首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbial biomass is an important source of soil organic matter, which plays crucial roles in the maintenance of soil fertility and food security. However, the mineralization and transformation of microbial biomass by the dominant soil macrofauna earthworms are still unclear. We performed feeding trials with the geophagous earthworm Metaphire guillelmi using 14C-labelled bacteria (Escherichia coli and Bacillus megaterium) cells, fungal (Penicillium chrysogenum) cells, protein, peptidoglycan, and chitin. The mineralization rate of the microbial cells and cell components was significantly 1.2–4.0-fold higher in soil with the presence of M. guillelmi for seven days than in earthworm-free soil and 1–11-fold higher than in fresh earthworm cast material. When the earthworms were removed from the soil, the mineralization of the residual carbon of the microbial biomass was significantly lower than that in the earthworm-free soil, indicating that M. guillelmi affects the mineralization of the biomass in soil in two aspects: first stimulation and then reduction, which were attributed to the passage of the microbial biomass through the earthworm gut, and that the microorganisms in the cast could play only minor roles in the stimulated mineralization and residual stabilization of microbial biomass. Large amounts (8–29%) of radiolabel of the tested microbial biomass were assimilated in the earthworm tissue. Accumulation of fungal cells (11%) and cell wall component chitin (29%) in the tissue was significantly higher than that of bacterial cells (8%) and cell wall component peptidoglycan (15%). Feeding trails with 14C-lablled microbial cells and cell components provided direct evidence that microbial biomass is a food source for geophagous earthworm and fungal biomass is likely a more important food source for earthworms than bacterial biomass. Findings of this study have important implications for the roles of geophagous earthworms in the fate of microbial biomass in soil.  相似文献   

2.
Earthworms are important engineering species of many terrestrial ecosystems as they play a significant role in regulating C turnover. The effects of earthworms on moderating C decomposition processes differ across species and with interactions between species, which is not fully understood. We carried out an experiment to study the interactions of Lumbricus rubellus and Octolasion lacteum, and their effects on soil respiration. Laboratory mesocosms were set up using tulip poplar (Liriodendron tulipifera) leaf litter and varying densities of earthworms in single and combined species treatments. CO2 efflux rate was used as an indicator of C decomposition rates, and measured with CO2 sensors every five days over one month. L. rubellus induced higher leaf consumption rate and higher CO2 efflux than O. lacteum; meanwhile O. lacteum grew more than L. rubellus. Both litter consumption rate and growth rate of earthworms decreased with increasing earthworm density. Soil CO2 efflux increased with increasing earthworm density (from ∼1-2 μg CO2 g−1 hr−1 with no earthworms to ∼ 4 μg CO2 g−1 hr−1 with 8 earthworms). Combining the two species had a synergistic effect on leaf litter consumption, and neutralizing effects on soil respiration. The data suggest that the strength of intra- and inter-specific interactions among earthworm ecological groups varies at different absolute and relative densities, leading to altered leaf litter decomposition and C cycling.  相似文献   

3.
Negative interactions between earthworms may arise from high earthworm population densities. Under high populations in the field, niche separation or migration away from competitive pressure may help to regulate a multi-species population to a given level. This may not be possible in laboratory experiments, leading to an increase in competitive interactions which may alter earthworm growth rates and affect decomposition and nutrient mineralization processes. The objective of this experiment was to determine how growth rates of the endogeic earthworm Aporrectodea caliginosa Sav. and the anecic earthworm Lumbricus terrestris L. are affected by increasing population density and container size in both single- and multi-species cultures. Earthworm growth responses were compared in 1-L cylindrical pots containing disturbed soil and in 2.3-L PVC cores containing undisturbed soil. The relationship describing intra- and inter-specific competition was not affected by container type for both species. Nonetheless, decreasing the container size restricted the growth of L. terrestris in both single- and multi-species cultures, but only restricted the growth of A. caliginosa in multi-species cultures. For both species, a population density greater than one individual per litre reduced earthworm growth rates significantly, while weight loss in monocultures occurred when there were more than 10 A. caliginosa, and more than three L. terrestris per litre. Growth rates of both species were restricted in all population density treatments including the lowest of 0.9 individuals per litre. Further work is needed to find the population density at which growth rates are not affected and which may be used as an appropriate population in laboratory pot experiments to measure the effects of earthworms on soil processes and plant growth.  相似文献   

