首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Native rainforest tree plantations are increasingly viewed as potentially important for high value timber production and provision of a range of ecological services in tropical and subtropical areas. In order to determine the extent to which conversion of rainforest to native Araucariaceae plantation influences soil fungi, we compared soil fungal communities under native rainforest and 73-74 year-old Araucaria bidwillii, Araucaria cunninghamii and Agathis robusta plantations at Gadgarra State Forest, Queensland, Australia. Following direct extraction of DNA from soil, terminal restriction fragment length polymorphism (T-RFLP) analysis of rDNA internal transcribed spacer (ITS) regions was conducted. Ordination analysis of the T-RFLP data revealed significant separation of the fungal communities according to forest type along the first canonical axis, with the native rainforest samples separating from the three Araucariaceae plantations along the second axis. Overall, the most abundant ITS sequences in clone assemblages from the four forest types were Ascomycota, followed by Basidiomycota, Zygomycota and Chitridomycota, however their relative importance varied in individual forest types. The results indicate that conversion of tropical rainforest to monoculture plantations of native trees can significantly alter soil fungal diversity.  相似文献   

2.
A long-term prescribed burning experiment, incorporating replicated plots that receive burning biennially (2 yr burn) or quadrennially (4 yr burn) and unburned controls, has been maintained in a wet sclerophyll forest at Peachester, Queensland, Australia since 1972. In 2003 we extracted DNA from soil collected from the experimental plots and investigated the influence of the burning on the soil fungal community by comparing denaturing gradient gel electrophoresis (DGGE) profiles of PCR-amplified partial rDNA internal transcribed spacer regions (ITS1). Canonical analysis of principal coordinates (CAP) of the DGGE profiles of the upper 10 cm of the soil profile grouped the data strongly according to treatment, indicating that both burning regimes significantly altered fungal community structure compared to the unburned controls. In contrast, no obvious trend was observed for soil from a depth of 10-20 cm of the profile. Sequencing of selected DGGE bands found no obvious patterns of presence/absence of taxonomic groups between the treatments. Analysis of soil nitrogen and carbon by mass spectrometry indicated that total soil C and N, along with both gross and net N mineralisation, were significantly lower in 2 yr plots compared to control and 4 yr plots.  相似文献   

3.
In grasslands, saprotrophic fungi, including basidiomycetes, are major decomposers of dead organic matter, although spatial distributions of their mycelial assemblages are little described. The aim of this study was to characterise the scale and distribution of saprotrophic fungal communities in a coastal grassland soil using terminal restriction fragment length polymorphism (T-RFLP).Soil fungi were sampled at Point Reyes, California, USA, by taking forty-five 26 mm diam. cores in a spatially defined manner. Within each sampled core, complete core sections at 1-2 cm and 14-15 cm depths were removed and sub-sampled for DNA extraction and amplification using the primer pairs ITS1F-FAM/ITS4 (general fungi) or ITS1F-FAM/ITS4B (basidiomycete-specific).Nonmetric Multidimensional Scaling showed that general fungal communities could be clearly separated by depth, although basidiomycete communities could not. There were no strong patterns of community similarity or dissimilarity for general or basidiomycete fungal communities at horizontal geographical distances from 25 cm to 96 m in the upper horizon. These results show considerable vertical, but little horizontal, variability in fungal community structure in a semi-natural grassland at the spatial scales measured here.  相似文献   

