首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
Respiration rate of soils manured by seabirds and seals on sub-Antarctic Marion Island (47°S, 38°′E) is considerably higher than that of unmanured soils, and the main objective of this study was to determine whether this is caused by an enhanced supply of inorganic nutrients (N and P) or organic C substrates, or both. The effect of soil moisture content was also investigated. Soils from five habitats were studied: Mesic fellfield, Dry mire, Closed fernbrake, Coastal herbfield and Cotula herbfield. The latter two are strongly influenced by manuring. Respiration rate increased with soil moisture content up to full water holding capacity, and the response of respiration to moisture increased strongly with temperature (especially above 10 °C). Respiration Q10 increased with soil moisture content. Glucose addition markedly stimulated soil respiration rate in all the soils, despite the fact that they all possessed substantial concentrations of organic C, a wide range of N and P concentrations and a 2-fold variation in C:N ratio. This suggests that the primary factor limiting soil respiration on the island is the supply of labile carbon substrate. Soil N and P status is also important, since adding glucose with N and/or P to soils with low N and P concentrations resulted in a significantly greater stimulation of respiration rate than adding glucose alone. In fact, for the Mesic fellfield and Dry mire soils (especially poor in N and P) adding N and P stimulated respiration rate even without added glucose. For soils with adequate endogenous concentrations of N and P (the Coastal herbfield and Cotula herbfield soils), adding further N and P did not stimulate respiration, and adding N and P with glucose did not enhance respiration more than adding glucose alone. It is proposed that manuring results in a whole syndrome of consequences for soil respiration rate, including increased litter input and root exudation due to higher primary production, higher quality of litter and soil organic matter, larger, more active and more diverse soil microbial populations and larger numbers of microbivores that stimulate microbial activity and turnover.  相似文献   

2.
The aim of this study was to test the relative importance of changes in density and species richness of soil mesofauna as determinants of nutrient mineralisation and plant growth. The experiment was carried out using microcosms containing a mixture of plant litter and soil in which seedlings of Lolium perenne were planted, and a range of combinations of levels of density and species richness of microarthropods added. Over the duration of the experiment, nutrient release, measured as concentrations of NO3 --N and total N in leachates, increased significantly with increasing microarthropod density, but decreased with increasing species richness. Leachate concentrations of NH4 +-N, dissolved organic N and C (DON and DOC) were not affected by the faunal treatments. Soil respiration, a measure of microbial activity, decreased with increasing density of microarthropods, whereas microbial biomass was not affected by microarthropods. Increasing density of soil animals had a negative effect on the shoot biomass of L. perenne while the effect of species richness was positive. Neither the species richness nor density of soil microarthropods was found to significantly influence root biomass. We conclude that variations in animal density had a greater influence on soil nutrient mineralisation processes than did species richness. Possible reasons for these opposing effects of animal density and diversity on soil N mobilization are discussed.  相似文献   

3.
Soil respiration is a large component of global carbon fluxes, so it is important to explore how this carbon flux varies with environmental factors and carbon inputs from plants. As part of a long-term study on the chemical and biological effects of aboveground litterfall denial, root trenching and tree-stem girdling, we measured soil respiration for three years in plots where those treatments were applied singly and in combination. Tree-stem girdling terminates the flow of carbohydrates from canopy, but allows the roots to continue water and nutrient uptake. After carbon storage below the stem girdles is depleted, the girdled trees die. Root trenching immediately terminates root exudates as well as water and nutrient uptake. Excluding aboveground litterfall removes soil carbon inputs, but allows normal root functions to continue. We found that removing aboveground litterfall and the humus layer reduced soil respiration by more than the C input from litter, a respiration priming effect. When this treatment was combined with stem girdling, root trenching or those treatments in combination, the change in soil respiration was indistinguishable from the loss of litterfall C inputs. This suggests that litterfall priming occurs only when normal root processes persist. Soil respiration was significantly related to temperature in all treatment combinations, and to soil water content in all treatments except stem girdling alone, and girdling plus trenching. Aboveground litterfall was a significant predictor of soil respiration in control, stem-girdled, trenched and stem-girdled plus trenching treatments. Stem girdling significantly reduced soil respiration as a single factor, but root trenching did not. These results suggest that in addition to temperature, aboveground carbon inputs exert strong controls on forest soil respiration.  相似文献   