4.
Soil compaction has a negative impact on both earthworm abundance and diversity. Recent studies, however, suggest that earthworm cast properties are not influenced by the initial soil bulk density. With time, earthworms could therefore transform soils with different bulk densities into a soil with the same physical state and thus with a similar ecological functioning. This study aimed to test this hypothesis in two laboratory incubation experiments. First, we measured the influence of soil bulk density (1.1 or 1.4?g?cm?3) on the production of cast by the endogeic earthworm species Metaphire posthuma. In a second experiment, we investigated the effect of M. posthuma on water infiltration, NH 4 + , and NO 3 ? leaching and soil respiration at the same two soil bulk densities. Although initially higher, earthworm casting activity in soil at 1.4?g?cm?3 decreased until it reached the same level of activity as earthworms in soil at 1.1?g?cm?3. This behavioral plasticity led to a transformation of compacted and loose soils, with their own functioning, to a third and similar state with similar hydraulic conductivity, nitrogen leaching, and soil respiration. The consequences for soil organization and soil functioning are discussed.  相似文献   

5.
Earthworms play an important role as primary decomposers in the incorporation and initial mixing of plant litter. This study explored the response of earthworms to increasing fertiliser inputs, pasture production and livestock numbers (and their influence on food availability and soil physical condition) on six different managements in sheep-grazed and fifteen different managements in dairy-grazed pastures in a variety of New Zealand soils.Native earthworms were only found in some low-fertility pastures. Accidentally introduced peregrine earthworms, when present, dominate pasture soils. Of these, endogeic earthworms dominated the earthworm community and were positively associated with soil types with higher bulk densities. Peregrine anecic earthworms were absent from most hill-country sheep-grazed pastures, however in more fertile and productive dairy-grazed pastures they reached a biomass of up to 2370 kg ha?1. Only anecic earthworms showed a positive response to the increasing pressures associated with higher potential dry matter inputs and liveweight loadings of grazing livestock on soil, while epigeic earthworms declined. The positive response of anecic earthworms probably reflects the combined effect of the increase in food resources, including dung and plant litter, available on the soil surface, and their lower susceptibility to livestock treading pressure. Anecic species may be a suitable substitute for incorporation of surface litter in those soils where livestock treading limits epigeic earthworm populations.This study confirmed previous observations of limited distribution of the introduced Aporrectodea longa in pastoral hill-country soils in the North Island, and their near absolute absence from the South Island of New Zealand. This would suggest that large areas of New Zealand pastoral farmed soils could benefit from the introduction of anecic species from other parts of New Zealand which already contain A. longa.  相似文献   

6.
Earthworms,one of the most important macroinvertebrates in terrestrial ecosystems of temperate zones,exert important influences on soil functions.A laboratory microcosm study was conducted to evaluate the influence of the earthworm Eisenia fetida on wheat straw decomposition and nutrient cycling in an agricultural soil in a reclaimed salinity area of the North China Plain.Each microcosm was simulated by thoroughly mixing wheat straw into the soil and incubated for 120 d with earthworms added at 3 different densities as treatments:control with no earthworms,regular density(RD)with two earthworms,and increased density(ID)with six earthworms.The results showed that there was no depletion of carbon and nitrogen pools in the presence of the earthworms.Basal soil respiration rates and metabolic quotient increased with the increase in earthworm density during the initial and middle part of the incubation period.In contrast,concentrations of microbial biomass carbon and microbial biomass quotient decreased in the presence of earthworms.Earthworm activity stimulated the transfer of microbial biomass carbon to dissolved organic carbon and could lead to a smaller,but more metabolically active microbial biomass.Concentrations of inorganic nitrogen and NO3--N increased significantly with the increase in earthworm density at the end of the incubation(P<0.05),resulting in a large pool of inorganic nitrogen available for plant uptake.Cumulative net nitrogen mineralization rates were three times higher in the ID treatment than the RD treatment.  相似文献   