4.
Soil soluble organic nitrogen (SON) can play an important role in soil nitrogen (N) cycling in forest ecosystems. This study examined the effect of land-use change from a native forest (NF) to a first rotation (1R) and subsequent second rotation (2R) hoop pine (Araucaria cunninghamii) plantation on soil SON pools. The impact of residue management on SON pools was also investigated in the 2R forest, where SON was measured in tree rows (2R-T) and windrows (2R-W). Various extraction techniques were used to measure SON pool size in the 0-10, 10-20 and 20-30 cm layers of soil. The results showed that land-use change had a significant impact on soil SON pools. In the 0-10 cm layer, 3.2-8.7, 14-23, 20-28, 60-160 and 127-340 mg SON kg−1 were extracted by water, 0.5 M K2SO4, 2 M KCl, hot water and hot 2 M KCl, respectively. The size of the SON pools and the potential production of SON (PPSON) were generally highest in the NF soil and lowest in the 2R-T soil, and in all forest types decreased with soil depth. The larger SON pools in the NF soil coincided with lower soil, litter and root C:N ratios, suggesting that the difference in the size of SON pools between the NF and 1R soil may be related to differences in the quality of organic matter input under the different forest ecosystems. Differences in the size of SON pools between the 1R soil and the 2R soils and between the 2R-T soil and the 2R-W soil may be related to the quantity of organic matter input and time since disturbance. Significant relationships were found between the SON extracted by 0.5 M K2SO4 (SONps) and 2 M KCl (SONKCl), and also among the SON extracted by hot 2 M KCl (SONhKCl), hot water (SONhw) and water (SONw), suggesting that the organic N released by these groups of extracts may be at least partly from similar pools.  相似文献   

5.
Decomposer microorganisms contribute to carbon loss from the forest floor as they metabolize organic substances and respire CO2. In temperate and boreal forest ecosystems, the temperature of the forest floor can fluctuate significantly on a day-to-night or day-to-day basis. In order to estimate total respiratory CO2 loss over even relatively short durations, therefore, we need to know the temperature sensitivity (Q10) of microbial respiration. Temperature sensitivity has been calculated for microbes in different soil horizons, soil fractions, and at different depths, but we would suggest that for some forests, other ecologically relative soil portions should be considered to accurately predict the contribution of soil to respiration under warming. The floor of many forests is heterogeneous, consisting of an organic horizon comprising a few more-or-less distinct layers varying in decomposition status. We therefore determined at various measurement temperatures the respiration rates of litter, F-layer, and H-layer collected from a Pinus resinosa plantation, and calculated Q10 values for each layer. Q10 depended on measurement temperature, and was significantly greater in H-layer than in litter or F-layer between 5 and 17 °C. Our results indicate, therefore, that as the temperature of the forest floor rises, the increase in respiration by the H-layer will be disproportionate to the increase by other layers. However, change in respiration by the H-layer associated with change in temperature may contribute minimally or significantly to changes of total forest floor respiration in response to changes in temperature depending on the depth and thickness of the layer in different forest ecosystems.  相似文献   

6.
Soil microbial communities in dryland ecosystems play important roles as root associates of the widely spaced plants and as the dominant members of biological soil crusts (biocrusts) colonizing the plant interspaces. We employed rRNA gene sequencing (bacterial 16S/fungal large subunit) and shotgun metagenomic sequencing to compare the microbial communities inhabiting the root zones of the dominant shrub, Larrea tridentata (creosote bush), and the interspace biocrusts in a Mojave desert shrubland within the Nevada Free Air CO2 Enrichment (FACE) experiment. Most of the numerically abundant bacteria and fungi were present in both the biocrusts and root zones, although the proportional abundance of those members differed significantly between habitats. Biocrust bacteria were predominantly Cyanobacteria while root zones harbored significantly more Actinobacteria and Proteobacteria. Pezizomycetes fungi dominated the biocrusts while Dothideomycetes were highest in root zones. Functional gene abundances in metagenome sequence datasets reflected the taxonomic differences noted in the 16S rRNA datasets. For example, functional categories related to photosynthesis, circadian clock proteins, and heterocyst-associated genes were enriched in the biocrusts, where populations of Cyanobacteria were larger. Genes related to potassium metabolism were also more abundant in the biocrusts, suggesting differences in nutrient cycling between biocrusts and root zones. Finally, ten years of elevated atmospheric CO2 did not result in large shifts in taxonomic composition of the bacterial or fungal communities or the functional gene inventories in the shotgun metagenomes.  相似文献   