4.
In the litter of six deciduous tree species (Fagus sylvatica, Tilia spp., Fraxinus excelsior, Carpinus betulus, Acer pseudoplatanus and Acer platanoides) and in stand-specific litter mixtures, we compared mass loss and nutrient release across diversity levels along a gradient of decreasing proportion of Fagus in stands with similar environmental and physical soil conditions. The litterbag studies ran over 22 months. The decomposition rate constants (k) of the temperate forest species ranged from k = 0.5 for Fagus to k = 1.5-2 for all other tree species. In Fagus, k was closely negatively correlated with the thickness of the litter layer and positively correlated with soil pH and isopod abundance. k was significantly higher in the mixed species stands (except for Carpinus and Fraxinus) and was positively correlated with earthworm abundance. Over the whole incubation time, nutrient amount and release rates of N, P, K, Ca and Mg as well as C-related ratios showed significant differences between tree species but no consistent differences among the diversity levels. Initial C-related nutrient ratios of the leaf litter and abundance of mesofauna and macrofauna were correlated with the length of time lag before nutrient release. We conclude that the mere number of tree species is not the main driver of nutrient release and decomposition processes, but that key groups of the decomposer fauna as well as the characteristic traits of the individual tree species are decisive.  相似文献   

5.
Dissolved organic matter (DOM), typically quantified as dissolved organic carbon (DOC), has been hypothesized to play many roles in pedogenesis and soil biogeochemical cycles, however, most research to date concerning forest soils has focussed on the high molecular weight (HMW) components of this DOM. This review aims to assess the role of low molecular weight (LMW) DOM compounds in the C dynamics of temperate and boreal forest soils focussing in particular on organic acids, amino acids and sugars. The current knowledge of concentrations, mineralization kinetics and production rates and sources in soil are summarised. We conclude that although these LMW compounds are typically maintained at very low concentrations in the soil solution (<50 μM), the flux through this pool is extremely rapid (mean residence time 1-10 h) due to continued microbial removal. Due to this rapid flux through the soil solution pool and mineralization to CO2, we calculate that the turnover of these LMW compounds may contribute substantially to the total CO2 efflux from the soil. Moreover, the production rates of these soluble transitory compounds could exceed HMW DOM production. The possible impact of climate change on the behaviour of LMW compounds in soil is also discussed.  相似文献   

6.
Soil food webs are mainly based on three primary carbon (C) sources: root exudates, litter, and recalcitrant soil organic matter (SOM). These C sources vary in their availability and accessibility to soil organisms, which could lead to different pathways in soil food webs. The presence of three C isotopes (12C, 13C and 14C) offers an unique opportunity to investigate all three C sources simultaneously. In a microcosm experiment we studied the effect of food web complexity on the utilization of the three carbon sources. We choose an incomplete three factorial design with (i) living plants, (ii) litter and (iii) food web complexity. The most complex food web consisted of autochthonous microorganisms, nematodes, collembola, predatory mites, endogeic and anecic earthworms. We traced C from all three sources in soil, in CO2 efflux and in individual organism groups by using maize grown on soil developed under C3 vegetation and application of 14C labelled ryegrass shoots as a litter layer. The presence of living plants had a much greater effect on C pathways than food web complexity. Litter decomposition, measured as 14CO2 efflux, was decreased in the presence of living plants from 71% to 33%. However, living plants increased the incorporation of litter C into microbial biomass and arrested carbon in the litter layer and in the upper soil layer. The only significant effect of food web complexity was on the litter C distribution in the soil layers. In treatments with fungivorous microarthropods (Collembola) the incorporation of litter carbon into mineral soil was reduced. Root exudates as C source were passed through rhizosphere microorganisms to the predator level (at least to the third trophic level). We conclude that living plants strongly affected C flows, directly by being a source of additional C, and indirectly by modifying the existing C flows within the food web including CO2 efflux from the soil and litter decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号