首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hardsetting soil properties are undesirable in agricultural soils because they hamper crop production by limiting seedling emergence and root growth via increased mechanical soil resistance at low moisture contents. The objective of this study was to determine the effect of additions of organic matter on the penetration resistance of a hardsetting soil for the entire water tension range. Investigations were carried out on Saalian glacial till, which is used as a reclamation substrate in post-lignite-mining reclamation. Proportions of 0%, 1%, 2%, 3% and 4% by mass of organic matter (OM) were used. The remoulded samples were saturated under a constant load of 2.4 kPa to achieve bulk densities equivalent to a soil depth of 15–20 cm via water-induced consolidation. Subsequently, the mixtures were adjusted to water tensions between 100 and 107 hPa and penetrated using a small cone penetrometer. Compared to 0% OM, the addition of 1% OM led to a very small but significant (P < 0.01) increase in the bulk density, while between 1% and 4% OM bulk density was seen to decrease in a linear fashion. At moisture contents greater than field capacity, penetration resistance values were consistent with the observed changes in bulk density, leading to an increase in the samples containing 0–1% OM to critical values for root-growth and a decrease for samples containing 2% and more organic matter reaching to values non-critical for roots. At moisture contents smaller than field capacity, penetration resistance values were inversely related to the bulk density, supporting the concept that the type of organic matter added contributed to soil cohesion. Modeling the relation between water tension and penetration resistance using a sigmoidal equation showed a high consistency between the observed data and the model.  相似文献   

2.
For this study penetration resistance (PR) was measured within the profiles of four Oxisols for a wide range of water contents (θ) and bulk densities. Obtained data were utilized to parameterize 23 previously applied regression models. The most promising models were selected to illustrate effects of soil texture on PR. Finally, a new correction method based on normalization of PR with θ corresponding to a matric potential of − 10 kPa was introduced. Evaluation of texture effects revealed that for very wet soils PR was lowest, but increased with clay content. PR at − 1500 kPa exhibited a maximum at clay content of 35% and at − 10 kPa PR was least affected by texture. From all regression models three- and two-parametric exponential and power functions yielded closest matches to measured data. The proposed correction significantly dampened the influence of θ on PR, which allows better comparison for a specific soil or among different soils.  相似文献   

3.
The spatial variability of mechanical resistance to penetration (PR) and gravimetric moisture (GM) was studied at a depth of 0–0.40 m, in a ferralsol cropped with corn, and under conventional tillage in Ilha Solteira, Brazil (latitude 20°17′S, and longitude 52°25′W). The purpose of this study was to analyse and to try explaining the spatial variability of the mentioned soil physical properties using geostatistics. Soil data was collected at points arranged on the nodes of a mesh with 97 points. Geostatistics was used to analyse the spatial variability of PR and GM at four depths: 0–0.1, 0.1–0.2, 0.2–0.3 and 0.3–0.4 m. PR showed a higher variability of data, with coefficients of variation of 52.39, 30.54, 16.91, and 15.18%, from the surface layers to the deepest layers. The values of the coefficients of variation for GM were lower: 9.99, 5.13, 5.59, and 5.69%. Correlation between GM and PR for the same soil layers was low. Penetration resistance showed spatial structure only in the 0.30–0.40 m layer, while gravimetric moisture showed spatial structure at all depths except for 0–0.10 m. All the models of fitted semivariograms were spherical and exponential, with ranges of 10–80 m. Data for the variable ‘GM’ in the 0.20–0.30 and 0.30–0.40 m layers revealed a trend in data attributed to the occurrence of subsurface water flow.  相似文献   

4.
稻草覆盖对红壤旱坡地水力性质及水分状况的影响   总被引:1,自引:0,他引:1  
为探明红壤旱坡地应用稻草覆盖的雨季和旱季保水作用,在湖北省咸宁市第四纪红色黏土母质发育的红壤8°坡地上开展田间试验,以不覆盖为对照,研究稻草覆盖对红壤的持水性、水分有效性、供水性、导水性、含水量及储水量的影响。结果表明:稻草覆盖改善了土壤的持水性和水分有效性,覆盖当年土壤田间持水量、凋萎系数和有效水容量分别比对照提高6.0%、7.3%和4.4%;稻草覆盖显著减缓了雨季红壤表层饱和导水率的下降幅度,尤其是大雨期间保护地表饱和导水性的作用更明显,102.8 mm的降雨结束之后,稻草覆盖的土壤平均饱和导水率是对照的2.7倍;稻草覆盖对土壤的供水性及非饱和导水性的影响表现为低吸力段增强,高吸力段减弱;土壤储水量在集中降雨阶段的上升幅度和在降雨间歇期的下降幅度都表现为稻草覆盖对照。总体上,土壤储水量均表现为稻草覆盖对照;稻草覆盖增加雨季土壤储水量主要通过增加入渗,而增加旱季土壤储水量主要通过减少蒸散发;稻草覆盖增加雨季土壤储水量的作用有限,且保水作用雨季旱季。因此,稻草覆盖在红壤旱坡地上的雨季和旱季的保水途径、特点及作用大小都不同。  相似文献   