7.
In boreal forests ericaceous shrubs often dominate the forest floor vegetation. Nitrogen enrichment has been shown to decrease shrub abundance and in this study we explored whether it also affects the root associated fungal communities. Fine roots of Vaccinium myrtillus were collected in a Norway spruce dominated forest and of Vaccinium vitis-idaea in a Scots pine dominated forest. In both forests, nitrogen enrichment was experimentally induced by adding 12.5 and 50 kg N ha−1 yr−1 for 12 (spruce forest) and four (pine forest) years. Based on terminal restriction fragment length polymorphisms, subcloning and sequencing analyses, the root associated fungal communities were examined. We found 93 fungal species including Asco-, Basidio- and Zygo-mycota. In general, the Rhizoscyphus ericae aggregate was the most dominant and this was followed by Herpotrichiellaceae and Sebacina. Ordination analysis revealed that nitrogen enrichment did not change species composition of the fungal communities in neither the spruce nor the pine forest, while fungal community structures were clearly discriminated between the dominant shrub species in each forest. Similarly, no fungal species showed a significant response to nitrogen enrichment. Therefore, nitrogen enrichment appears to have no effect on root associated fungi of understorey dwarf shrubs in boreal forests, while it is clear that spruce and pine forests harbor distinctive communities of these fungi.  相似文献   

8.
9.
The goal of the present study was to determine whether the habitat preference of collembolan species is more influenced by soil properties or by microclimate and whether the preference for a given soil matches the preference for the corresponding microclimate. To answer these questions, we set up a soil core transfer experiment between a forest and an adjacent pasture. We first eliminated the entire soil fauna from forest and pasture soil cores and inoculated them with a new community originated from forest or pasture. After enclosing them, in order to prevent exchanges of soil animals between treated soil and surrounding environment, soil cores were transplanted back to the field for four months and a half. The experimental design comprises every combination of three factors (community origin, soil nature and microclimate) for a total of 8 treatments. Twenty-two species were present in the experiment, 16 of which were present in more than 10% of the experimental soil cores. We determined habitat preference for these 16 species using a large dataset comprised of field observations in the same region. Results showed that most forest species did not withstand pasture microclimate, although some of them preferred pasture soil. Likewise several pasture species were favoured by the forest microclimate, some of them also preferring forest soil. We concluded that forest species were absent (or less abundant) in pastures because they are not resistant enough to drought, while pasture species were absent (or less abundant) in forests because of food requirements, and/or soil physicochemical properties such as soil pH and organic carbon content, and/or were less competitive. Moreover, when selecting their habitat, some species are submitted to a trade-off between preferences for different habitat features.  相似文献   

10.
Mechanized forest operations have a large impact on soil systems, and may cause disruption of aggregates and exposure of previously protected soil organic matter to microbial attack. In this study, we investigated how C storage, soil structure and unprotected, physically protected and resistant C pools recover 0, 7 and 20 years after mechanical harvesting and site preparation in second rotation Pinus radiata D.Don plantations. We detected differences in dry mean weight diameter (DMWD) of aggregates, with higher DMWD in 0- and 7-year-old pine stands (8.7 and 7.5 mm, respectively) than in 20-year-old stands (4.1 mm). This was attributed to the compaction induced by heavy machinery, as reflected by the positive relationship between DMWD and bulk density (r = 0.85, P < 0.05). Organic C contents in the top 5 cm were similar 0 and 7 years after disturbance, but were twice as high after 20 years, with mean values of 25, 28 and 52 Mg C ha−1, respectively. In addition, the resistant C pool was also reduced by up to 7% after clearance. In contrast, unprotected C and physically-protected C were greatest in the youngest stands, indicating that stand establishment and harvesting with heavy machinery may have broken soil aggregates and exposed the previously protected SOM to microbial decomposition and that forest operations may create new mega-aggregates able to protect organic residues. However, the lowest physically-protected C values in 20-year-old pine stands may also be attributed to differences in SOM quality. The alkyl C/O-alkyl C ratios were highest in the oldest stands, indicating that SOM in these stands was more resistant to further decomposition. Mechanized forest operations in radiata pine stands released at least 30 t C ha−1 from the first 5 cm of the soil profile immediately after clearance, caused significant alterations in the soil structure, which lasted for a minimum of seven years, and also reduced the resistant C pool. As the Kyoto Protocol encourages forest management practices that potentially increase carbon sequestration, mechanical harvesting and site preparation in these steep slopes should be reconsidered.  相似文献   