7.
Earthworms can have positive effects upon crop growth in the tropics. If soils are to be managed sustainably, then more attention should be paid to the effects of cultivation and cropping practices upon earthworms. When forest vegetation is cleared, slashed, burned and land is tilled and cultivated, earthworm abundance, diversity and activity are reduced. Conversely, retaining trees in agroecosystems may maintain earthworm populations during the cropping phase.Here, we assessed the impact on earthworm species diversity and densities of crop cultivation in the understorey of timber plantations thinned to two tree densities and compared these with uncropped, undisturbed timber plantation controls. The plots were reassessed after two and a half years of fallow to see whether populations had recovered. The experiment was in central Cameroon.Seventeen earthworm species were recorded from Eudrilidae subfamilies Eudrilinae and Pareudrilinae, Ocnerodrilidae and Acanthodrilidae, most of which were endemics. This included two new species from two new genera from the sub-family Pareudrilinae, one new species from one new genus of Ocnerodrilidae, two new species of Dichogaster and one new species of Legonodrilus. Ten species were epigeic, six were endogeic and one was anecic.Generally, earthworm densities were lower in cropped plots than in the undisturbed plantation control. The most abundant species was a Legonodrilus sp. nov. with average densities of 49 individuals m−2 in the crop phase and 80 ind. m−2 in the fallow phase. By the fallow phase, densities in the low tree density (120 ind. m−2) were higher than in the high density (40 ind. m−2). The densities of the epigeic Acanthodrilidae were significantly reduced to 7 ind. m−2 in the cropped plots compared with 42 ind. m−2 in the control plots. The effects of cropping were thus species-specific and more work is required to identify which of these endemics are the ecosystem engineers in the system.  相似文献   

8.
Invasive earthworms alter the structure of soils in northern hardwood forests, but the quantitative impacts on litter-dwelling invertebrates are unclear. Litter loss should reduce the habitat space, but nutrient-rich earthworm burrows might provide food resources. We investigated the impact of invasive earthworms on populations of Ixodes scapularis (black-legged ticks) and other litter-dwelling arthropods to determine the impact of a reduced litter environment. We used five pairs of one-hectare sites (earthworm invaded versus reference) within four separate contiguous forests in New York state. The presence of earthworms decreased the density of nymphal I. scapularis by 46.1% and larval I. scapularis by 29.3%. We also observed a dramatic decline in the total abundance of litter-dwelling arthropods with 69.9% of the arthropod population disappearing in the presence of earthworms. Additionally, litter arthropod populations declined disproportionately to leaf litter mass reduction indicating that the quality of the remaining litter material in the earthworm sites was poor. The impact of earthworm invasion on the litter environment and implications for the position of an important disease vector (I. scapularis) within the litter ecosystem are explored.  相似文献   

9.
Summary In the existing guidelines for earthworm toxicity testing, mortality is the only test criterion. Mortality is, however, not a very sensitive parameter, and from an ecological point of view growth and reproduction are more important for a proper risk assessment of chemicals in soil. In this study the growth and sexual development of juvenile earthworms were considered as test criteria in a standardized earthworm toxicity test. The effect of Cd, Cu, and pentachlorophenol on the growth and sexual development of juveniles of the species Eisenia andrei was studied in an artificial soil substrate. Two tests with Cd were carried out to study the effects of the mode of application of the food source (cow dung). EC50 (50% effective concentration) values for the effect of Cd, Cu and pentachlorophenol on the growth of E. andrei were 33–96, >100, and >32 mg kg-1 dry soil, respectively, and there was no observed effect at 18–32, 56, and 32 mg kg-1 dry soil, respectively. Sexual development of the earthworms was inhibited at 10 mg Cd kg-1 and 100 mg Cu kg-1 dry soil, but was not affected at the highest pentachlorophenol concentration tested (32 mg kg-1 dry soil). The results were the same whether the food was applied in a hole in the middle of the soil or mixed homogeneously through the soil.  相似文献   

10.
Invasive earthworms can have significant impacts on C dynamics through their feeding, burrowing, and casting activities, including the protection of C in microaggregates and alteration of soil respiration. European earthworm invasion is known to affect soil micro- and mesofauna, but little is known about impacts of invasive earthworms on other soil macrofauna. Asian earthworms (Amynthas spp.) are increasingly being reported in the southern Appalachian Mountains in southeastern North America. This region is home to a diverse assemblage of native millipedes, many of which share niches with earthworm species. This situation indicates potential for earthworm-millipede competition in areas subject to Amynthas invasion.In a laboratory microcosm experiment, we used two 13C enriched food sources (red oak, Quercus rubra, and eastern hemlock, Tsuga canadensis) to assess food preferences of millipedes (Pseudopolydesmus erasus), to determine the effects of millipedes and earthworms (Amynthas corticis) on soil structure, and to ascertain the nature and extent of the interactions between earthworms and millipedes. Millipedes consumed both litter species and preferred red oak litter over eastern hemlock litter. Mortality and growth of millipedes were not affected by earthworm presence during the course of the experiment, but millipedes assimilated much less litter-derived C when earthworms were present.Fauna and litter treatments had significant effects on soil respiration. Millipedes alone reduced CO2 efflux from microcosms relative to no fauna controls, whereas earthworms alone and together with millipedes increased respiration, relative to the no fauna treatment. CO2 derived from fresh litter was repressed by the presence of macrofauna. The presence of red oak litter increased CO2 efflux considerably, compared to hemlock litter treatments.Millipedes, earthworms, and both together reduced particulate organic matter. Additionally, earthworms created significant shifts in soil aggregates from the 2000-250 and 250-53 μm fractions to the >2000 μm size class. Earthworm-induced soil aggregation was lessened in the 0-2 cm layer in the presence of millipedes. Earthworms translocated litter-derived C to soil throughout the microcosm.Our results suggest that invasion of ecosystems by A. corticis in the southern Appalachian Mountains is unlikely to be limited by litter species and these earthworms are likely to compete directly for food resources with native millipedes. Widespread invasion could cause a net loss of C due to increased respiration rates, but this may be offset by C protected in water-stable soil aggregates.  相似文献   