5.
Soil aggregation is of great importance in agriculture due to its positive effect on soil physical properties, plant growth and the environment. A long-term (1996-2008) field experiment was performed to investigate the role of mycorrhizal inoculation and organic fertilizers on some of soil properties of Mediterranean soils (Typic Xerofluvent, Menzilat clay-loam soil). We applied a rotation with winter wheat (Triticum aestivum L.) and maize (Zea mays L.) as a second crop during the periods of 1996 and 2008. The study consisted of five experimental treatments; control, mineral fertilizer (300-60-150 kg N-P-K ha−1), manure at 25 t ha−1, compost at 25 t ha−1 and mycorrhiza-inoculated compost at 10 t ha−1 with three replicates. The highest organic matter content both at 0-15 cm and 15-30 cm soil depths were obtained with manure application, whereas mineral fertilizer application had no effect on organic matter accumulation. Manure, compost and mycorrhizal inoculation + compost application had 69%, 32% and 24% higher organic matter contents at 0-30 cm depth as compared to the control application. Organic applications had varying and important effects on aggregation indexes of soils. The greatest mean weight diameters (MWD) at 15-30 cm depth were obtained with manure, mycorrhiza-inoculated compost and compost applications, respectively. The decline in organic matter content of soils in control plots lead disintegration of aggregates demonstrated on significantly lower MWD values. The compost application resulted in occurring the lowest bulk densities at 0-15 and 15-30 cm soil depths, whereas the highest bulk density values were obtained with mineral fertilizer application. Measurements obtained in 2008 indicated that manure and compost applications did not cause any further increase in MWD at manure and compost receiving plots indicated reaching a steady state. However, compost with mycorrhizae application continued to significant increase (P < 0.05) in MWD values of soils. Organic applications significantly lowered the soil bulk density and penetration resistance. The lowest penetration resistance (PR) at 0-50 cm soil depth was obtained with mycorrhizal inoculated compost, and the highest PR was with control and mineral fertilizer applications. The results clearly revealed that mycorrhiza application along with organic fertilizers resulted in decreased bulk density and penetration resistance associated with an increase in organic matter and greater aggregate stability, indicated an improvement in soil structure.  相似文献   

6.
土壤含水率与土壤碱度对土壤抗剪强度的影响   总被引:22,自引:11,他引:11  
土壤含水率和土壤碱度是表征土壤物理化学性质的两个重要参数。通过室内三轴不固结不排水试验,研究了土壤含水率和土壤碱度对土壤抗剪强度的影响。试验处理采用5种土壤碱度(土壤可交换钠百分比ESP=0、5、10、20、40)和4种土壤质量含水率(0.05、0.10、0.20以及饱和含水率0.34)水平。试验结果显示,土壤黏聚力随着土壤含水率的增加基本上呈先增大后减小之趋势;当土壤含水率在0.10附近时黏聚力达到其最大值。土壤内摩擦角随着土壤含水率的增加而线性减小。土壤碱度对土壤黏聚力的影响机理较为复杂,其影响效果随土壤含水率的增加而减小;但土壤碱度对土壤内摩擦角的影响较小。土壤碱度对土壤抗剪强度的影响程度明显地小于土壤含水率对其的影响程度。  相似文献   