11.
This study aimed at determining the impact of long-time elevated CO2 fumigation on fungal communities in a temperate forest soil. In addition to the CO2 concentration, both time and its interaction with the CO2 affected the activity of 1,4-β-N-acetylglucosaminidase that is mainly of the fungal origin in the soil. No significant change in Shannon's indexes (from 18S rDNA-PCR-DGGE) was observed between the ambient and elevated CO2 treatments. Analysis of time-course indicated that the succession of soil fungal community was altered by the elevated CO2 fumigation, and the variations in the soil samples under Pinus koraiensis Sieb. et Zucc were larger than those under the Pinus sylvestriformis (Takenouchi) T. Wang ex Cheng samples. The results suggest that the increase in atmospheric CO2 concentrations could alter the temporal patterning of soil fungal communities.  相似文献   

12.
To understand the mechanisms of soil ameliorants affecting microbial communities is important for saline-sodic soils reclamation. High-throughput sequencing was used to characterize the fungal community in soils amended with four types of ameliorants over an 8-year period. Besides a control without any additional ameliorant (CK), other four treatments including 1) amendment with sandy soil (SS), 2) amendment with desulfurization gypsum (DG), 3) amendment with farm manure (FM), and 4) amendment with a mixture of SS, DG, and FM (M) were analyzed. Soil pH and electrical conductivity significantly decreased with the addition of soil ameliorants, whereas the soil organic carbon (SOC), total nitrogen (TN), and SOC/TN ratio (C/N) significantly increased in the FM and M treatments compared with the CK treatment. Fungal richness increased significantly with the mixed ameliorants addition (M). Distinct fungal community structures were observed in the treatments with soil ameliorants. The fungal community composition was significantly associated with the SOC, C/N, aggregate content with a diameter > 0.25 mm and geometric mean diameter. The changes in these soil characteristics were highly correlated with the ameliorants additions, suggesting that the impacts of ameliorants on the soil fungal community occurred indirectly as a result of alterations to soil physiochemical properties.  相似文献   

13.
A mesocosm experiment was conducted to investigate whether communities of arbuscular mycorrhizal (AM) fungi associated with roots of native (Piptatherum miliaceum, Retama sphaerocarpa, Psoralea bituminosa, Coronilla juncea, and Anthyllis cytisoides) and for comparison (Lolium perenne) seedlings in a heavy-metal-contaminated, semiarid soil were affected by the application of composted sugar beet waste. We also investigated whether there were relation between AMF diversity and metal concentration (Al, Cd, Cu, Fe, Mn, Pb and Zn) and total P in shoot as well as some soil parameters (total organic carbon and total N) when the SB waste was added to the soil. We analyzed a portion of approximately 795 base pairs of the small-subunit (SSU) rRNA gene by nested PCR, cloning, sequencing, and phylogenetic analyses. Twelve different AMF sequence types were distinguished: seven of these belonged to Glomus group A, one to Glomus group B, one to Diversispora, one to Archaeospora, and two to Paraglomus. The AM fungal populations colonizing roots in a heavy-metal-polluted soil were quite dependent on the host plant, the highest diversity values being obtained in authochtonous plants recognized as metallophytes, such as P. bituminosa, and in an allochtonous, invasive species (L. perenne). No significant correlation was found between AMF diversity and plant metal concentration and soil parameters. Excepting P. bituminosa, when sugar beet waste was added to soil, the populations of AM fungi in roots increased and the shoot metal concentrations decreased in all host plant species studied. Therefore, the addition of sugar beet waste can be considered a good strategy for the remediation and/or phytostabilization of mine tailing sites.  相似文献   