11.
Energy crops are increasingly cultivated in agricultural management systems world-wide. A substitution of food crops (e.g. cereals) by energy crops may generally alter the biological activity and litter decomposition in soil due to their varying structural and chemical composition and subsequently modify soil functioning. A soil microcosm experiment was performed to assess the decomposition and microbial mineralization of different energy crop residues in soil compared to a food crop, with or without earthworms. Residues of the energy crops winter rape (Brassica napus), maize (Zea mays), miscanthus (Miscanthus giganteus) and the food crop oat (Avena sativa) were each provided as food source for a mixed earthworm population, each consisting of one individual of Lumbricus terrestris, Aporrectodea caliginosa, and Octolasion tyrtaeum. After 6 weeks, the rate of litter loss from the soil surface, earthworm biomass, microbial biomass-C and -N, microbial activity, and enzyme activities were determined. The results emphasized, that litter loss and microbial parameters were predominantly promoted by earthworms and were additionally influenced by the varying structural and chemical composition of the different litter. Litter decay by earthworms was highest in N-rich maize litter treatment (C-N ratio 34.8) and lowest in the case of miscanthus litter (C-N ratio 134.4). As a consequence, the microbial biomass and basal respiration in soils with maize litter were higher, relative to other litter types. MBC-MBN ratio in soil increased when earthworms were present, indicating N competition between earthworms and microorganisms. Furthermore, enzyme activities responded in different ways on the varying types of litter and earthworm activity. Enzymes involved in the N-cycle decreased and those involved in the C-cycle tended to increase in the presence of earthworms, when litter with high C-N ratio was provided as a food source. Especially in the miscanthus treatments, less N might remain for enzymatic degradation, indicating that N competition between earthworms and microorganisms may vary between different litter types. Especially, an expansion of miscanthus in agricultural management systems might result in a reduced microbial activity and a higher N deficit for microorganisms in soil.  相似文献   

12.
The relevance of laboratory tests on toxicants for field situations is often disputed given that laboratory tests are conducted under, next to the toxicant stress, optimal conditions which are not expected in field situations. In this paper we confront the results of laboratory tests on growth, reproduction and survival of earthworms, in a polluted and a reference field soil with a field inventory of earthworms. The field inventory includes population density, biomass and demographic composition in life stages measured monthly over a period of one year. The field inventory showed that density and biomass was higher at the polluted field site, a result in conflict with the extrapolation of the laboratory tests that showed a decrease in population growth rate by 23% at this site compared to the reference. The field inventory and laboratory derived results agreed in the demographic composition of the population with more individuals in the younger age class at the polluted site compared to the reference. Abiotic and biotic conditions that differ between sites and could possibly explain the lower earthworm biomass and density at the reference site are discussed. We suggest that predation by the two to five times higher densities of meadow birds in spring may have caused the lower density and biomass of earthworms at the reference site.  相似文献   

13.
In the highly polluted river Rhine system, earthworms face environmental stress resulting from flooding and elevated heavy metal concentrations in the floodplain soil. Previous field studies have revealed adaptation to flooding for the earthworm species Lumbricus rubellus as this species matures at a lower weight in floodplain sites with a high frequency of flooding compared to less frequently flooded sites. Also heavy metals have effects on L. rubellus and heavy metals are influencing the genetic composition of this species. In this study, it was tested whether flooding and heavy metals had an impact on the genetic composition of L. rubellus living in floodplains along the river Rhine system. Earthworms were sampled at three sites previously studied along the river to assess earthworm diversity, biomass, density, and individual weight, and developmental status of L. rubellus. The genetic variation by means of isozymes was studied for 175 individuals. The results showed lowest density of L. rubellus adult and sub-adult life-stages and lowest individual weight of these life-stages at the frequent inundated site. The genetic composition, however, showed no effects of flooding on the genetic composition, but effects of heavy metals could not be ruled out.  相似文献   