7.
In view of their potential benefits, reduced or no tillage (NT) systems are being advocated worldwide. Concerns about impairment of some soil conditions, however, cast doubt on their unqualified acceptance. We evaluated the effects of 6 years of tillage and residue management on bulk density, penetration resistance, aggregation and infiltration rate of a Black Chernozem at Innisfail (loam, 65 g kg−1 organic matter, Udic Boroll) and a Gray Luvisol at Rimbey (loam, 31 g kg−1 organic matter, Boralf) cropped to monoculture spring barley (Hordeum vulgare L.) in a cool temperate climate in Alberta, Canada. Tillage systems were no tillage and tillage with rototilling (T), and two residue levels were straw removed (−S) and straw retained (+S). Bulk density (BD) of the 0–7.5 and 7.5–15 cm depths was significantly greater under NT (1.13–1.58 Mg m−3) than under T (0.99–1.41 Mg m−3) in both soils, irrespective of residue management. In both soils, penetration resistance (PR) was greater under NT than under T to 15 cm depth. Residue retention significantly reduced PR of the 0–10 cm soil in NT, but not in T. In the 0–5 cm depth of the Black Chernozem, the >2 mm fraction of dry aggregates was highest under NT + S (72%), and lowest under T − S (50%). The wind-erodible fraction (dry aggregates <1 mm size) was smallest (18%) under NT + S and largest (39%) under T − S. Soil aggregation benefited more from NT than from residue retention. Proportion of wind-erodible aggregates was generally greater in the Gray Luvisol than in the Black Chernozem. In the Black Chernozem, steady-state infiltration rate (IR) was significantly lower (33%) under NT than under T. Residue retention improved IR in both NT and T. In the Gray Luvisol, IR was not significantly affected by tillage and residue management. Despite firmer soil, NT and residue retention are recommended to improve aggregation in the cool temperate region of Western Canada.  相似文献   

8.
混播草带防治坡耕地水土流失效应的研究   总被引:1,自引:2,他引:1  
为有效防治坡耕地水土流失,提高坡耕地持续利用,于2001~2002年选用非洲狗尾草、高羊茅和红三叶3种优良牧草,在云南昆明王家箐流域的坡耕地上进行了混播草带防治水土流失效应的研究。试验设混播非洲狗尾草与红三叶(A)、混播高羊茅与红三叶(B)、单播高羊茅(C)和无草带种植(D)4个处理,坡度在13.2°~14°之间;每个处理坡耕地上部等高种植9 m×2 m玉米,基部种植0.5 m宽的草带,底部设径流收集池。结果表明:选择适宜草种进行混播,所形成的草带水土保持效果优于单播草带;在雨季(5~10月)4个处理的水土流失量为D>C>B>A,与对照D相比,处理A、B、C的径流量分别减少了79.19%、64.02%和51.53%,侵蚀量分别减少了92.04%、84.49%和78.70%;混播豆科和禾本科牧草,有利于增加草带的总盖度和草层高度,促进根系生长,增强草带的水土保持效果。  相似文献   

9.
The landscape of many semiarid rangelands is characterized by a two-phase, shrub–intershrub vegetation mosaic, each phase having different soil properties. However, this broad subdivision groups together types of intershrub surface cover that may also differ in their soil properties and play important roles in ecosystem functioning. In the northern Negev region of Israel, we examined the soil properties associated with flock trampling routes and rock fragment clusters, as well as those associated with the remainder of the intershrub area and shrub patches. Moisture content, organic carbon content, bulk density and calcium carbonate content of the soil were determined for the above four types of cover, inside and outside long-term grazing exclosures. Soil was sampled in the peak of the growing season and in the end of the dry season, on a north- and a south-facing hillside, and from two depths. The shrub patches exhibited the highest soil moisture and organic carbon contents, and the lowest bulk density and calcium carbonate contents. The trampling routes showed opposite trends. The rock fragment clusters and the remainder of the intershrub area did not generally differ and had intermediate values of these properties. Grazing did not have a significant effect on soil properties at the whole-plot scale, but there were highly significant interactions between grazing and type of cover. Compared with the former trampling routes in the exclosures, the active trampling routes outside them had higher bulk density and lower moisture and organic carbon contents. The intershrub area had higher moisture and organic carbon contents under grazing than in the exclosures. Grazing increased the spatial heterogeneity of the soil properties examined via the creation of a network of trampling routes on the hillsides. The routes themselves, which constituted over 20% of the landscape cover, had degraded soil properties but they led to the improvement of the properties of the remainder of the intershrub area via functionally important source–sink relationships. The study of the soil of regions in which such networks are apparent should be duly cognizant of this intershrub subdivision in addition to the widely recognized shrub–intershrub dichotomy.  相似文献   