14.
Soil fungi are highly diverse and act as the primary agents of nutrient cycling in forests. These fungal communities are often dominated by mycorrhizal fungi that form mutually beneficial relationships with plant roots and some mycorrhizal fungi produce extracellular and cell-bound enzymes that catalyze the hydrolysis of nitrogen (N)- and phosphorus (P)- containing compounds in soil organic matter. Here we investigated whether the community structure of different types of mycorrhizal fungi (arbuscular and ectomycorrhizal fungi) is correlated with soil chemistry and enzyme activity in a northern hardwood forest and whether these correlations change over the growing season. We quantified these relationships in an experimental paired plot study where white-tailed deer (access or excluded 4.5 yrs) treatment was crossed with garlic mustard (presence or removal 1 yr). We collected soil samples early and late in the growing season and analyzed them for soil chemistry, extracellular enzyme activity and molecular analysis of both arbuscular mycorrhizal (AM) and ectomycorrhizal/saprotrophic fungal communities using terminal restriction fragment length polymorphism (TRFLP). AM fungal communities did not change seasonally but were positively correlated with the activities of urease and leucine aminopeptidase (LAP), enzymes involved in N cycling. The density of garlic mustard was correlated with the presence of specific AM fungal species, while deer exclusion or access had no effect on either fungal community after 4.5 yrs. Ectomycorrhizal/saprotrophic fungal communities changed seasonally and were positively correlated with most soil enzymes, including enzymes involved in carbon (C), N and P cycling, but only during late summer sampling. Our results suggest that fine scale temporal and spatial changes in soil fungal communities may affect soil nutrient and carbon cycling. Although AM fungi are not generally considered capable of producing extracellular enzymes, the correlation between some AM taxa and the activity of N acquisition enzymes suggests that these fungi may play a role in forest understory N cycling.  相似文献   

15.
中国北方森林坡向对土壤细菌和从枝菌根真菌群落的影响   总被引:1,自引:0,他引:1  
The effects of slope aspects on soil biogeochemical properties and plant communities in forested environments have been studied extensively; however, slope aspect influence on soil microbial communities remains largely unexamined, despite the central role of soil biota in ecosystem functioning. In this study, the communities of both soil bacteria and arbuscular mycorrhizal fungi (AMF) were investigated using tagged pyrosequencing for three types of slope aspects (south-facing aspect, north-facing aspect and flat area) in a boreal forest of the Greater Khingan Mountains, China. The bacterial and AMF community composition differed with slope aspects. Bacterial diversity was the lowest on the north-facing aspect, and AMF diversity was the lowest on the flat area. Aspects also had a significant impact on soil pH and available phosphorus (P) and shrubby biomass. Soil pH and understory shrub biomass were significantly correlated with bacterial communities, and soil available P and shrub biomass showed significant correlations with AMF communities. Our results suggested that slope aspects affected bacterial and AMF communities, mediated by aspect-induced changes in plant community and soil chemical properties (e.g., pH and available P), which improved the knowledge on the effects of forest slope aspects on aboveground and belowground communities.  相似文献   

16.
The soil fungal diversity and community partitioning between the bulk soil and stone compartments was investigated using PCR based approaches targeting the barcoding internal transcribed spacer (ITS) of rDNA and the laccase encoding functional gene as genetic markers. Soil samples were collected from the B-horizon of spruce and beech forests at the Hainich Biodiversity Exploratory, central Germany. The targeted markers were amplified from the respective DNA extracts using general fungal primers and basidiomycete laccase gene specific primers, cloned and sequenced. Differences in the fungal community composition between the two forest types and the soil compartments were indicated by both markers. When the effects of ecological factors were considered, the two markers produced different patterns of results. The ITS rDNA marker revealed communities principally influenced by forest type, while those detected with the functional marker were mainly affected by soil pH. The fungal communities detected by the functional marker in particular, differed significantly between soils and stones, indicating that laccase-producing fungi are specifically adapted to degrade organic matter in soils rather than weathering of stones. The study underlines the fact that coherent and complementary results may be obtained with both genetic markers used.  相似文献   

17.
A stable plant cover is essential in the semi-arid soils of the Mediterranean area to maintain their fertility and functionality. In a semi-arid area, we have studied abundance, structure, and presence of active species of fungal communities of a devegetated soil (disturbed soil) and vegetated soil (undisturbed soil). Disturbed soil was covered by small spontaneous vegetation (5–10%) compared to undisturbed soils (70%), and this decreased the content of the total organic C, microbial biomass, microbial activity (adenosine triphosphate), and fungal counts. The composition and activities of fungal communities were also investigated by direct extraction of DNA and RNA from soil. Denaturing gradient gel electrophoresis analysis of 18S ribosomal DNA and 18S ribosomal RNA profiles indicated that total and active fungal communities were changed after vegetation removal.  相似文献   