14.
Two field experiments had been conducted in Huantai County, Shandong Province, east of China, with an effort to understand the impact of agricultural intensification on earthworm diversity and population density. Seven species of earthworms were identified in the two experiments. Average earthworm populations in the higher fertility soil (experiment B, 1.83% organic matter) were relatively abundant, with a population density of 105 indiv./m2 and biomass of 57 g/m2. Aporrectae trapezoids was the most dominant species. In the lower fertility soils (experiment A, 1.43% organic matter) the population density was only 51 indiv./m2 and the average biomass was 30 g/m2. Drawida gisti was the most dominant species. For both the experiments A and B, organic fertilizer (OF) and crop straw return increased earthworm abundance. The impact of chemical fertilizer (CF) on the earthworm population was found to depend on the amount of organic input. In experiment B, the earthworm biomass decreased when only winter wheat (Triticum aestivum) straw was input at three CF application levels. However, while both winter wheat straw (WS) and corn (Zea mays) stalk returned, there was no negative correlation between CF and earthworm density and biomass.  相似文献   

15.
Laboratory experiments were used to study the effect of food quantity and quality on the biomass of earthworms, and the influence of earthworms on plant growth and infiltration of water into soil. Earthworms with the most food gained weight faster than those with little or no supplementary food. The latter also failed to become reproductively mature. Earthworms lost weight on a nitrogenpoor diet, but this was not rectified by supplementing such food with inorganic nitrogen added to the soil 2 weeks before the worms. Ryegrass grown in soil in which earthworms (Allolobophora trapezoides) had been kept grew more slowly than in soil which had no previous worm activity, perhaps indicating that earthworms had converted relatively-available organic N into less available forms.Microscolex dubius gave the fastest infiltration rates of water into soil when clover mulch was present. With Eisenia foetida there was little effect of worm density on infiltration rates; the highest density significantly increased infiltration but only when clover hay had been mixed in the soil. The surface casting behaviour of the two earthworm species varied with the placing of the food offered.  相似文献   

16.
Significance of earthworms in stimulating soil microbial activity   总被引:9,自引:0,他引:9  
 The stimulatory effect of earthworms (Lumbricus terrestris L.) on soil microbial activity was studied under microcosm-controlled conditions. The hypothesis was tested that microbial stimulation observed in the presence of a soil invertebrate would be due to the utilization of additional nutritive substances (secretion and excretion products) that it provides. Changes in microbial activity were monitored by measuring simultaneously CO2 release and protozoan population density. The increase in CO2 released in the presence of earthworms was found to result from both earthworm respiration and enhanced microbial respiration. The stimulation of microbial activity was confirmed by a significant increase in protozoan population density, which was 3–19 times greater in the presence of earthworms. The respiratory rate of L. terrestris was estimated to be 53 μl O2 g–1 h–1. Earthworm respiration significantly correlated with individual earthworm weight, but there was no correlation between the increase in microbial respiration and earthworm weight. This finding does not support the hypothesis given above that enhanced microbial respiration is due to utilization of earthworm excreta. A new hypothesis that relationships between microbial activity and earthworms are not based on trophic links alone but also on catalytic mechanisms is proposed and discussed. Received: 26 August 1997  相似文献   

17.
To understand the life cycle of an organism, it is important to understand the physiological processes that govern growth and reproduction. In this paper, we re-analyse a life-cycle data set for the earthworm Eisenia veneta, using a process-based model. The data set comprises measurements of body size and cocoon production over 200 days, at two temperatures (15-25 °C) and two densities (five and 10 worms per container, but with the same worm:soil weight ratio). The model consists of a set of simple equations, derived from Dynamic Energy Budget (DEB) theory. The dynamics of growth and reproduction are simultaneously described by the model, using very few parameters (five parameters for four curves). This supports the use of this model for efficient analysis of earthworm life-cycle data, and to interpret the effects of stressors. However, there was considerable inter-individual variation in the response, hampering the interpretation of the temperature and density effects. A temperature increase corresponded to an increase in the rate constants for growth and reproduction (with the same factor), without affecting the other parameters, as expected from DEB theory. Changing the earthworm density hardly affected the growth curves, but had an unexpected effect on reproduction: at higher densities, the worms start to produce cocoons at a larger body size and the maximum reproduction rate was lower. This study confirms the use of DEB as a reference model for earthworms, and using this model, we can recognise that temperature has a predictable effect on the life cycle of E. veneta. Furthermore, this analysis reveals that the effects of density are less clear and may involve a change in energy allocation that requires further study.  相似文献   

