation concentration of the respective precursor in the model must. Determining viticultural or winemaking methods to alter the prefermentation concentration of precursor compounds or change the precursor-to-acetate ester ratio will have implications upon the final flavor and aroma of wines.  相似文献   

17.
Aroma compounds contained in the extracts of soybean and mung bean that possess antioxidant activity were identified by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). The major aroma constituents of soybeans were 1-octen-3-ol (13.699 ppm), maltol (1.662 ppm), phenylethyl alcohol (1.474 ppm), hexanol (1.430 ppm), and gamma-butyrolactone (1.370 ppm). The major aroma constituents of mung beans were hexanol (3.234 ppm), benzyl alcohol (2.060 ppm), gamma-butyrolactone (1.857 ppm), 2-methyl-2-propenal (1. 633 ppm), and pentanol (1.363 ppm). The major aroma chemicals of soybeans and mung beans were examined for antioxidative activities in two different assays. Eugenol, maltol, benzyl alcohol, and 1-octen-3-ol showed potent antioxidative activities in two different assays. Eugenol, maltol, benzyl alcohol, and 1-octen-3-ol inhibited the oxidation of hexanal by 100%, 93%, 84%, and 32%, respectively, for a period of 40 days at the 500 microg/mL level. Eugenol, maltol, benzyl alcohol, and 1-octen-3-ol inhibited malonaldehyde (MA) formation from cod liver oil by 91%, 78%, 78%, and 78%, respectively, at the 160 microg/mL level. The antioxidative activity of eugenol was comparable to that of the natural antioxidant alpha-tocopherol (vitamin E).  相似文献   

18.
A kinetic study of the inhibition of mushroom tyrosinase by tropolone has been made. Three tyrosinase isoforms were used: two commercial tyrosinases from Fluka and Sigma (isoelectric points of 4. 3 and 4.1, respectively) and one purified isoform from mushroom strain U1 (isoelectric point of 4.5). Tropolone is a slow-binding inhibitor of these mushroom tyrosinase isoforms. Increasing tropolone concentrations provoked a progressive decrease in both the initial velocity and the final (inhibited) steady-state rate in the progress curves of product accumulation. A rapid formation of an enzyme-inhibitor complex, which further undergoes a slow reversible reaction, could take place since the inhibition of the different isoforms was partially reversed by the addition of CuSO(4). The kinetic parameters that described the inhibition by tropolone were evaluated by nonlinear regression fits. Incubation experiments of the different isoforms with tropolone demonstrated that this inhibitor only could bind to the "oxy" form of tyrosinase which justifies a mechanism previously proposed to explain the inhibition of tyrosinase by slow-binding inhibitors.  相似文献   

19.
A cDNA encoding mature human tyrosinase was cloned into pET-23a(+) and transformed into E. coli BL21(DE3). Three major recombinant proteins, mature human tyrosinase (RHT??????), N-terminal truncated human tyrosinase (RHT???????), and β-lactamase, were overexpressed as inclusion bodies in E. coli after 12 h of induction with 1.0 mM isopropyl-β-D-thiogalactopyranoside at 37 °C. After sonication and centrifugation, the inclusion body was harvested, solubilized, dialyzed, and refolded into the active form with monophenolase and diphenolase activities. It was purified to homogeneity by DEAE-Sepharose FF and Sephadex G-75. The molecular mass and N-terminal sequence were 57.0 kDa and GHFPRAC, respectively, and corresponded to those of mature human tyrosinase. The RHT was active in a broad range of temperature and pH, and with optimum activity at 70 °C and pH 8.5.  相似文献   

20.
Three monovarietal extra virgin olive oils (EVOOs) were subjected to accelerated storage conditions (60 degrees C, dark) representative of the autoxidation process during shelf life. Oxidation markers, i.e., the peroxide value, conjugated dienes, the oil stability index, and minor components, were monitored. The changes in minor components, related to the stage of ongoing oxidation and expressed as a percentage of the induction period (IP), followed a similar pattern in all oils: o-diphenols diminished by the highest rate (halved within 15% of the IP), followed by alpha-tocopherol (halved within 35% of the IP). Carotenoids and chlorophylls were also affected by autoxidation, whereas squalene showed high stability (<20% loss within 100% of the IP). Polar phenols (especially o-diphenols) and alpha-tocopherol were deduced to be the most potent antioxidants of EVOO. They efficiently inhibited oxidative lipid deterioration and subsequent development of sensory defects (rancidity, discoloration), which occurred only after substantial depletion of these antioxidants. Therefore, they could also be used as markers for the oxidative status of EVOO particularly in the early stage of oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号