18.
Fungi are key to the functioning of soil ecosystems, and exhibit a range of interactions with plants. Given their close associations with plants, and importance in ecosystem functioning, soil-borne fungi have been proposed as potential biological indicators of disturbance and useful agents in monitoring strategies, including those following the introduction of genetically modified (GM) crops. Here we report on the impact of potato crop varieties, including a cultivar that was genetically modified for its starch quality, on the community composition of the main phyla of fungi in soils, i.e. Ascomycota, Basidiomycota and Glomeromycota in rhizosphere and bulk soil. Samples were collected at two field sites before sowing, at three growth stages during crop development and after the harvest of the plants, and the effects of field site, plant growth stage and plant cultivar (genotype) on fungal community composition assessed using three phylum-specific T-RFLP profiling strategies and multivariate statistical analysis (NMDS ordinations with ANOSIM test). In addition, fungal biomass, arbuscular mycorrhizal colonization of roots and activities of extracellular fungal enzymes (laccases, Mn-peroxidases and cellulases) involved in degradation of lignocelluloses-rich organic matter were determined. Fungal community compositions, densities and activities were observed to differ significantly between the rhizosphere and bulk soil. The most important factors determining fungal community composition and functioning were plant growth stage for the rhizosphere communities and location and soil properties for the bulk soil communities. The basidiomycetes were the most numerous fungal group in the bulk soils and in the rhizosphere of young plants, with a shift toward greater ascomycete numbers in the rhizosphere at later growth stages. There were no detectable differences between the GM cultivar and its parental cultivar in terms of influence on fungal community structure of function. Fungal community structure and functioning of both GM- and parental cultivars fell within the range of other cultivars at most sampling moments.  相似文献   

19.
We studied the distribution of the indigenous bacterial and fungal communities in a forest soil profile. The composition of bacterial and fungal communities was assessed by denaturing gradient gel electrophoresis (DGGE) of total and extracellular DNA extracted from all the soil horizons. Microbial biomass C and basal respiration were also measured to assess changes in both microbial biomass and activity throughout the soil profile. The 16S rDNA-DGGE revealed composite banding patterns reflecting the high bacterial diversity as expected for a forest soil, whereas 18S rDNA-DGGE analysis showed a certain stability and a lower diversity in the fungal communities. The banding patterns of the different horizons reflected changes in the microbial community structure with increasing depth. In particular, the DGGE analysis evidenced complex banding patterns for the upper A1 and A2 horizons, and a less diverse microflora in the deeper horizons. The low diversity and the presence of specific microbial communities in the B horizons, and in particular in the deeper ones, can be attributed to the selective environment represented by this portion of the soil profile. The eubacterial profiles obtained from the extracellular DNA revealed the presence of some bands not present in the total DNA patterns. This could be interpreted as the remainders of bacteria not any more present in the soil because of changes of edaphic conditions and consequent shifting in the microbial composition. These characteristic bands, present in all the horizons with the exception of the A1, should support the concept that the extracellular DNA is able to persist within the soil. Furthermore, the comparison between the total and extracellular 16S rDNA-DGGE profiles suggested a downwards movement of the extracellular DNA.  相似文献   

20.
The fungal symbionts forming ectomycorrhizas, as well as their associated bacteria, benefit forest trees in a number of ways although the most important is enhancing soil nutrient mobilization and uptake. This is reciprocated by the allocation of carbohydrates by the tree to the fungus through the root interface, making the relationship a mutualistic association. Many field observations suggest that ectomycorrhizal fungi contribute to a number of key ecosystem functions such as carbon cycling, nutrient mobilization from soil organic matter, nutrient mobilization from soil minerals, and linking trees through common mycorrhizal networks. Until now, it has been very difficult to study trees and their fungal associates in forest ecosystems and most of the work on ECM functioning has been done in laboratory or nursery conditions. In this review with discuss the possibility of working at another scale, in forest settings. Numerous new techniques are emerging that makes possible the in situ study of the functional diversity of ectomycorrhizal communities. This approach should help to integrate developing research on the functional ecology of ectomycorrhizas and their associated bacteria with the potential implications of such research for managing the effects of climate change on forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号