18.
 The life cycle of Perionyx excavatus has been studied and the potential of this epigeic earthworm species for breaking down and processing organic wastes is well known. Understanding of its optimal environmental requirements is required in order to optimize and accelerate the vermicomposting process. The rates of growth and reproduction of P. excavatus, on a variety of organic wastes, were evaluated in these experiments. The time of maturation and the rates of growth of this species, under various population density pressures and temperatures between 15  °C and 30  °C, were also assessed. Increasing temperatures up to 30  °C accelerated the growth of earthworms and lessened the time to sexual maturity. However, the highest rates of reproduction occurred at 25  °C both in cattle solids and sewage sludge. The mean time to egg hatching decreased and the degree of hatching success increased with increasing temperature. Earthworms grew at similar rates in cattle solids, pig solids and aerobically digested sewage sludge, but the earthworms did not grow well in horse solids and grew only poorly in turkey wastes. The maximum individual growth rates as a function of earthworm population and the maximum earthworm weights as a function of time with a constant food supply at four different temperatures were assessed. Received: 16 July 1997  相似文献   

19.
Vermicomposting is an efficient and environmentally friendly technology to dispose of agricultural organic residues. The efficiency of organic residue decomposition during vermicomposting is directly affected by the biomass and population structure of earthworms. In this study, we investigated how the earthworm biomass and population structure responded to changes in the physicochemical properties of six types of organic residue (cattle dung, herbal waste, rice straw, soybean straw, garden waste, and tea residues) during vermicomposting. Each type of organic residues was placed in a pot with earthworms Eisenia fetida, and the physicochemical properties of the organic residues and earthworm growth dynamics were recorded at 0, 30, 60, and 90 d of vermicomposting. The biomass and population structure of earthworms were stable or increased in rice straw, garden waste, and cattle dung within 60 d of vermicomposting, whereas in tea residues and herb waste, very little earthworm activity (3 adults and 2 cocoons) was recorded on day 30. Among the physicochemical parameters, the substrate C/N ratio was negatively correlated with earthworm growth dynamics. Decomposing organic residues showed higher NH4+-N and NH3--N concentrations but a lower total organic carbon content, which negatively affected earthworm growth and reproduction. We recommend that chemical properties of vermicomposting systems should be monitored regularly. At the threshold levels of decomposing organic residue NH4+-N and NH3--N concentrations, earthworms should be removed and the vermicompost can be harvested. Small- and large-scale farmers thus need to monitor the physicochemical properties of vermicompost to sustain active earthworm populations.  相似文献   

20.
Research on earthworms in North America has focused on the effects of invasive earthworms, with few studies examining the ecology of native earthworm species. Deer have been shown to influence belowground processes through grazing, trampling, and fecal pellet deposition. We proposed that native earthworms in an oak-dominated forest in Virginia might benefit from increased organic matter provided by deer fecal material. We examined potential interactions between a common aboveground herbivore, the white-tailed deer (Odocoileus virginianus), and earthworms using laboratory and field experiments. In our laboratory experiment, we found that a native earthworm, Eisenoides carolinensis, and an invasive earthworm, Lumbricus terrestris both fared better in treatments with deer pellets compared with the treatment with leaf litter alone. In our field experiment, we used fences to exclude deer from six plots and left twelve plots unfenced to explore the effects of deer activity on earthworm biomass and density. We also examined the effects of deer on soil and vegetation characteristics. After three years, the amount of herbaceous cover was higher on fenced plots compared with unfenced plots. Although we found no other differences for vegetation and soil characteristics between fenced and unfenced plots, many of these variables were important as covariates in our models examining the effect of deer exclusion on earthworms, indicating plot-level (as opposed to treatment-level) variation in these variables. All identifiable earthworms were either E. carolinensis or Diplocardia spp. (both native species), with E. carolinensis making up 90% of the specimens. The total biomass of earthworms, as well as the biomass and density of adult and small juvenile earthworms, was greater on unfenced plots with deer activity compared with fenced plots. This study highlights the importance of above- and below-ground interactions in forest ecosystems by showing that E. carolinensis appears to benefit from the presence of deer and adds to our sparse knowledge of the ecology of this native earthworm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号