10.
蒸散发与水分利用效率是农田生态系统碳水循环的重要衡量指标。本研究利用涡度相关技术对紫色土坡耕地生态系统进行连续观测,获取2014—2018年碳水通量数据,分析紫色土冬小麦-夏玉米轮作下的雨养坡耕地农田生态系统蒸散发和水分利用效率变化特征及其对主要环境因子的响应规律。结果表明:紫色土坡耕地农田生态系统蒸散发日变化规律呈单峰型趋势,最大值均在14:00前后出现;一年中8月日蒸散发最高,1月最低;夏季日变化幅度最大,春季次之,冬季和秋季变化较为平缓。叶面积指数、温度为影响紫色土坡耕地蒸散发的最主要因子,其次为饱和水汽压差。水分利用效率在9:00—17:00期间基本呈先下降后回升的变化规律,冬季水分利用效率为全年最高;叶面积指数、CO2通量为影响水分利用效率的主要因子,其次为温度,相对湿度、饱和水汽压差等水分条件也显著影响了水分利用效率。年际差异分析结果表明,紫色土坡耕地夏季玉米生长盛期的水分利用效率对降雨响应更为敏感,同时冬季土壤水分为冬季蒸散发和水分利用效率的关键影响因子。未来仍需对紫色土坡耕地农田生态系统生长盛期蒸散发与水分利用效率动态进行深入研究,从而为探明当地主要作物应对春夏季季节性干旱威胁的系统性策略提供科学依据。  相似文献   

11.
The soil tillage system affects incorporation of crop residues and may influence organic matter dynamics. A study was carried out in five 15–20 year old tillage experiments on soils with a clay content ranging from 72 to 521 g kg−1. The main objective was to quantify the influence of tillage depth on total content of soil organic carbon and its distribution by depth. Some soil physical properties were also determined. The experiments were part of a series of field experiments all over Sweden with the objective of producing a basis to advise farmers on optimal depths and methods of primary tillage under various conditions. Before the experimental period, all sites had been mouldboard ploughed annually for many years to a depth of 23–25 cm. Treatments included primary tillage to 24–29 cm depth by mouldboard plough (deep tillage) and to 12–15 cm by field cultivator or mouldboard plough (shallow tillage). Dry bulk density, degree of compactness and penetration resistance profiles clearly reflected the depth of primary tillage and substantially increased below that depth. Compared to deep tillage, shallow tillage increased the concentration of organic carbon in the surface layer but decreased it in deeper layers. Total quantity of soil organic carbon and carbon–nitrogen ratio were unaffected by the tillage depth. Thus, a reduction of the tillage depth from about 25 cm to half of that depth would appear to have no significant effect on the global carbon cycle.  相似文献   

12.
北京地区等高草篱防治坡耕地水土流失效果   总被引:3,自引:6,他引:3  
在北京地区采用自然降雨和模拟降雨相结合的方法,研究了狼尾草和野古草两种等高草篱在不同坡度(5%、10%、15%、20%)下对裸露坡耕地水土流失的影响。结果一致表明,狼尾草和野古草2种草篱均可显著降低坡耕地水土流失,且狼尾草草篱的效果显著好于野古草草篱。在自然降雨下(平均雨强13.3 mm/h),狼尾草草篱可减少72.7%的地表径流和86.3%的土壤流失,野古草草篱可减少53.8%的地表径流和64.1%的土壤流失;在模拟降雨下(平均雨强49.5 mm/h),狼尾草草篱可减少80.7%的地表径流和94.5%的土壤流失,野古草草篱可减少59.5%的地表径流和71.5%的土壤流失。另外,2种等高草篱防治水土流失的效果与坡度成显著负相关关系,随坡度增加2种草篱的水土保持功能逐渐减弱,但至20%坡度时,其对径流和土壤流失的降低作用仍维持在40%和50%以上。回归分析结果显示,草篱因素已经超过坡度和雨强,成为控制坡耕地水土流失的首要因素。  相似文献   

13.
保护性耕作与等高草篱防治坡耕地水土及氮磷流失研究   总被引:5,自引:0,他引:5  
坡耕地是水土流失和农业面源污染物的重要来源,同时也是当前治理的薄弱环节。本文以北京地区坡耕地为研究对象,采用人工模拟降雨方法,研究了保护性耕作和等高草篱措施在不同坡度条件下对水土及氮磷流失的防治效果。结果表明:保护性耕作和等高草篱措施均能有效降低坡耕地水土及氮磷养分流失,4种处理的降低效果由大到小依次为:保护性耕作+草篱>传统耕作+草篱>保护性耕作+无草篱>传统耕作+无草篱。与传统耕作+无草篱相比,传统耕作+草篱、保护性耕作+无草篱、保护性耕作+草篱分别减少56%、44%和68%的径流流失,66%、49%和82%的土壤流失,以及56%、43%和66%的总氮流失和54%、40%和70%的总磷流失。同时,等高草篱和保护性耕作措施的防治效果与坡度呈负相关关系,即随着坡度增加其作用效果逐渐减弱。回归分析结果表明,保护性耕作和等高草篱措施是控制坡耕地水土及氮磷流失的最关键因素。  相似文献   

14.
Soil compaction has been recognised as the greatest problem in terms of damage to Australia’s soil resource. Compaction by tractor and harvester tyres, related to trafficking of wet soil, is one source of the problem. In this paper an array of soil properties was measured before and immediately after the application of a known compaction force to a wet Vertisol. A local grain harvester was used on soil that was just trafficable; a common scenario at harvest. The primary aim was to determine the changes in various soil properties in order to provide a “benchmark” against which the effectiveness of future remedial treatments could be evaluated. A secondary aim was a comparison of the measurements’ efficiency to assess a soil’s structural degradation status. Also assessed was the subsequent effect of the applied compaction on wheat growth and yield in the following cropping season. Nine of the soil properties measured gave statistically significant differences as a result of the soil compaction. Differences were mostly restricted to the top 0.2 m of the soil. The greatest measured depth of effect was decreased soil porosity to 0.4 m measured from intact soil clods. There was 72% emergence of the wheat crop planted into the compact soil and 93% in the uncompact soil. Wheat yield, however, was not affected by the compaction. This may demonstrate that wheat, growing on a full profile of stored soil water as did the current crop, may be little affected by compaction. Also, wheat may have potential to facilitate rapid repair of the damage in a Vertisol such as the current soil by drying the topsoil between rainfall events so increasing shrinking and swelling cycles. If this is true, then sowing a suitable crop species in a Vertisol may be a better option than tillage for repairing compaction damage by agricultural traffic.  相似文献   

15.
农业机械的过度使用、密集轮作以及不适当管理等都会造成土壤压实。试验研究了拖拉机行走对土壤特性和小麦生长的影响。试验所使用的耕作机械包括轮式、履带式和手扶式三种拖拉机,分析了土壤压实对小麦生长以及土壤结构不连续性的影响。试验数据表明,土壤密度、土壤阻力以及土壤水分一般会随拖拉机行走次数增加而增大。同时,文中给出了小麦根系与秸秆间蕴涵的机理关系。试验数据还表明,小麦发芽率在显著性水平P≤0.05时,不同处理组之间无明显差异。但是,2、4、6、8、10、12、18周以及收割时的小麦秸秆高度在显著性水平P≤0.01时,各处理组之间却存在显著差异,其中轮式和手扶式拖拉机处理组高于履带式拖拉机处理组。当显著性水平分别为P≤0.05和 P≤0.01时,不同处理组的小麦根长度和密度间也存在显著差异,其中轮式和手扶式拖拉机处理组同样表现出更好的结果。总之,拖拉机行走会显著影响干物质、谷物产量等小麦生长参数。然而,作物产量不仅受土壤压实的影响,同时很大程度上也取决于天气以及土壤初始压实等因素。  相似文献   

16.
水质和体积质量对碱土饱和导水率和盐分淋洗的影响   总被引:4,自引:1,他引:3  
迟春明  王志春 《土壤》2009,41(6):992-997
以松嫩平原典型碱土为研宄对象,采用承压水、潜水及蒸馏水模拟的雨水3种水源,分别在6种体积质量(容重)下测定了土壤饱和导水率和淋洗液的电导率及pH,分析了水质和体积质量对碱土饱和导水率和盐分淋洗的影响以及饱和导水率与淋洗液电导率和pH值间的关系.结果表明:碱土饱和导水率随测定用水电导率的增加而升高;采用承压水和潜水测定时,碱土饱和导水率随土壤体积质量的增加而降低;采用蒸馏水测定时,饱和导水率在1.08~1.33 g/cm~3体积质量范围内均为0.11mm/d,而当体积质量>1.42g/cm~3时,饱和导水率均为0 mm/d;淋洗液的电导率和pH值随着测定用水电导率的逐渐增加而不断降低;采用潜水和承压水测定时,淋洗液的电导率和pH值随体积质量的增加而升高,用蒸馏水测定时,淋洗液的电导率和pH值不随体积质量的变化而改变;淋洗液电导率和pH均随饱和导水率增加而降低,且二者与饱和导水率均呈指数关系,碱土饱和导水率越高其盐分淋洗效果越好.  相似文献   

17.
容重与含水率对砂质黏壤土静水崩解速率影响研究   总被引:6,自引:0,他引:6  
崩解在土工试验中叫做湿化,是指土壤在静水中发生破裂解体、塌落或强度减弱的现象[1].土壤的崩解机制与土壤侵蚀的发生过程密切相关,是土壤侵蚀发生的必要条件之一.国内外对于土壤崩解的研究相对较少,而对于容重或含水对崩解性的影响的研究更少,国内仅有的研究目前大多限于黄土和南方的一些典型土壤,如燥红壤、红壤、褐红壤等.在降雨和地表灌溉作用下产生的土壤侵蚀过程中,崩解是侵蚀发生的一个前提条件.  相似文献   

18.
On-line measurement of soil compaction is needed for site specific tillage management. The soil bulk density (ρ) indicating soil compaction was measured on-line by means of a developed compaction sensor system that comprised several sensors for on-line measurement of the draught (D) of a soil cutting tool (subsoiler), the soil cutting depth (d) and the soil moisture content (w). The subsoiler D was measured with a single shear beam load cell, whereas d was measured with a wheel gauge that consisted of a swinging arm metal wheel and a linear variable differential transducer (LVDT). The soil w was measured with a near infrared fibre-type spectrophotometer sensor. These on-line three measured parameters were used to calculate ρ, by utilising a hybrid numerical–statistical mathematical model developed in a previous study. Punctual kriging was performed using the variogram estimation and spatial prediction with error (VESPER) 1.6 software to develop the field maps of ρ, soil w, subsoiler d and D, based on 10 m × 10 m grid. To verify the on-line measured ρ map, this map was compared with the map measured by the conventional core sampling method.

The spherical semivariogram models, providing the best fit for all properties was used for kriging of different maps. Maps developed showed that no clear correlation could be detected between different parameters measured and subsoiler D. However, the D value was smaller at shallow penetration d, whereas large D coincided with large ρ values at few positions in the field. Maps of ρ measured with the core sampling and on-line methods were similar, with correlation coefficient (r) and the standard error values of 0.75 and 0.054 Mg m−3, respectively. On-line measured ρ exhibited larger errors at very dry zones. The normal distribution of the ρ error between the two different measurement methods showed that about 72% of the errors were less than 0.05 Mg m−3 in absolute values. However, the overall mean error of on-line measured ρ was of a small value of 2.3%, which ensures the method accuracy for on-line measurement of ρ. Measurement under very dry conditions should be minimised, because it can lead to a relatively large error, and hence, compacted zones at dry zones cannot be detected correctly.  相似文献   


19.
密度和含水率对固化土无侧限抗压强度的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
 为给修建土壤固化剂集流面的施工工艺提供科学依据,采用正交设计方法,对密度和含水率影响固化土强度的规律性进行试验研究。试验分析结果表明:密度对固化土强度的影响大于含水率;随着密度的增大,固化土的强度呈直线上升;在同一密度下含水率在最优含水率的80%±5%范围内时,固化土的强度达到最大。在实际施工过程中,建议尽可能的增加固化土的密度,压实度控制至少超过0.94;混合料的含水率控制在最优含水率的80%~90%之间。  相似文献   

20.
土壤初始含水率对坡面降雨入渗及土壤水分再分布的影响   总被引:40,自引:11,他引:40  
在防止土壤侵蚀和雨后抑制蒸发的条件下,利用室内人工降雨试验,研究了土壤初始含水率对坡面降雨入渗、湿润锋运移及土壤水分再分布规律的影响。结果表明:初始含水率越高,产流越快,平均入渗率越小,达到稳定入渗率的时间也越短;当初始含水率均匀分布时,降雨入渗和再分布过程中湿润锋面平行坡面垂直向下整体运移,坡面降雨入渗过程可以简化为一维;当初始含水率非均匀分布时,初始含水率越高,再分布过程中湿润锋的运移速率越大,但在降雨入渗过程中,湿润锋的运移速率与土体的湿润程度和范围有一定的关系;坡面上方来水(径流)虽然对湿润锋运移速率影响不大,但对入渗有一定的促进作用;再分布过程中,土壤水分有沿坡向下运移的趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号